Skip to main content

Congenital Nephrotic Syndrome

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Renal diseases associated with nephrotic syndrome (NS) in the first year of life are uncommon and make up a heterogeneous group of disorders [73]. Congenital nephrotic syndrome (CNS) is defined as proteinuria manifesting in the first 3 months of life. NS appearing later during the first year (4–12 months) is defined infantile, and NS manifesting thereafter is called childhood NS. While this classification is used to help the clinical diagnosis, it is arbitrary in the sense that NS caused by a specific gene mutation can manifest soon after birth or later in life. However, since the management of CNS is often different from the more common forms of childhood NS, the terminology still seems warranted (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alamiz-Echevarria L, Vallo A, Aguire M, et al. Essential fatty acid deficiency profile in patients with nephrotic-range proteinuria. Pediatr Nephrol. 2007;22:533–40.

    Article  Google Scholar 

  2. Antikainen M. Protein and lipid metabolism in nephrotic infants on peritoneal dialysis. Pediatr Nephrol. 1993;7:428–53.

    Article  CAS  PubMed  Google Scholar 

  3. Antikainen M, Holmberg C, Taskinen M. Growth, serum lipoproteins an apoproteins in infants with congenital nephrosis. Clin Nephrol. 1992;38:254–63.

    CAS  PubMed  Google Scholar 

  4. Antikainen M, Sariola H, Rapola J, et al. Pathology of renal arteries of dyslipidemic children with congenital nephrosis. APMIS. 1994;102:129–34.

    Article  CAS  PubMed  Google Scholar 

  5. Aula P, Rapola J, Karjalainen O, et al. Prenatal diagnosis of congenital nephrosis in 23 high-risk families. Am J Dis Child. 1978;132:984–7.

    CAS  PubMed  Google Scholar 

  6. Avni E, Vanhdenhoute K, Devriendt A, et al. Update on congenital nephrotic syndromes and contribution of US. Pediatr Radiol. 2011;41:76–81.

    Article  PubMed  Google Scholar 

  7. Aya K, Tanaka H, Seino Y. Novel mutation in the nephrin gene of a Japanese patient with congenital nephrotic syndrome of the Finnish type. Kidney Int. 2000;57:401–4.

    Article  CAS  PubMed  Google Scholar 

  8. Barakat A, Papadoupoulo Z, Chana R, et al. Pseudohermaphroditism, nephron disorder an Wilms tumor: a unifying concept. Pediatrics. 1974;54:366–9.

    CAS  PubMed  Google Scholar 

  9. Barbaux S, Niaudet P, Gubler M-C, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet. 1997;17:467–70.

    Article  CAS  PubMed  Google Scholar 

  10. Barletta GM, Kovari I, Verma R, et al. Nephrin and Neph1 co-localize at the podocyte foot process intercellular junction and form cis hetero-oligomers. J Biol Chem. 2003;278:19266–71.

    Article  CAS  PubMed  Google Scholar 

  11. Barua M, Brown E, Charoonratana V, et al. Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis. Kidney Int. 2013;83:316–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Basker M, Agarwal I, Benon K. Congenital nephrotic syndrome- a treatable cause. Ann Trop Paediatr. 2007;27:87–90.

    Article  PubMed  Google Scholar 

  13. Baskin E, Bayracki U, Alehan F, et al. Respiratory chain deficiency presenting as diffuse mesangial sclerosis with NPHS3 mutation. Pediatr Nephrol. 2011;26:1157–61.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Batisky F, Roy S, Gaber L. Congenital nephrosis and neonatal cytomegalovirus infection: a clinical association. Pediatr Nephrol. 1993;7:741–3.

    Article  CAS  PubMed  Google Scholar 

  15. Becker-Cohen R, Bruschi M, Rinat C, et al. Recurrent nephrotic syndrome in homozygous truncating NPHS2 mutation is not due to anti-podocin antibodies. Am J Transplant. 2007;7:256–60.

    Article  CAS  PubMed  Google Scholar 

  16. Beltcheva O, Lenkkeri U, Kestilä M, et al. Mutation spectrum in the nephrin gene (NPHS1) in congenital nephrotic syndrome. Hum Mutat. 2001;17:368–73.

    Article  CAS  PubMed  Google Scholar 

  17. Benfield M, McDonald R, Bartosh S, et al. Changing trends in pediatric transplantation: 2001 Annual Report of the North American Pediatric renal transplant cooperative study. Pediatr Transplant. 2003;7:321–31.

    Article  PubMed  Google Scholar 

  18. Benoit G, Machuca E, Antignac C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr Nephrol. 2010;25:1621–32.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Benzing T. Signalling in the slit diaphragm. J Am Soc Nephrol. 2004;15:1382–91.

    Article  PubMed  Google Scholar 

  20. Besbas N, Bayrakei U, Kale G, et al. Cytomegalovirus-related congenital nephrotic syndrome with diffuse mesangial sclerosis. Pediatr Nephrol. 2006;21:740–2.

    Article  PubMed  Google Scholar 

  21. Bongers E, Gubler M, Knoers N. Nail-patella syndrome. Overview on clinical and molecular findings. Pediatr Nephrol. 2002;17:703–12.

    Article  PubMed  Google Scholar 

  22. Bolk S, Puffenberger EG, Hudson J, et al. Elevated frequency and allelic heterogeneity of congenital nephrotic syndrome, Finnish type, in the old order Mennonites. Am J Hum Genet. 1999;65:1785–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Boute N, Gribouval O, Roselli S, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24:349–54.

    Article  CAS  PubMed  Google Scholar 

  24. Boyer O, Benoit G, Gribouval O. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol. 2011;22:239–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Boyer O, Benoit G, Gribouval O, et al. Mutational analysis f the PLC1 gene in steroid resistant nephrotic syndrome. J Med Genet. 2010;47:445–52.

