Encyclopedia of Astrobiology

2015 Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James (Jim) CleavesII, Daniele L. Pinti, José Cernicharo Quintanilla, Daniel Rouan, Tilman Spohn, Stéphane Tirard, Michel Viso

Rio Tinto

  • David C. Fernández-RemolarEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-662-44185-5_1379



The Río Tinto  extreme environment is a 100-km-long acidic fluvial system emplaced in the Iberian Pyritic Belt (IPB) (Fernández-Remolar et al. 2005). Mines of copper, silver, and gold have been exploited for over 3,000 years. The fluvial system is composed of two acidic streams sourced in Peña de Hierro and Cerro Colorado areas, respectively. Its peculiar geochemistry is maintained by different low-pH springs sourced on a  pyrite ore body aquifer which is affected by microbial-driven  weathering. The Río Tinto springs are connected to the aquifer by a diverse set of normal faults which recharge the subsurface with rainwater and oxygen. In this system, the acidic springs result from the acidic subsurface waters which outflow through the same group of faults. Microbial life displays a great diversity in eukaryotic living forms and a versatile metabolism in the prokaryotic microbes (Aguilera et al. 2007; González-Toril...


Extreme environment Fluvial system Mars analog 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Aguilera A, Zettler E, Gómez F, Amaral-Zettler L, Rodríguez N, Amils R (2007) Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30:531–546CrossRefGoogle Scholar
  2. Fernández-Remolar DC, Knoll AH (2008) Fossilization potential of iron-bearing minerals in acidic environments of Río Tinto, Spain: implications for Mars exploration. Icarus 194:72–85CrossRefADSGoogle Scholar
  3. Fernández-Remolar D, Rodríguez N, Gómez F, Amils R (2003) The geological record of an acidic environment driven by iron hydrochemistry: the Tinto River system. J Geophys Res 108:5080–5095. doi:10.1029/2002JE001918CrossRefGoogle Scholar
  4. Fernández-Remolar DC, Morris RV, Gruener JE, Amils R, Knoll AH (2005) The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett 240:149–167CrossRefADSGoogle Scholar
  5. Fernández-Remolar DC, Gómez F, Prieto-Ballesteros O, Schelble RT, Rodríguez N, Amils R (2008a) Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: the Río Tinto subsurface ecosystem as a model system. Astrobiology 8:157–173CrossRefADSGoogle Scholar
  6. Fernández-Remolar DC, Prieto-Ballesteros O, Rodríguez N, Gómez F, Amils R, Gómez-Elvira J, Stoker CR (2008b) Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars. Astrobiology 8:1023–1047CrossRefADSGoogle Scholar
  7. Gómez F, Fernández-Remolar D, González-Toril EF, Amils R (2004) The Tinto River, an extreme Gaian environment. In: Margulis L, Miller J, Boston P, Schneider S, Crist E (eds) Scientist on Gaia 2000. MIT Press, BostonGoogle Scholar
  8. González-Toril EF, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865CrossRefGoogle Scholar
  9. Squyres SW, Knoll AH (2005) Sedimentary rocks at Meridiani planum: origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett 240:1–10CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centro de Astrobiología (INTA-CSIC)INTATorrejón de ArdozSpain