Encyclopedia of Membranes

2016 Edition
| Editors: Enrico Drioli, Lidietta Giorno

Liquid Chromatography: Organic Carbon Detection (LC-OCD)

Reference work entry
DOI: https://doi.org/10.1007/978-3-662-44324-8_714

Liquid chromatography – organic carbon detection (LC-OCD) is an analytical technique for identification and quantification of natural organic matter (NOM) constituents in aquatic environments and water-soluble synthetic organic matter in technical waters. This technique has several specific applications including NOM investigation in drinking water, wastewater, and marine waters and quality control monitoring of ultrapure water used in power plants and the semiconductor industry (Huber and Frimmel 1994; Huber et al. 2011). It is widely applied in membrane-based water treatment to characterize the different NOM constituents in the source waters (e.g., Kennedy et al. 2005; Amy et al. 2011; Villacorte et al. 2012), to assess the organic removal efficiency of pretreatment and membrane filtration processes (e.g., Frimmel et al. 2004; Villacorte et al. 2009, 2010; Huang et al. 2011; Zheng et al. 2010), and to identify the NOM constituents that cause fouling in MF/UF and NF/RO systems (e.g.,...

This is a preview of subscription content, log in to check access

References

  1. Amy GL, Salinas-Rodriguez SG, Kennedy MD, Schippers JC, Rapenne S, Remize P-J, Barbe C, Manes CLDO, West NJ, Lebaron P, Kooij DVD, Veenendaal H, Schaule G, Petrowski K, Huber S, Sim LN, Ye Y, Chen V, Fane AG (2011) Water quality assessment tools. In: Drioli E, Criscuoli A, Macedonio F (eds) Membrane-based desalination – an integrated approach (MEDINA). IWA Publishing, New York, pp 3–32Google Scholar
  2. Batsch A, Tyszler D, Brügger A, Panglisch S, Thomas M (2005) Foulant analysis of modified and unmodified membranes for water and wastewater treatment with LC-OCD. Desalination 178:63–72CrossRefGoogle Scholar
  3. DOC-Labor (2006) LC-OCD – Liquid chromatography Organic Carbon Detection. Information Brochure 1/2006Google Scholar
  4. Frimmel FH, Saravia F, Gorenflo A (2004) NOM removal from different raw waters by membrane filtration. Water Sci Technol Water Supply 4:165–174Google Scholar
  5. Henderson RK, Subhi N, Antony A, Khan SJ, Murphy KR, Leslie GL, Chen V, Stuetz RM, Le-Clech P (2011) Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. J Membr Sci 382:50–59CrossRefGoogle Scholar
  6. Huang G, Meng F, Zheng X, Wang Y, Wang Z, Liu H, Jekel M (2011) Biodegradation behavior of natural organic matter (NOM) in a biological aerated filter (BAF) as a pretreatment for ultrafiltration (UF) of river water. Appl Microbiol Biotechnol 90:1795–1803CrossRefGoogle Scholar
  7. Huber SA (1998) Evidence for membrane fouling by specific TOC constituents. Desalination 119:229–234CrossRefGoogle Scholar
  8. Huber SA, Frimmel FH (1991) Flow injection analysis for organic and inorganic carbon in the low-ppb range. Anal Chem 63:2122–2130CrossRefGoogle Scholar
  9. Huber SA, Frimmel FH (1994) Direct gel chromatographic characterization and quantification of marine dissolved organic carbon using high-sensitivity DOC detection. Environ Sci Technol 28:1194–1197CrossRefGoogle Scholar
  10. Huber SA, Balz A, Abert M, Pronk W (2011) Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography – organic carbon detection – organic nitrogen detection (LC-OCD-OND). Water Res 45:879–885CrossRefGoogle Scholar
  11. Jiang T, Kennedy MD, DeSchepper V, Nam S-N, Nopens I, Vanrolleghem PA, Amy G (2010) Characterization of soluble microbial products and their fouling impacts in membrane bioreactors. Environ Sci Technol 44:6642–6648CrossRefGoogle Scholar
  12. Kennedy MD, Chun HK, Yangali-Quintanilla VA, Heijman BGJ, Schippers JC (2005) Natural organic matter (NOM) fouling of ultrafiltration membranes: fractionation of NOM in surface water and characterisation by LC-OCD. Desalination 178:73–83CrossRefGoogle Scholar
  13. Kennedy MD, Kamanyi J, Heijman BGJ, Amy G (2008) Colloidal organic matter fouling of UF membranes: role of NOM composition %26 size. Desalination 220:200–213CrossRefGoogle Scholar
  14. Villacorte LO, Kennedy MD, Amy G, Schippers JC (2009) The fate of transparent exopolymer particles (TEP) in integrated membrane systems: removal through pretreatment processes and deposition on reverse osmosis membranes. Water Res 43:5039–5052CrossRefGoogle Scholar
  15. Villacorte LO, Schurer R, Kennedy MD, Amy G, Schippers JC (2010) The fate of transparent exopolymer particles in integrated membrane systems: a pilot plant study in Zeeland, The Netherlands. Desalination Water Treat 13:109–119CrossRefGoogle Scholar
  16. Villacorte LO, Ekowati Y, Winters H, Amy GL, Schippers JC, Kennedy MD (2012) Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: a membrane treatment perspective. Desalin Water Treat. doi:10.1080/19443994.2012.699359Google Scholar
  17. Zheng X, Ernst M, Jekel M (2009) Identification and quantification of major organic foulants in treated domestic wastewater affecting filterability in dead-end ultrafiltration. Water Res 43:238–244CrossRefGoogle Scholar
  18. Zheng X, Ernst M, Jekel M (2010) Pilot-scale investigation on the removal of organic foulants in secondary effluent by slow sand filtration prior to ultrafiltration. Water Res 44:3203–3213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.FMC TechnologiesSeparation Innovation and Research CenterArnhemThe Netherlands