    Article  CAS  PubMed  Google Scholar 

  26. Brady T, Mitra A, Hooks J. Maternal serum alpha-fetoprotein level peak at 19–21 weeks’ gestation and subsequently decline in a NPHS1 sequence variant heterozygote; implications for prenatal diagnosis of congenital nephrosis of the Finnish type. Prenat Diagn. 2014;34:1–3.

    Article  Google Scholar 

  27. Brown E, Schlondorff J, Becker D, et al. Mutations in the formin protein INF2 cause focal segmental glomerulosclerosis. Nat Genet. 2010;42:72–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Buscher A, Kranz B, Buscher R, et al. Immunosuppression and renal outcome in congenital and pediatric steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2010;5:2075–84.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Call K, Glaser T, Ito C, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell. 1990;60:509–20.

    Article  CAS  PubMed  Google Scholar 

  30. Caridi G, Bertelli R, Carrea A, et al. Prevalence, genetics, and clinical features of patients carrying podocin mutations in steroid-resistant nonfamilial focal segmental glomerulosclerosis. J Am Soc Nephrol. 2001;12:2742–6.

    CAS  PubMed  Google Scholar 

  31. Caridi G, Bertelli R, Di Duca M, et al. Broadening the spectrum of diseases related to podocin mutations. J Am Soc Nephrol. 2003;14:1278–86.

    Article  CAS  PubMed  Google Scholar 

  32. Caridi G, Dagnino M, Carrea A, et al. Lack of cardiac anomalies in children with NPHS2 mutations. Nephrol Dial Transplant. 2007;22:1477–8.

    Article  PubMed  Google Scholar 

  33. Chadha V, Alon U. Bilateral nephrectomy reverses hypothyroidism in congenital nephrotic syndrome. Pediatr Nephrol. 1999;13:209–11.

    Article  CAS  PubMed  Google Scholar 

  34. Chaib H, Hoskins B, Ashraf S, et al. Identification of BRAF as a new interactor of PLCE1, the protein mutated in nephrotic syndrome type 3. Am J Physiol Renal Physiol. 2008;294:F93–9.

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Zhou Y, Go G, et al. Laminin β2 gene missense mutation produces endoplasmic reticulum stress in podocytes. J Am Soc Nephrol. 2013;24:1223–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Choi H, Lee B, Kang J, et al. Variable phenotype of Pierson syndrome. Pediatr Nephrol. 2008;23:995–1000.

    Article  PubMed  Google Scholar 

  37. Copelovitch L, Guttenberg M, Pollak M, Kaplan B. Renin-angiotensin axis blockade reduces proteinuria in presymptomatic patients with familial FSGS. Pediatr Nephrol. 2007;22:1779–84.

    Article  PubMed  Google Scholar 

  38. Coppes M, Huff V, Pelletier J. Denys–Drash syndrome: relating a clinical disorder to genetic alterations in the tumor suppressor gene WT1. J Pediatr. 1993;123:673–8.

    Article  CAS  PubMed  Google Scholar 

  39. Coulthard M. Management of Finnish congenital nephrotic syndrome by unilateral nephrectomy. Pediatr Nephrol. 1989;3:451–3.

    Article  CAS  PubMed  Google Scholar 

  40. Crecka A, Mundel P. Cell biology and pathology of podocytes. Annu Rev Physiol. 2012;74:299–323.

    Article  CAS  Google Scholar 

  41. Dagan A, Cleper R, Krause I, et al. Hypothyroidism in children with steroid-resistant nephrotic syndrome. Nephrol Dial Transplant. 2012;27:2171–5.

    Article  CAS  PubMed  Google Scholar 

  42. Dámico G, Bazi C. Pathophysiology of proteinuria. Kidney Int. 2003;63:809–25.

    Article  Google Scholar 

  43. Debiecic H, Guigonis V, Mougenot B, et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med. 2002;346:2053–60.

    Article  Google Scholar 

  44. Denys P, Malvaux P, Van den Berghe H, et al. De pseudohermaphrodisme masculin, d’une tumeur de Wilms, d’une néphropathie parenchymateuse et d’une mosaicisme XX/XY. Arch Fr Pediatr. 1967;24:729–39.

    CAS  PubMed  Google Scholar 

  45. Diomedi-Camassei F, Giandomenico S, Santorelli F, et al. COQ2 Nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol. 2007;18:2773–80.

    Article  CAS  PubMed  Google Scholar 

  46. Donoviel D, Freed D, Vogel H, et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to nephrin. Mol Cell Biol. 2001;21:4829–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Drash A, Sherman F, Hartmann W, Blizzard R. A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J Pediatr. 1970;76:585–93.

    Article  CAS  PubMed  Google Scholar 

  48. Dudley J, Fenton T, Unsworth J, et al. Systemic lupus erythematosus presenting as congenital nephrotic syndrome. Pediatr Nephrol. 1996;10:752–5.

    Article  CAS  PubMed  Google Scholar 

  49. Eddy A, Mauer S. Pseudohermaphroditism, glomerulopathy, and Wilms’ tumor (Drash syndrome): frequency in end-stage renal failure. J Pediatr. 1985;106:584–7.

    Article  CAS  PubMed  Google Scholar 

  50. Esterly J, Oppenheimer E. Pathological lesions due to congenital rubella. Arch Pathol. 1969;87:380–8.

    CAS  PubMed  Google Scholar 

  51. Frishberg Y, Feinstein S, Rinat C, et al. The heart of children with steroid-resistant nephrotic syndrome; is it all podocin? J Am Soc Nephrol. 2006;17:227–31.

