Encyclopedia of Membranes

2016 Edition
| Editors: Enrico Drioli, Lidietta Giorno

Lamellar Copolymers

Reference work entry
DOI: https://doi.org/10.1007/978-3-662-44324-8_2212
The presence of covalent bonds between the blocks in block copolymers leads to severe restrictions on the state of local segregation between them allowing the formation of few and defined morphologies. Comparing the phase separation that occurs in a pure copolymer AB and into the corresponding mixture of homopolymers HA/HB and assuming that in both cases strips of different phases are formed, parallel to the surface of the system, it is observed that in the mixture the size of the homopolymeric lamellae parallel to the surface and perpendicular to it are both much greater than the radius of gyration (Rg) of the polymer. Instead, in the case of the block copolymer, the presence of the bond between the blocks allows the formation of lamellae whose dimensions parallel to the surface are much greater than the radius of gyration, but the size perpendicular to the surface has dimensions comparable to the radius of gyration. On the basis of this different structural feature, the domains of...
This is a preview of subscription content, log in to check access.


  1. Albalak RJ, Thomas EL (1993) Microphase separation of BCP solutions in a flow field. J Polym Sci Polym Phys 31:37CrossRefGoogle Scholar
  2. Albalak RJ, Thomas EL (1994) Roll casting of BCPs and BCP-homopolymer blends. J Polym Sci Polym Phys 32:341CrossRefGoogle Scholar
  3. Angelescu DE, Waller JH, Adamson DH, Deshpande P, Chou SY, Register RA, Chaikin PM (2004) Macroscopic orientation of block copolymer cylinders in single-layer films by shearing. Adv Mater 16:1736CrossRefGoogle Scholar
  4. Angelescu DE, Waller JH, Register RA, Chaikin PM (2005) Shear-Induced alignment in thin films of spherical nanodomains. Adv Mater 17:1878CrossRefGoogle Scholar
  5. Bockstaller M, Mickievic RA, Thomas EL (2005) Block copolymer nanocomposites: perspectives for tailored functional materials. Adv Mater 17:1331CrossRefGoogle Scholar
  6. Dair BJ, Avgeropoulos A, Hadjichristidis N, Capel M, Thomas EL (2000) Oriented double gyroid films via roll casting. Polymer 41:6231Google Scholar
  7. DeRouchey J, Thurn-Albrecht T, Russell TP, Kolb R (2004) Block copolymer domain reorientation in an electric field: An in-situ small-angle X-ray scattering study. Macromolecules 37:2538CrossRefGoogle Scholar
  8. Drzal PL, Barnes JD, Kofinas P (2001) Path dependent microstructure orientation during strain compression of semicrystalline block copolymers. Polymer 42:5633CrossRefGoogle Scholar
  9. Elhadj S, Woody JW, Niu VS, Saraf RF (2003) Orientation of self-assembled block copolymer cylinders perpendicular to electric field in mesoscale film. Appl Phys Lett 82:871CrossRefGoogle Scholar
  10. Folkes MJ, Keller A, Scalisi FP (1973) Extrusion technique for the preparation of single crystals of block copolymers. Colloid Polym Sci 251:1Google Scholar
  11. Grigorova T, Pispas S, Hadjichristidis N, Thurn-Albrecht T (2005) Magnetic field induced orientation in diblock copolymers with one crystallizable block. Macromolecules 38:7430CrossRefGoogle Scholar
  12. Hadziioannou G, Mathis A, Skoulios A (1979) Monocristaux de copolymères triséquencés styrène/isoprène/styrène présentant la structure cylindrique: I. Étude de l'orientation par diffraction des rayons X aux petits angles. Colloid Polym Sci 257:15, 136CrossRefGoogle Scholar
  13. Hermel TJ, Wu LF, Hahn SF, Lodge TP, Bates FS (2002) Shear-induced lamellae alignment in matched triblock and pentablock copolymers. Macromolecules 35:4685CrossRefGoogle Scholar
  14. Honeker CC, Thomas EL, Albalak RJ, Hajduk DA, Gruner SM, Capel MC (2000) Perpendicular deformation of a near-single-crystal triblock copolymer with a cylindrical morphology. 1. Synchrotron SAXS. Macromolecules 33:9395CrossRefGoogle Scholar
  15. Keller A, Pedemonte E, Willmouth FM (1970) Macro-lattice from Segregated Amorphous Phases of a Three Block Copolymer. Nature (London) 225:538CrossRefGoogle Scholar
  16. Kim G, Libera M (1998) Morphological development in solvent-cast polystyrene–polybutadiene–polystyrene (SBS) triblock copolymer thin films. Macromolecules 31:2569, 2670CrossRefGoogle Scholar
  17. Kim SH, Misner MJ, Xu T, Kimura M, Russell TP (2004) Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv Mater 16:226CrossRefGoogle Scholar
  18. Kimura M, Misner MJ, Xu T, Kim SH, Russell TP (2003) Long-Range ordering of diblock copolymers induced by droplet pinning. Langmuir 19:9910CrossRefGoogle Scholar
  19. Kofinas P, Cohen RE (1995) Melt processing of semicrystalline E/EP/E triblock copolymers near the order-disorder transition. Macromolecules 28:336lCrossRefGoogle Scholar
