Encyclopedia of Astrobiology

2015 Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James (Jim) CleavesII, Daniele L. Pinti, José Cernicharo Quintanilla, Daniel Rouan, Tilman Spohn, Stéphane Tirard, Michel Viso

RNA World

Reference work entry
DOI: https://doi.org/10.1007/978-3-662-44185-5_1740



The RNA world is a hypothesized early stage in the evolution of life that may have preceded the  last universal common ancestor (LUCA) of all modern organisms. In this scenario, ribonucleic acid ( RNA) was the sole information-rich biopolymer, performing both the catalytic and genetic roles played by proteins and deoxyribonucleic acid (DNA), respectively, in the modern cell. The proposed vestiges of the RNA world are found throughout modern biology, most notably in the central functional roles of RNA found in protein translation.


Darwin’s prediction that all modern life has descended from a single, primitive common ancestor has been thoroughly confirmed by modern biology (Grant and Carpenter 2003). Indeed, comparative genomics has begun to shed light on the genome content of the  last universal common ancestor(LUCA), revealing a biochemically sophisticated cellular organism with an extensive metabolism and a fully modern form of protein...


In vitro evolution Ribosome Ribozyme RNA 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Agmon I et al (2009) Identification of the prebiotic translation apparatus within the contemporary ribosome. Available from Nature Precedings. http://precedings.nature.com/documents/2921/version/1
  2. Becerra A et al (2007) The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Annu Rev Ecol Evol Syst 38:361–379MathSciNetCrossRefGoogle Scholar
  3. Benner S, Ellington A, Tauer A (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci 86:7054CrossRefADSGoogle Scholar
  4. Bokov K, Steinberg SV (2009) A hierarchical model for evolution of 23S ribosomal RNA. Nature 457:977–980CrossRefADSGoogle Scholar
  5. Budin I, Szostak JW (2010) Expanding roles for diverse physical phenomena during the origin of life. Annu Rev Biophys 39:245–263. doi:10.1146/annurev.biophys.050708.133753CrossRefGoogle Scholar
  6. Cech T (2009) Crawling out of the RNA world. Cell 136:599–602CrossRefGoogle Scholar
  7. Chen X, Li N, Ellington A (2007) Ribozyme catalysis of metabolism in the RNA world. Chem Biodivers 4:633–655CrossRefGoogle Scholar
  8. Chen YG et al (2009) LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol 5:879–881CrossRefADSGoogle Scholar
  9. Copley SD, Smith E, Morowitz HJ (2007) The origin of the RNA world: co-evolution of genes and metabolism. Bioorg Chem 35:430–443CrossRefGoogle Scholar
  10. Dworkin J, Lazcano A, Miller S (2003) The roads to and from the RNA world. J Theor Biol 222:127–134CrossRefGoogle Scholar
  11. Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284:2118–2124CrossRefGoogle Scholar
  12. Francklyn CS, Minajigi A (2010) tRNA as an active chemical scaffold for diverse chemical transformations. FEBS Lett 584:366–375CrossRefGoogle Scholar
  13. Gartner ZJ, Liu DR (2001) The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J Am Chem Soc 123:6961–6963CrossRefGoogle Scholar
  14. Gesteland RF, Cech TR, Atkins JF (2006) The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory, WoodburyGoogle Scholar
  15. Gilbert W (1986) The RNA world. Nature 319:618CrossRefADSGoogle Scholar
  16. Goldman AD, Samudrala R, Baross JA (2010) The evolution and functional repertoire of translation proteins following the origin of life. Biol Direct 5:15CrossRefGoogle Scholar
  17. Hagiwara Y et al (2010) Editing mechanism of aminoacyl-tRNA synthetases operates by a hybrid ribozyme/protein catalyst. J Am Chem Soc 132:2751–2758CrossRefGoogle Scholar
  18. Johnston WK et al (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325CrossRefADSGoogle Scholar
  19. Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221CrossRefADSGoogle Scholar
  20. Joyce GF (2004) Directed evolution of nucleic acid enzymes. Annu Rev Biochem 73:791–836CrossRefGoogle Scholar
  21. Joyce GF (2007) Forty years of in vitro evolution. Angew Chem Int Ed Engl 46:6420–6436CrossRefGoogle Scholar