    Article  CAS  PubMed  Google Scholar 

  52. Frishberg Y, Rinat C, Megged O, et al. Mutations in NPHS2 encoding podocin are a prevalent cause of steroid-resistant nephrotic syndrome among Israeli-Arab children. J Am Soc Nephrol. 2002;13:400–5.

    CAS  PubMed  Google Scholar 

  53. Galloway W, Mowat A. Congenital microcephaly with hiatus hernia and nephrotic syndrome in two sibs. J Med Genet. 1968;5:319–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Garty B, Eisenstein B, Sanbank J, et al. Microcephaly an congenital nephrotic syndrome owing to diffuse mesangial sclerosis: an autosomal recessive syndrome. J Med Genet. 1994;31:121–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Gavin L, McMahon F, Castle I, et al. Alterations in serum thyroid hormones an thyroxin-binding globulin in patients with nephrosis. J Clin Endocrinol Metab. 1978;46:125–30.

    Article  CAS  PubMed  Google Scholar 

  56. Gellerman J, Stefabidis C, Mitsioni A, Querfeld U. Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr Nephrol. 2010;25:2051–3.

    Article  Google Scholar 

  57. Gee H, Saisawat P, Ashraf S, et al. ARHDGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123:3243–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Gerke P, Huber T, Sellin L, et al. Homodimerization and heterodimerization of the glomerular podocyte proteins nephrin and NEPH1. J Am Soc Nephrol. 2003;14:918–26.

    Article  CAS  PubMed  Google Scholar 

  59. Gessler M, Poustka A, Cavenee W, et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature. 1990;343:774–8.

    Article  CAS  PubMed  Google Scholar 

  60. Gbadegesin R, Bartkowiak B, Lavin P, et al. Exclusion of homozygous PLCE1 (NPHS3) mutations in 69 families with idiopathic and hereditary FSGS. Pediatr Nephrol. 2009;24:281–5.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Gbadegesin R, Hinkes B, Hoskins B, et al. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant. 2008;23:1291–7.

    Article  CAS  PubMed  Google Scholar 

  62. Giglio S, Provenzano A, Mazzinghi B. Heterogeneous genetic alterations in sporadic nephrotic syndrome associate with resistance to immunosuppression. J Am Soc Nephrol. 2014;10:e1004262.

    Google Scholar 

  63. Gilbert R, Turner C, Gibson J, et al. Mutations in phospholipase C epsilon 1 are not sufficient to cause diffuse mesangial sclerosis. Kidney Int. 2009;75:415–9.

    Article  CAS  PubMed  Google Scholar 

  64. Gilbert R, Wiggelinkhuizen J. The clinical course of hepatitis B virus-associated nephropathy. Pediatr Nephrol. 1994;8:11–4.

    Article  CAS  PubMed  Google Scholar 

  65. Goldenberg A, Ngoc L, Thouret M, et al. Respiratory chain deficiency presenting as congenital nephrotic syndrome. Pediatr Nephrol. 2005;20:465–9.

    Article  PubMed  Google Scholar 

  66. Grahammer F, Schell C, Huber T. The podocyte slit diaphragm – from a thin grey line to complex signalling hub. Nat Rev Nephrol. 2013;9:587–98.

    Article  CAS  PubMed  Google Scholar 

  67. Grech V, Chan M, Vella C, et al. Cardiac malformations associated with congenital nephrotic syndrome. Pediatr Nephrol. 2000;14:1115–7.

    Article  CAS  PubMed  Google Scholar 

  68. Guez S, Giani M, Melzi M, et al. Adequate clinical control of congenital nephrotic syndrome by enalapril. Pediatr Nephrol. 1998;12:130–2.

    Article  CAS  PubMed  Google Scholar 

  69. Guo JK, Menke A, Gubler M, et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet. 2002;11:651–9.

    Article  CAS  PubMed  Google Scholar 

  70. Gupta I, Baldwin C, Auguste D, et al. ARHGDIA, novel gene implicated in nephrotic syndrome. J Med Genet. 2013;50:330–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Haavisto A, Jalanko H, Sintonen H, et al. Quality of life in adult survivors of pediatric kidney transplantation. Transplantation. 2011;92:1322–6.

    Article  PubMed  Google Scholar 

  72. Haavisto A, Korkman M, Holmberg C, et al. Neuropsychological profile of children with kidney transplants. Nephrol Dial Transplant. 2012;27:2594–601.

    Article  PubMed  Google Scholar 

  73. Habib R. Nephrotic syndrome in the 1st year of life. Pediatr Nephrol. 1993;7:347–53.

    Article  CAS  PubMed  Google Scholar 

  74. Hahn H, Cho Y, Park Y, et al. Two cases of isolate diffuse mesangial sclerosis with WT1 mutations. J Korean Med Sci. 2006;21:160–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Hallman N, Hjelt L, Ahvenainen EK. Nephrotic syndrome in newborn and young infants. Ann Paediatr Fenn. 1956;2:227–41.

    PubMed  Google Scholar 

  76. Hameed R, Raafat F, Ramani P, et al. Mitochondrial cytopathy presenting with focal segmental glomerulosclerosis, hypoparathyroidism, sensorineural deafness, and progressive neurological disease. Postgrad Med J. 2001;77:523–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Hameed R, Shomaf M. Congenital nephrotic syndrome: a clinico-pathological study of thirty children. J Nephrol. 2001;14:104–9.

    Google Scholar 

  78. Hasselbacher K, Wiggins R, Matejas V, et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int. 2006;70:1008–12.

    Article  CAS  PubMed  Google Scholar 

  79. Hata D, Miyazaki M, Seto S, et al. Nephrotic syndrome and aberrant expression of laminin isoforms in glomerular basement membranes for infant with herlitz junctional epidermolysis bullosa. Pediatrics. 2005;116:e601–7.

