Encyclopedia of Astrobiology

2015 Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James (Jim) CleavesII, Daniele L. Pinti, José Cernicharo Quintanilla, Daniel Rouan, Tilman Spohn, Stéphane Tirard, Michel Viso

Rare Earth Elements

Reference work entry
DOI: https://doi.org/10.1007/978-3-662-44185-5_1348

Synonyms

Definition

The rare earth elements (REE), or lanthanides, comprise the 16 consecutive elements of the periodic table corresponding to the progressive filling of the 4f orbitals. They are metals with atomic numbers from 57 to 71 (La to Lu, family of lanthanides), plus the element yttrium (Y) (Table 1). Their abundance in rocks is less than 0.1 wt.%.
Rare Earth Elements, Table 1

List of rare earth elements plus yttrium. Ionic radius is for trivalent ionic species unless indicated (From Rollinson (1993) modified)

Atomic number

Name

Symbol

Ionic radius for eightfold coordination (pm)

57

Lanthanum

La

116.0

58

Cerium

Ce

114.3 (Ce3+)

     

97.0 (Ce4+)

59

Praseodymium

Pr

112.6

60

Neodymium

Nd

110.9

61

Promethium

Pm

Not naturally occurring

62

Samarium

Sm

107.9

63

Europium

Eu

106.6 (Eu3+)

     

125.0 (Eu2+)

64

Gadolinium

Gd

105.3

65

Terbium

Tb

104.0

66

Dysprosium

Dy

102.7

67

Holmium

Ho

101.5

68

Erbium

Er

100.4

69

Thulium

Tm

99.4

70

Ytterbium

Yb

98.5...

Keywords

Banded iron formation Chert Igneous rocks Sedimentary rocks Stromatolites 
This is a preview of subscription content, log in to check access

References and Further Reading

  1. Alibo DS, Nozaki Y (1998) Rare-earth elements in seawater: particle association, shale normalization, and Ce oxidation. Geochim Cosmochim Acta 63:363–372CrossRefGoogle Scholar
  2. Arndt NT, Albarède F, Nisbet EG (1997) Mafic and ultramafic magmatism. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, Oxford, pp 233–254Google Scholar
  3. Bau M, Dulski P (1999) Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem Geol 155:77–90CrossRefGoogle Scholar
  4. Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett 222:43–60CrossRefADSGoogle Scholar
  5. Bolhar R, Van Kranendonk MJ, Kamber BS (2005) A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton – formation from hydrothermal fluids and shallow seawater. Precambrian Res 137:93–114CrossRefGoogle Scholar
  6. Douville E, Bienvenu P, Charlou JL, Donval JP, Fouquet Y, Appriou P, Gamo T (1999) Yttrium and rare-earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta 63:627–643CrossRefADSGoogle Scholar
  7. Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086CrossRefADSGoogle Scholar
  8. German CR, Elderfield H (1989) Rare-earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochim Cosmochim Acta 53:2561–2571CrossRefADSGoogle Scholar
  9. Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The “North American Shale Composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482CrossRefADSGoogle Scholar
  10. Kamber BS, Webb GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525CrossRefADSGoogle Scholar
  11. Kamber BS, Greig A, Collerson KD (2005) A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim Cosmochim Acta 69:1041–1058CrossRefADSGoogle Scholar
  12. Michard A, Albarede F, Michard G, Minster JF, Charlou JL (1983) Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N). Nature 303:795–797CrossRefADSGoogle Scholar
  13. Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775CrossRefADSGoogle Scholar
  14. Orberger B, Rouchon V, Westall F, de Vries ST, Pinti DL, Wagner C, Wirth R, Hashizume K (2006) Microfacies and origin of some Archaean cherts (Pilbara, Australia). In: Reimold WU, Gibson RL (eds) Processes on the early earth. Geological Society of America, New YorkGoogle Scholar
  15. Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Pearson Prentice-Hall, Harlow, p 352Google Scholar
  16. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  17. Van Kranendonk M, Webb G, Kamber B (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1:91–108CrossRefGoogle Scholar
  18. Wearer BL (1991) Trace element evidence for the origin of ocean-island basalts. Geology 19:123–126CrossRefADSGoogle Scholar
  19. Weis D, Wasserburg GJ (1987) Rb-Sr and Sm-Nd isotope geochemistry and chronology of cherts from the Onverwacht Group (3.5 Ga), South Africa. Geochim Cosmochim Acta 51:973–984CrossRefADSGoogle Scholar
  20. Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice-Hall, Columbus, 699 ppGoogle Scholar
  21. Wood DA, Joron J-L, Treuil M (1979) A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet Sci Lett 45:326–336CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.GEOTOP Research Center for Geochemistry and GeodynamicsUniversité du Québec à MontréalMontréalCanada