  20. Leist H, Maring D, Thurn-Albrecht T, Wiesner U (1999) Double flip of orientation for a lamellar diblock copolymer under shear. J Chem Phys 110:8225CrossRefGoogle Scholar
  21. Lin Z, Kim DH, Wu X, Boosahda L, Stone D, LaRose L, Russell TP (2002) A rapid route to arrays of nanostructures in thin films. Adv Mater 14:1373CrossRefGoogle Scholar
  22. Luo KF, Yang YL (2004) Orientation phase transition in the hexagonal phase and rheological properties of diblock copolymer under a simple shear flow. Polymer 45:6745CrossRefGoogle Scholar
  23. Morkved TL, Lu M, Urbas AM, Ehrichs EE, Jaeger HM, Mansky P, Russell TP (1996) Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273:931CrossRefGoogle Scholar
  24. Morrison FA, Winter HH (1989) Effect of unidirectional shear on the structure of triblock copolymers. 1. Polystyrene-polybutadiene-polystyrene. Macromolecules 22:3533CrossRefGoogle Scholar
  25. Morrison FA, Winter HH, Gronski W, Barnes JD (1990) Effect of unidirectional shear on the structure of triblock copolymers. 2. Polystyrene-polyisoprene-polystyrene. Macromolecules 23:7200CrossRefGoogle Scholar
  26. Onuki A, Fukuda J (1995) Electric field effects and form birefringence in diblock copolymers. Macromolecules 28:8788CrossRefGoogle Scholar
  27. Osuji C, Ferreira PJ, Mao G, Ober CK, Vander Sande JB, Thomas EL (2004) Alignment of self-assembled hierarchical microstructure in liquid crystalline diblock copolymers using high magnetic fields. Macromolecules 37:9903CrossRefGoogle Scholar
  28. Quiram DJ, Register RA, Marchand GR, Adamson DH (1998) Chain orientation in block copolymers exhibiting cylindrically confined crystallization. Macromolecules 31:4891CrossRefGoogle Scholar
  29. Schulz MF and Bates FS (1996) In “Physical properties of polymers handbook”, American Institute of Physics. pp 427--433Google Scholar
  30. Scott Pinheiro B, Winey KI (1998) Mixed parallel–perpendicular morphologies in diblock copolymer systems correlated to the linear viscoelastic properties of the parallel and perpendicular morphologies. Macromolecules 31:4447CrossRefGoogle Scholar
  31. Sebastian JM, Graessley WW, Register RA (2002) Steady-shear rheology of block copolymer melts and concentrated solutions: Defect-mediated flow at low stresses in body-centered-cubic systems. J Rheol 46:863CrossRefGoogle Scholar
  32. Skoulios A (1977) Properties of oriented block copolymers. J Polym Sci Polym Symp 58:369CrossRefGoogle Scholar
  33. Stangler S, Abetz V (2003) Orientation behavior of AB and ABC block copolymers under large amplitude oscillatory shear flow. Rheol Acta 42:569CrossRefGoogle Scholar
  34. Temple K, Kulbaba K, Power-Billard KN, Manners I, Leach KA, Xu T, Russell TP, Hawker CJ (2003) Spontaneous vertical ordering and pyrolytic formation of nanoscopic ceramic patterns from poly(styrene-b-ferrocenylsilane) Advanced Materials. 15: 297-300Google Scholar
  35. Thurn-Albrecht T, Steiner R, DeRouchey J, Stafford CM, Huang E, Bal M, Tuominen M, Hawker CJ, Russell TP (2000) Nanoscopic templates from oriented block copolymer films. Adv Mater 12:787CrossRefGoogle Scholar
  36. Thurn-Albrecht T, DeRouchey J, Russell TP, Kolb R (2002) Pathways toward electric field induced alignment of block copolymers. Macromolecules 35:8106CrossRefGoogle Scholar
  37. Tomikawa N, Lu ZB, Itoh T, Imrie CT, Adachi M, Tokita M, Watanabe J (2005) Orientation of microphase-segregated cylinders in liquid crystalline diblock copolymer by magnetic field. Jpn J Appl Phys 2 44:L711CrossRefGoogle Scholar
  38. Turturro A, Gattiglia E, Vacca P, Viola GT (1995) Free surface morphology of block copolymers: 1. Styrene-butadiene diblock copolymers. Polymer 21:3987CrossRefGoogle Scholar
  39. van Asselen OLJ, van Casteren IA, Goossens JGP, Meijer HEH (2004) Deformation behavior of triblock copolymers based on polystyrene: an FT-IR spectroscopy study. Macromol Symp 205:85CrossRefGoogle Scholar
  40. Villar MA, Rueda DR, Ania F, Thomas EL (2002) Study of oriented block copolymers films obtained by roll-casting. Polymer 43:5139CrossRefGoogle Scholar
  41. Wiesner U (1997) Lamellar diblock copolymer under large amplitude oscillatory shear flow: order and dynamics. Macromol Chem Phys 198:3319CrossRefGoogle Scholar
  42. Wu L, Lodge TP, Bates FS (2004) SANS determination of chain conformation in perpendicular-aligned undecablock copolymer lamellae. Macromolecules 37:8184CrossRefGoogle Scholar
  43. Xiang H, Lin Y, Russell TP, Kolb R (2004) Electrically induced patterning in block copolymer films. Macromolecules 37:5358CrossRefGoogle Scholar
  44. Xu T, Zhu Y, Gido SP, Russell TP (2004) Electric field alignment of symmetric diblock copolymer thin films. Macromolecules 37:2625CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Research Director, Institute for PolymersComposites and Biomaterials (IPCB-CNR)Pozzuoli, NaplesItaly