    Article  PubMed  Google Scholar 

  80. Heidet L, Bongers E, Sich M, et al. In vivo expression of putative LMX1B targets in nail-patella syndrome kidneys. Am J Pathol. 2003;163:145–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Heaton PA, Smales O, Wong W. Congenital nephrotic syndrome responsive to captopril and indomethacin. Arch Dis Child. 1999;81:174–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Heeringa S, Chernin G, Chaki M, et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest. 2011;121:2013–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Heeringa S, Vlangos C, Chernin G, et al. Thirteen novel NPHS1 mutations in a large cohort of children with congenital nephrotic syndrome. Nephrol Dial Trasnplant. 2008;23:3527–33.

    Article  CAS  Google Scholar 

  84. Hinkes B. NPHS3: new clues for understanding idiopathic nephrotic syndrome. Pediatr Nephrol. 2008;23:847–50.

    Article  PubMed  Google Scholar 

  85. Hinkes B, Mucha B, Vlangos C, et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, LAMB2). Pediatrics. 2007;119:e907–19.

    Article  PubMed  Google Scholar 

  86. Hinkes B, Vlangos C, Heeringa S, et al. Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2008;19:365–71.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Hinkes B, Wiggins R, Gbadegesin R, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397–405.

    Article  CAS  PubMed  Google Scholar 

  88. Holmberg C, Antikainen M, Ronnholm K, et al. Management of congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol. 1995;9:87–93.

    Article  CAS  PubMed  Google Scholar 

  89. Holmberg C, Jalanko H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr Nephrol. 2014;29:2309–17.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Holtta T, Happonen J, Ronnholm K, et al. Hypertension, cardiac state, and the role of volume overload during peritoneal dialysis. Pediatr Nephrol. 2001;16:324–31.

    Article  CAS  PubMed  Google Scholar 

  91. Holtta T, Ronnholm K, Jalanko H, Holmberg C. Clinical outcome of pediatric patients on peritoneal dialysis under adequacy control. Pediatr Nephrol. 2000;11:88–98.

    Google Scholar 

  92. Holzman L, St John P, Kovari I, et al. Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int. 1999;56:1481–91.

    Article  PubMed  Google Scholar 

  93. Hu M, Zhang G, Arbuckle S, et al. Prophylactic bilateral nephrectomies in two pediatric patients with missense mutations in the WT1 gene. Nephrol Dial Transplant. 2004;19:223–6.

    Article  CAS  PubMed  Google Scholar 

  94. Huber T, Harteleben B, Kim J, et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT dependent signalling. Mol Cell Biol. 2003;23:4917–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Huber T, Kottgen M, Schilling B, et al. Interaction with podocin facilitates nephrin signaling. J Biol Chem. 2001;276:41543–6.

    Article  CAS  PubMed  Google Scholar 

  96. Huttunen N-P. Congenital nephrotic syndrome of Finnish type: study of 75 patients. Arch Dis Child. 1976;51:344–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Inoue T, Yaoita E, Kurihara H, et al. FAT is a component of glomerular slit diaphragms. Kidney Int. 2001;59:1003–12.

    Article  CAS  PubMed  Google Scholar 

  98. Ismaili K, Verure V, Vanenhoute K, et al. WT1gene mutations in three girls with nephrotic syndrome. Eur J Pediatr. 2008;167:579–81.

    Article  PubMed  Google Scholar 

  99. Ito S, Takata A, Hataya H, et al. Isolated diffuse mesangial sclerosis and Wilms’ tumor suppressor gene. J Pediatr. 2001;138:425–8.

    Article  CAS  PubMed  Google Scholar 

  100. Jalanko H. Congenital nephrotic syndrome. Pediatr Nephrol. 2009;24:2121–8.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Jalanko H, Holmberg C. Renal transplantation in infants. Pediatr Nephrol. 2014 (in press)

    Google Scholar 

  102. Jalanko H, Patrakka J, Tryggvason K, et al. Genetic kidney diseases disclose the pathogenesis of proteinuria. Ann Med. 2001;33:526–33.

    Article  CAS  PubMed  Google Scholar 

  103. Jarad G, Cunningham J, Shaw A, Miner J. Proteinuria precedes podocyte abnormalities in Lamb2 mice, implicating the glomerular basement membrane as an albumin barrier. J Clin Invest. 2006;116:2272–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Jeanpierre C, Denamur E, Henry I, et al. Identification of constitutional WT1 mutations, in patients with isolated diffuse mesangial sclerosis, and analysis of genotype/phenotype correlations by use of computerized mutation database. Am J Hum Genet. 1998;62:824–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Jefferson J, Shankland S. Familial nephrotic syndrome: PLCE1 enters the fray. Nephrol Dial Transplant. 2007;22:1849–52.

    Article  PubMed  Google Scholar 

  106. Jones N, Blasutig I, Eremina V, et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature. 2006;440:818–23.

    Article  CAS  PubMed  Google Scholar 

  107. Kagan M, Cohen A, Matejas V, et al. A milder variant of Pierson syndrome. Pediatr Nephrol. 2008;23:323–7.

    Article  PubMed  Google Scholar 

  108. Kaplan JM, Kim SH, North K, et al. Mutations in ACTN4, encoding α-actinin-4 cause familial-focal segmental glomerulosclerosis. Nat Genet. 2000;24:251–6.

    Article  CAS  PubMed  Google Scholar 

  109. Karle S, Uetz B, Ronner V, et al. Novel mutations in NPHS2 detected in both familial and sporadic steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2002;13:388–93.