  22. Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136CrossRefGoogle Scholar
  23. Kowtoniuk WE et al (2009) A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. Proc Natl Acad Sci U S A 106:7768–7773CrossRefADSGoogle Scholar
  24. Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232CrossRefADSGoogle Scholar
  25. Müller UF (2006) Re-creating an RNA world. Cell Mol Life Sci 63:1278–1293CrossRefGoogle Scholar
  26. Nielsen PE (2007) Peptide nucleic acids and the origin of life. Chem Biodivers 4:1996–2002CrossRefGoogle Scholar
  27. Noller HF (2004) The driving force for molecular evolution of translation. RNA 10:1833–1837CrossRefGoogle Scholar
  28. Noller HF (2005) RNA structure: reading the ribosome. Science 309:1508–1514CrossRefADSGoogle Scholar
  29. Nowak MA, Ohtsuki H (2008) Prevolutionary dynamics and the origin of evolution. Proc Natl Acad Sci U S A 105:14924–14927CrossRefADSGoogle Scholar
  30. Ohuchi M, Murakami H, Suga H (2007) The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus. Curr Opin Chem Biol 11:537–542CrossRefGoogle Scholar
  31. Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol 6, e18CrossRefGoogle Scholar
  32. Peretó J, Bada JL, Lazcano A (2009) Darwin and the origin of life. Orig Life Evol Biosph 39:395–406CrossRefGoogle Scholar
  33. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242CrossRefADSGoogle Scholar
  34. Ridley M (2004) Evolution. Blackwell Science, MaldenGoogle Scholar
  35. Robertson MP, Scott WG (2007) The structural basis of ribozyme-catalyzed RNA assembly. Science 315:1549–1553CrossRefADSGoogle Scholar
  36. Rodríguez-Trelles F, Tarrío R, Ayala FJ (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76CrossRefGoogle Scholar
  37. Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221Google Scholar
  38. Schimmel P (2008) Development of tRNA synthetases and connection to genetic code and disease. Evolution 17:1643–1652. doi:10.1110/ps.037242.108.treeGoogle Scholar
  39. Schimmel P, Ribas De Pouplana L (1995) Transfer RNA: from minihelix to genetic code. Cell 81:983–986CrossRefGoogle Scholar
  40. Schmeing TM et al (2005) Structural insights into the roles of water and the 2 0 hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell 20:437–448CrossRefGoogle Scholar
  41. Schrum JP et al (2009) Efficient and rapid template-directed nucleic acid copying using 2′-amino-2′, 3′-dideoxyribonucleoside-5′-phosphorimidazolide monomers. J Am Chem Soc 131:14560–14570CrossRefGoogle Scholar
  42. Scott WG (2007) Ribozymes. Curr Opin Struct Biol 17:280–286CrossRefGoogle Scholar
  43. Segre D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci U S A 97:4112–4117CrossRefADSGoogle Scholar
  44. Sharp PA (2009) The centrality of RNA. Cell 136:577–580CrossRefGoogle Scholar
  45. Shechner DM et al (2009) Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Science 326:1271–1275CrossRefADSGoogle Scholar
  46. Stahley MR, Strobel SA (2005) Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309:1587–1590CrossRefADSGoogle Scholar
  47. Steitz T, Moore P (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418CrossRefGoogle Scholar
  48. Szathmáry E, Maynard Smith J (1997) From replicators to reproducers: the first major transitions leading to life. J Theor Biol 187:555–571CrossRefGoogle Scholar
  49. Toor N et al (2008) Crystal structure of a self-spliced group II intron. Science 320:77–82CrossRefADSGoogle Scholar
  50. Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci U S A 107:4585–4589CrossRefADSGoogle Scholar
  51. Weinberg Z et al (2009) Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 462:656–659CrossRefADSGoogle Scholar
  52. Wolf YI, Koonin EV (2007) On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct 2:14CrossRefGoogle Scholar
  53. Yin YW, Steitz TA (2004) The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116:393–404CrossRefGoogle Scholar
  54. Zaher HS, Unrau PJ (2007) Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA 13:1017–1026CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Molecular BiologyThe Scripps Research InstituteLa JollaUSA