Encyclopedia of Astrobiology

2015 Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James (Jim) CleavesII, Daniele L. Pinti, José Cernicharo Quintanilla, Daniel Rouan, Tilman Spohn, Stéphane Tirard, Michel Viso


  • Juan P. G. BallestaEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-662-44185-5_1382



The ribosome is the central component of the  protein synthesis machinery in the cell. It contains both  RNA and protein and is composed of two subunits. Ribosomes are essential for accurate  translation of the mRNA-encoded genetic message; they biosynthesize  proteins by catalyzing the peptide bond formation between tRNA-bound  amino acids.


Ribosomes are composed of about 65 % RNA and 35 % proteins distributed into a small and a large subunit. In contrast to the ribosomal proteins (r-proteins), the ribosomal RNA (rRNA) has been highly conserved during evolution and contains numerous posttranscriptional modifications and peculiar structural features like pseudo-knots and other RNA-RNA tertiary interactions. Ribosomes are present in all organisms from the three domains of life (Bacteria, Archaea, and Eukarya) and in two eukaryotic organelles originated by ancient  endosymbiosis of bacteria (mitochondrion and chloroplast).



Antibiotics Decoding Peptide bond formation Ribonucleoprotein particle Translation 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Burkhardt N, Junemann R, Spahn CM, Nierhaus KH (1998) Ribosomal tRNA binding sites: three-site models of translation. Crit Rev Biochem Mol Biol 33(2):95–149CrossRefGoogle Scholar
  2. Frank J, Spahn CMT (2006) The ribosome and the mechanism of protein synthesis. Rep Prog Phys 69:1383–1417CrossRefADSGoogle Scholar
  3. Harris EH, Boynton JE, Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58(4):700–754Google Scholar
  4. Korostelev A, Noller HF (2007) The ribosome in focus: new structures bring new insights. Trends Biochem Sci 32(9):434–441CrossRefGoogle Scholar
  5. Moore PB, Steitz TA (2005) The ribosome revealed. Trends Biochem Sci 30(6):281–283CrossRefGoogle Scholar
  6. Nierhaus KH, Wilson DN (eds) (2004) Protein synthesis and ribosome structure. Translating the genome. Wiley-VCH, WeinheimGoogle Scholar
  7. Ogle JM, Ramakrishnan V (2005) Structural insights into translational fidelity. Annu Rev Biochem 74:129–177CrossRefGoogle Scholar
  8. Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J (2001) Structure of the 80 S ribosome from saccharomyces cerevisiae-tRNA- ribosome and subunit-subunit interactions. Cell 107(3):373–386CrossRefGoogle Scholar
  9. Vazquez D (1979) Inhibitors of protein synthesis. Mol Biol Biochem Biophys 30:1–312CrossRefGoogle Scholar
  10. Yonath A (2005) Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation. Annu Rev Biochem 74:649–679CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Genome Dynamics and FunctionCentro de Biologia Molecular Severo OchoaCantoblancoSpain