    CAS  PubMed  Google Scholar 

  110. Kaukinen A, Kuusniemi AM, Lautenschaleger I, et al. Glomerular endothelium in kidneys with congenital nephrotic syndrome (NPHS1). Nephrol Dial Transplant. 2008;23:1224–32.

    Article  PubMed  Google Scholar 

  111. Kawachi H, Miyauchi N, Suzuki K, et al. Role of podocyte slit diaphragm as a filtration barrier. Nephrology. 2006;11:274–81.

    Article  CAS  PubMed  Google Scholar 

  112. Kestilä M, Lenkkeri U, Männikkö M, et al. Positionally cloned gene for a novel glomerular protein – nephrin – is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.

    Article  PubMed  Google Scholar 

  113. Khurana S, Chakraborty S, Lam M, et al. Familial focal segmental glomerulosclerosis (FSGS)-linked a-actin 4 (ACTN4) protein mutants lose ability to activate transcription by nuclear hormone receptors. J Biol Chem. 2012;287:12027–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Klamt B, Koziell A, Poulat F, et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum Mol Genet. 1998;7:709–14.

    Article  CAS  PubMed  Google Scholar 

  115. Kopp J, Smith M, Nelson G, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008;40:1175–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Kovacevic L, Reid C, Ridgen S. Management of congenital nephrotic syndrome. Pediatr Nephrol. 2003;18:426–30.

    Article  PubMed  Google Scholar 

  117. Koziell A, Grech V, Hussain S, et al. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum Mol Genet. 2002;11:379–88.

    Article  CAS  PubMed  Google Scholar 

  118. Krishnamurthy S, Rajesh N, Ramesh A, Zenker M. Infantile nephrotic syndrome with microcephaly and global developmental delay: the Galloway Mowat syndrome. Indian J Pediatr. 2012;79:1087–90.

    Article  PubMed  Google Scholar 

  119. Kuusniemi AM, Kestilä M, Patrakka J, et al. Tissue expression of nephrin in man and pig. Pediatr Res. 2004;55:774–81.

    Article  CAS  PubMed  Google Scholar 

  120. Kuusniemi A, Lapatto R, Holmberg C, et al. Kidneys with heavy proteinuria show fibrosis, inflammation, and oxidative stress, but no tubular phenotypic change. Kidney Int. 2005;68:121–32.

    Article  CAS  PubMed  Google Scholar 

  121. Kuusniemi A-M, Qvist E, Sun Y, et al. Plasma exchange and retransplantation in recurrent nephrosis of patients with congenital nephrotic syndrome of the Finnish type. Transplantation. 2007;83:1316–23.

    Article  PubMed  Google Scholar 

  122. Kuusniemi A, Merenmies J, Lahdenkari AT, et al. Glomerular sclerosis in kidneys with congenital nephrotic syndrome (NPHS1). Kidney Int. 2006;70:1423–31.

    Article  CAS  PubMed  Google Scholar 

  123. Laakkonen H, Hölttä T, Lönnqvist T, et al. Peritoneal dialysis in children under two years of age. Nephrol Dial Transplant. 2008;23:1747–53.

    Article  PubMed  Google Scholar 

  124. Lahdenkari AT, Lounatmaa K, Patrakka J, et al. Podocytes are firmly attached to glomerular basement membrane in kidneys with heavy proteinuria. J Am Soc Nephrol. 2004;15:2611–8.

    Article  PubMed  Google Scholar 

  125. Lehtonen S. Connecting the interpodocyte slit diaphragm and actin dynamics: emerging role for the nephrin signalling complex. Kidney Int. 2008;73:903–5.

    Article  CAS  PubMed  Google Scholar 

  126. Lennert T, Härtling A, Mildenberger E, et al. Augenveränderung be diffuser mesangialer Sklerose (DMS). Monatschr Kinederheilkd. 1997;145:209–12.

    Google Scholar 

  127. Llach F, Papper S, Massry S. The clinical spectrum of renal vein thrombosis. Am J Med. 1980;69:819–27.

    Article  CAS  PubMed  Google Scholar 

  128. Little M, Wells C. A clinical overview of WT1 gene mutations. Hum Mutat. 1997;9:209–25.

    Article  CAS  PubMed  Google Scholar 

  129. Litwin M, Grena R, Slaowska J, et al. Add-on therapy with angiotensin II receptor 1 blocker in children with chronic kidney disease already treated with angiotensin-converting enzyme inhibitors. Pediatr Nephrol. 2006;21:1716–22.

    Article  PubMed  Google Scholar 

  130. Liu L, Done S, Khoshnoodi J, et al. Defective nephrin trafficking caused by missense mutations in the NPHS1 gene: insight into the mechanisms of congenital nephrotic syndrome. Hum Mol Genet. 2001;10:2637–44.

    Article  CAS  PubMed  Google Scholar 

  131. Ljungberg P, Holmberg C, Jalanko H. Infections in infants with congenital nephrosis of the Finnish type. Pediatr Nephrol. 1997;11:148–52.

    Article  CAS  PubMed  Google Scholar 

  132. Lovric S, Fang H, Vega-Warner V, et al. Rapid detection of monogenic causes of childhood-onset steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2014;9:1109–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Machuca E, Benoit G, Nevo F, et al. Genotype-Phenotype correlations in non-Finnish congenital nephrotic syndrome. J Am Soc Nephrol. 2010;21:1209–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Malina M, Cinek O, Janda J, Seeman T. Partial remission with cyclosporine A in a patient with nephrotic syndrome due to NPHS2 mutations. Pediatr Nephrol. 2009;24:2051–3.

    Article  PubMed  Google Scholar 

  135. Martin-Hernandez E, Garcia-Silva T, Vara J, et al. Renal pathology in children with mitochondrial diseases. Pediatr Nephrol. 2005;20:1299–305.

    Article  PubMed  Google Scholar 

  136. Matejas V, Hinkes B, Alkandari F, et al. Mutations in the human laminin β2 (LAMB2) gene and the associated phenotype. Hum Mutat. 2010;31:992–1002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Matejas V, Al-Gazali L, Amirlak I, Zenker M. A syndrome comprising childhood-onset glomerular kidney disease and ocular abnormalities with progressive loss of vision is caused but mutated LAMB2. Nephrol Dial Transplant. 2006;21:3283–6.

    Article  CAS  PubMed  Google Scholar 

  138. Mathias R, Stecklein H, Guay-Woodford L, et al. Gamma globulin deficiency in newborns with congenital nephrotic syndrome. N Engl J Med. 1989;320:398–9.

    Article  CAS  PubMed  Google Scholar 

  139. Mattoo T, Al-Sowailem A, Al-Harbi M. Nephrotic syndrome in the 1st year of life and the role of unilateral nephrectomy. Pediatr Nephrol. 1992;6:16–8.

    Article  CAS  PubMed  Google Scholar 

  140. McCarthy H, Bierzynska A, Wherlock M, et al. Simultaneous sequencing of 24 genes associated with steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2013;8:637–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. McLean R, Kennedy T, Rosoulpour M, et al. Hypothyroidism in the congenital nephrotic syndrome. J Pediatr. 1982;101:72–5.

    Article  CAS  PubMed  Google Scholar 

  142. Mele C, Iatropulos P, Donadelli R, et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Eng J med. 2011;365:295–306.

    Article  CAS  Google Scholar 

  143. Meyers K, Kaplan P, Kaplan B. Nephrotic syndrome, microcephaly, and developmental delay: three separate syndromes. Am J Med Genet. 1999;82:257–60.

    Article  CAS  PubMed  Google Scholar 

  144. Moeller M, Kovari I, Holzman L. Evaluation of a new tool for exploring podocyte biology: mouse NPHS1 5-flanking region drives LacZ expression in podocytes. J Am Soc Nephrol. 2000;11:2306–14.

    CAS  PubMed  Google Scholar 

  145. Mrowka C, Schedl A. Wilms’ tumor suppressor gene WT1: from structure to renal pathophysiologic features. J Am Soc Nephrol. 2000;11:S106–15.

    CAS  PubMed  Google Scholar 

  146. Natoli T, Liu J, Eremina V, et al. A mutant form of the Wilms’ tumor suppressor gene WT1 observed in Denys-Drash syndrome interferes with glomerular capillary development. J Am Soc Nephrol. 2002;13:2058–67.

    Article  CAS  PubMed  Google Scholar 

  147. Niaudet P. Genetic forms of nephrotic syndrome. Pediatr Nephrol. 2004;19:1313–8.

    Article  PubMed  Google Scholar 

  148. Niaudet P, Gubler M-C. WT1 and glomerular diseases. Pediatr Nephrol. 2006;21:1653–60.

    Article  PubMed  Google Scholar 

  149. Nicolaou N, Margadant C, Kevelam S, et al. Gain of glycosylation in integrin α3 causes lung disease and nephrotic syndrome. J Clin Invest. 2012;122:4375–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Nielsen K, Steffensen G. Congenital nephrotic syndrome associated with Lowe’s syndrome. Child Nephrol Urol. 1990;10:92–5.

    CAS  PubMed  Google Scholar 

  151. Niemsiri S. Congenital syphilitic nephrosis. Southeast Asian J Trop Med Public Health. 1993;24:595–600.

    CAS  PubMed  Google Scholar 

  152. Nishibori Y, Liu L, Hosoyamada M, et al. Disease-causing missense mutations in NPHS2 gene alter normal nephrin trafficking to the plasma membrane. Kidney Int. 2004;66:1755–65.

    Article  CAS  PubMed  Google Scholar 

  153. Nishikawa M, Ichiyama T, Hayashi T, et al. A case of early myoclonic encephalopathy with the congenital nephrotic syndrome. Brain Dev. 1997;19:144–7.

    Article  CAS  PubMed  Google Scholar 

  154. Norio R. Heredity in the congenital nephrotic syndrome: a genetic study of 57 Finnish families with a review of reported cases. Ann Paediatr Fenn. 1966;12:27–32.

    Google Scholar 

  155. Nortier J, Debiec H, Tournay Y, et al. Neonatal disease in neutral endopeptidase alloimmunization: lessons for immunological monitoring. Pediatr Nephrol. 2006;21:1399–405.

    Article  PubMed  Google Scholar 

  156. Ovunc B, Ashraf S, Vega-Warner V, et al. Mutation analysis of NPHS1 in a worldwide cohort of congenital nephrotic syndrome patients. Nephron Clin Pract. 2012;120:139–46.

    Article  CAS  Google Scholar 

  157. Ozcakar Z, Cenzig F, Cakar N, et al. Analysis of NPHS2 mutations in Turkish steroid-resistant nephrotic syndrome patients. Pediatr Nephrol. 2006;21:1093–6.

    Article  PubMed  Google Scholar 

  158. Pannicucci F, Sagripanti A, Vispi M, et al. Comprehensive study of hemostasis in congenital nephrotic syndrome. Nephron. 1983;33:9–13.

    Article  Google Scholar 

  159. Patrakka J, Kestilä M, Wartiovaara J, et al. Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. Kidney Int. 2000;58:972–80.

    Article  CAS  PubMed  Google Scholar 

  160. Patrakka J, Martin P, Salonen R, et al. Proteinuria and prenatal diagnosis of congenital nephrosis in fetal carriers of nephrin gene mutations. Lancet. 2002;359:1575–7.

    Article  CAS  PubMed  Google Scholar 

  161. Patrakka J, Ruotsalainen V, Reponen V, et al. Recurrence of nephrotic syndrome in kidney grafts of patients with congenital nephrotic syndrome of the Finnish type: role of nephrin. Transplantation. 2002;73:394–403.

    Article  PubMed  Google Scholar 

  162. Pelletier J, Bruening W, Kashtan C, et al. Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell. 1991;67:437–47.

    Article  CAS  PubMed  Google Scholar 

  163. Philippe A, Nevo F, Esquivel E, et al. Nephrin mutations can cause childhood-onset steroid resistant nephrotic syndrome. J Am Soc Nephrol. 2008;19:1871–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Pomeranz A, Wolach B, Bernheim J, Korzets Z. Successful treatment of Finnish type congenital nephrotic syndrome with captopril and indomethacin. J Pediatr. 1995;126:140–2.

    Article  CAS  PubMed  Google Scholar 

  165. Putaala H, Soininen R, Kilpelainen P, et al. The murin nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. Hum Mol Genet. 2001;10:1–8.

    Article  CAS  PubMed  Google Scholar 

  166. Qvist E, Laine J, Rönnholm K, et al. Graft function 5–7 years after renal transplantation in early childhood. Transplantation. 1999;67:1043–9.

    Article  CAS  PubMed  Google Scholar 

  167. Qvist E, Krogerus L, Rönnholm K, et al. Course of renal allograft histopathology after transplantation in early childhood. Transplantation. 2000;70:480–7.

    Article  CAS  PubMed  Google Scholar 

  168. Qvist E, Marttinen E, Rönnholm K, et al. Growth after renal transplantation in infancy or early childhood. Pediatr Nephrol. 2002;17:438–43.

    Article  PubMed  Google Scholar 

  169. Qvist E, Pihko H, Fagerudd P, et al. Neurodevelopmental outcome in high-risk patients after renal transplantation in early childhood. Pediatr Transplant. 2002;6:53–62.

    Article  PubMed  Google Scholar 

  170. Rahman H, Begum A, Jahan S, et al. Congenital nephrotic syndrome, an uncommon presentation of cytomegalovirus infection. Mymesingh Med J. 2008;17:210–3.

    CAS  Google Scholar 

  171. Ramsuran D, Bhimma R, Randial P, et al. The spectrum of HIV-related nephropathy in children. Pediatr Nephrol. 2012;27:821–7.

    Article  PubMed  Google Scholar 

  172. Rapola J, Savilahti E. Immunofluorescent and morphological studies in congenital nephrotic syndrome. Acta Paediatr. 1971;60:253–63.

    Article  CAS  Google Scholar 

  173. Roselli S, Gribouval O, Boute G, et al. Podocin localizes in the kidney to the slit diaphragm area. Am J Pathol. 2002;160:3–5.

    Article  Google Scholar 

  174. Ruotsalainen V, Ljungberg P, Wartiovaara J, et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci U S A. 1999;96:7962–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Ruotsalainen V, Patrakka J, Tissari P, et al. Role of nephrin in cell junction formation in human nephrogenesis. Am J Pathol. 2000;157:1905–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Ruf R, Lichtenberger A, Karle S, et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol. 2004;15:722–32.

    Article  PubMed  Google Scholar 

  177. Ruf R, Schultheiss M, Lichtenberger A, et al. Prevalence of WT1 mutations in a large cohort of patients with steroid-resistant and steroid-sensitive nephrotic syndrome. Kidney Int. 2004;66:564–70.

    Article  CAS  PubMed  Google Scholar 

  178. Sako M, Nakanishi K, Obana M, et al. Analysis of NPHS1, NPHS2, ACTN4, and WT1 in Japanese patients with congenital nephrotic syndrome. Kidney Int. 2005;67:1248–55.

    Article  CAS  PubMed  Google Scholar 

  179. Salvatierra O, Sarwal M. Renal perfusion in infant recipients of adult sized kidneys is critical risk factor. Transplantation. 2000;70:412–3.

    Article  PubMed  Google Scholar 

  180. Salviati L, Sacconi S, Murer L, et al. Infantile encephalomyopathy an nephropathy with CoQ10 efficiency: A CoQ10-responsive condition. Neurology. 2005;65:606–8.

    Article  CAS  PubMed  Google Scholar 

  181. Sanna-Cherchi S, Burgess K, Nees S, et al. Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. Kidney Int. 2011;80:389–96.

    Article  CAS  PubMed  Google Scholar 

  182. Sano H, Miyanoshita A, Watanabe N, et al. Microcephaly an early-onset nephrotic syndrome: a case report. Pediatr Nephrol. 1995;9:711–4.

    Article  CAS  PubMed  Google Scholar 

  183. Santini S, Bullich G, Tazon-Vega B, et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2011;6:1139–48.

    Article  Google Scholar 

  184. Santini S, Garcia-Maset R, Ruiz P, et al. Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int. 2009;76:1268–76.

    Article  CAS  Google Scholar 

  185. Savage J, Jefferson J, Maxwell A, et al. Improved prognosis for congenital nephrotic syndrome of the Finnish type in Irish families. Arch Dis Child. 1999;80:466–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Scaleis E, Chafai R, van Coster R, et al. Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur J Pediatr. 2013;17:625–30.

    Article  Google Scholar 

  187. Schoeb D, Cernin G, Heeringa S, et al. Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS). Nephrol Dial Transplant. 2010;25:2970–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Schultheiss M, Ruf R, Mucha B, et al. No evidence for genotype/phenotype correlation in NPHS1 and NPH2 mutations. Pediatr Nephrol. 2004;19:1340–8.

    Article  PubMed  Google Scholar 

  189. Schumacher V, Scharer K, Wuhl E, et al. Spectrum of early onset nephrotic syndrome associated with WT1 missense mutations. Kidney Int. 1998;53:1594–600.

    Article  CAS  PubMed  Google Scholar 

  190. Schwarz K, Simons M, Reiser J, et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest. 2001;108:1621–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. Sellin L, Huber T, Gerke P, et al. NEPH1 defines a novel family of podocin interacting proteins. FASEB J. 2003;17:115–7.

    CAS  PubMed  Google Scholar 

  192. Seri M, Pecci A, Di Bari F, et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine. 2003;82:203–15.

    PubMed  Google Scholar 

  193. Shahin B, Papaopoulous Z, Jenis E. Congenital nephrotic syndrome associate with congenital toxoplasmosis. J Pediatr. 1997;85:366–72.

    Article  Google Scholar 

  194. Shih N, Karpitskii V, Nguyen A, et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science. 1999;286:312–5.

    Article  CAS  PubMed  Google Scholar 

  195. Sinha M, Horsfield C, Komaromy B, et al. Congenital disorders of glycosylation: a rare cause of nephrotic syndrome. Nephrol Dial Transplant. 2009;24:2591–4.

    Article  CAS  PubMed  Google Scholar 

  196. Sperl W, Gruber W, Quatacker J, et al. Nephrosis in two siblings with infantile sialic acid storage disease. Eur J Pediatr. 1990;149:477–82.

    Article  CAS  PubMed  Google Scholar 

  197. Srivastava T, Whiting J, Garola R, et al. Podocyte proteins in Galloway-Mowat syndrome. Pediatr Nephrol. 2001;16:1022–9.

    Article  CAS  PubMed  Google Scholar 

  198. Stoll R, Lee B, Debler E, et al. Structure of the Wilms tumor suppressor protein zinc finger domain bound to DNA. J Mol Biol. 2007;372:1227–45.

    Article  CAS  PubMed  Google Scholar 

  199. Tainio J, Jahnukainen K, Nurmio M et al. Testicular function, semen quality, and fertility in young men after renal transplantation during childhood and adolescence. Transplantation 2014;98:987–93.

    Google Scholar 

  200. Tainio J, Qvist E, Vehmas R, et al. Pubertal development is normal an adolescents after renal transplantation in childhood. Transplantation. 2011;92:404–9.

    Article  PubMed  Google Scholar 

  201. Tory K, Menyhard D, Woerner S, et al. Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotric syndrome. Nat Genet. 2014;46:299–304.

    Article  CAS  PubMed  Google Scholar 

  202. Toubiana J, Schlageter M, Aoun B, et al. Therapy-resistant anaemia in congenital nephrotic syndrome of the Finnish type-implication of EPO, transferrin and transcobalamin losses. Nephrol Dial Transplant. 2009;23:1338–40.

    Google Scholar 

  203. Tryggvason K, Patrakka J, Wartiovaara J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med. 2006;354:1387–401.

    Article  CAS  PubMed  Google Scholar 

  204. Vachvanishsanong P, Mitarnum W, Tungsinmunkong K, Disseneewate P. Congenital and infantile nephrotic syndrome in Thai infants. Clin Pediatr. 2005;44:169–74.

    Article  Google Scholar 

  205. Van DeVoorde R, Witte D, Kogan J, Goebel J. Pierson syndrome: a novel cause of congenital nephrotic syndrome. Pediatrics. 2006;118:e501–5.

    Article  Google Scholar 

  206. Wartiovaara J, Ofverstedt LG, Khoshnoodi J, et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest. 2004;114:1475–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  207. Winn M, Conlon P, Lynn K, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308:1801–4.

    Article  CAS  PubMed  Google Scholar 

  208. Wolf G, Stahl R. CD2-associated protein and glomerular disease. Lancet. 2003;362:1746–8.

    Article  CAS  PubMed  Google Scholar 

  209. Wong W, Morris M, Kara T. Congenital nephrotic syndrome with prolonged renal survival without renal replacement therapy. Pediatr Nephrol. 2013;28:2313–21.

    Article  PubMed  Google Scholar 

  210. Wuhl E, Kogan J, Zurowska A, et al. Neurodevelopmental deficits in Pierson (microcoria-congenital nephrosis) syndrome. Am J Med Genet. 2007;143:311–9.

    Article  PubMed  CAS  Google Scholar 

  211. Yang Y, Jeanpirre C, Dressler G, et al. WT1 and PAX-2 podocyte expression in Denys-Drash syndrome an isolated diffuse mesangial sclerosis. Am J Pathol. 1999;154:181–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  212. Yao J, Le T, Kos C, et al. α-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol. 2004;2:787–94.

    CAS  Google Scholar 

  213. Xiao H, Liu J, Zhong X. Congenital syphilis presenting congenital nephrotic syndrome in two children and related data review. Beijing Da Xue Xue Bao. 2011;43:911–3.

    PubMed  Google Scholar 

  214. Zenker M, Aigner T, Tralau T, et al. Human laminin b2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13:2625–32.

    Article  CAS  PubMed  Google Scholar 

  215. Zenker M, Tralau T, Lennert T, et al. Congenital nephrosis, mesangial sclerosis, and distinct eye abnormalities with microcoria: an autosomal recessive syndrome. Am J Med Genet. 2004;130:138–45.

    Article  Google Scholar 

  216. Zhang A, Huang S. Progress in pathogenesis of proteinuria. Int J Nephrol 2012;ID314251.

    Google Scholar 

  217. Zhu J, Sun N, Aoujit L, et al. Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes. Kidney Int. 2008;73:556–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannu Jalanko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Jalanko, H., Holmberg, C. (2016). Congenital Nephrotic Syndrome. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_78

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics