Genomic Methods in the Diagnosis and Treatment of Pediatric Kidney Disease

Reference work entry


The completion of the Human Genome Project (HGP) in 2003 has laid the foundation and driven the technological advancements necessary for the study of the genetics of complex, multifactorial diseases, such as those affecting the kidney. The International HapMap Project has built upon the HGP through the systematic identification and cataloging of genetic variation across human populations. Translating the mass of data generated by these studies into useful clinical knowledge is now a major undertaking in nearly all areas of medicine, including the field of pediatric nephrology. Much of this work will revolve around linking particular patient phenotypes to genomic and proteomic data, such as genotype, expression profile, and protein biomarkers


Chronic Kidney Disease Nephrotic Syndrome Hemolytic Uremic Syndrome Human Genome Project Pediatric Nephrology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mochizuki T, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272(5266):1339–42.PubMedCrossRefGoogle Scholar
  2. 2.
    Schneider MC, et al. A gene similar to PKD1 maps to chromosome 4q22: a candidate gene for PKD2. Genomics. 1996;38(1):1–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Hughes J, et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995;10(2):151–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Peters DJ, et al. Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nat Genet. 1993;5(4):359–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Ward CJ, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein [see comment]. Nat Genet. 2002;30(3):259–69.PubMedCrossRefGoogle Scholar
  6. 6.
    Hugot JP, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.PubMedCrossRefGoogle Scholar
  7. 7.
    Horikawa Y, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet. 2000;26(2):163–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Helgadottir A, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet. 2004;3(3):233–9.CrossRefGoogle Scholar
  9. 9.
    Ogura Y, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Hirschhorn JN, et al. A comprehensive review of genetic association studies. Genet Med. 2002;4(2):45–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Salonen JT, et al. Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium. Am J Hum Genet. 2007;81(2):338–45.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Wellcome Trust Case Control, C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [see comment]. Nature. 2007;447(7145):661–78.CrossRefGoogle Scholar
  14. 14.
    Liu YJ, Liu XG, Wang L, Dina C, Yan H, Liu JF, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Meyre D, Delplanque J, Pei YF, Zhang L, Recker RR, Froguel P, Deng HW. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum Mol Genet. 2008;17(12):1803–13.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hwang SJ, et al. A genome-wide association for kidney function and endocrine-related traits in the NHLBI’s Framingham Heart Study. BMC Med Genet. 2007;8 Suppl 1:S10.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kestila M, et al. Congenital nephrotic syndrome of the Finnish type maps to the long arm of chromosome 19. Am J Hum Genet. 1994;54(5):757–64.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Kestila M, et al. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1(4):575–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Boute N, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome [erratum appears in Nat Genet 2000 May;25 (1):125]. Nat Genet. 2000;24(4):349–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Fuchshuber A, et al. Mapping a gene (SRN1) to chromosome 1q25-q31 in idiopathic nephrotic syndrome confirms a distinct entity of autosomal recessive nephrosis. Hum Mol Genet. 1995;4(11):2155–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Mondry A, et al. DNA polymorphisms and renal disease: a critical appraisal of studies presented at the annual ERA/EDTA and ASN conferences in 2004 and 2005 [see comment]. Nephrol Dial Transplant. 2006;21(10):2775–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Frimat L, et al. Polymorphism of angiotensin converting enzyme, angiotensinogen, and angiotensin II type 1 receptor genes and end-stage renal failure in IgA nephropathy: IGARAS–a study of 274 Men. J Am Soc Nephrol. 2000;11(11):2062–7.PubMedGoogle Scholar
  22. 22.
    Schena FP, et al. ACE gene polymorphism and IgA nephropathy: an ethnically homogeneous study and a meta-analysis. Kidney Int. 2001;60(2):732–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Pereira TV, et al. Influence of ACE I/D gene polymorphism in the progression of renal failure in autosomal dominant polycystic kidney disease: a meta-analysis.[see comment]. Nephrol Dial Transplant. 2006;21(11):3155–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Brenchley PE, et al. Translating knowledge of the human genome into clinical practice in nephrology dialysis and transplantation: the renal genome network (ReGeNet) [comment]. Nephrol Dial Transplant. 2006;21(10):2681–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Fliser D, et al. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol. 2007;18(4):1057–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Nguyen MT, Devarajan P. Biomarkers for the early detection of acute kidney injury. Pediatr Nephrol. 2008;23(12):2151–7.Google Scholar
  27. 27.
    Mathieson PW. Minimal change nephropathy and focal segmental glomerulosclerosis. Semin Immunopathol. 2007;29(4):415–26.PubMedCrossRefGoogle Scholar
  28. 28.
    Niaudet P. Genetic forms of nephrotic syndrome. Pediatr Nephrol. 2004;19(12):1313–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Hinkes B, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible [see comment]. Nat Genet. 2006;38(12):1397–405.PubMedCrossRefGoogle Scholar
  30. 30.
    Hasselbacher K, et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders [see comment]. Kidney Int. 2006;70(6):1008–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Zenker M, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13(21):2625–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Hinkes BG, et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2) [see comment]. Pediatrics. 2007;119(4):e907–19.PubMedCrossRefGoogle Scholar
  33. 33.
    Hinkes B, et al. Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome [see comment]. J Am Soc Nephrol. 2008;19(2):365–71.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Weber S, et al. NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int. 2004;66(2):571–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Ruf RG, et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome [see comment]. J Am Soc Nephrol. 2004;15(3):722–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Niaudet P. Utility of genetic screening in children with nephrotic syndrome presenting during the first year of life. Nat Clin Pract Nephrol. 2007;3(9):472–3.PubMedCrossRefGoogle Scholar
  37. 37.
    Ruf RG, et al. Identification of the first gene locus (SSNS1) for steroid-sensitive nephrotic syndrome on chromosome 2p. J Am Soc Nephrol. 2003;14(7):1897–900.PubMedCrossRefGoogle Scholar
  38. 38.
    Taylor CM, et al. Clinico-pathological findings in diarrhoea-negative haemolytic uraemic syndrome. Pediatr Nephrol. 2004;19(4):419–25.PubMedCrossRefGoogle Scholar
  39. 39.
    Richards A, et al. Implications of the initial mutations in membrane cofactor protein (MCP; CD46) leading to atypical hemolytic uremic syndrome. Mol Immunol. 2007;44(1-3):111–22.PubMedCrossRefGoogle Scholar
  40. 40.
    Kind T, et al. Cobalamin C disease presenting as hemolytic-uremic syndrome in the neonatal period. J Pediatr Hematol Oncol. 2002;24(4):327–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Dlott JS, et al. Drug-induced thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: a concise review. Ther Apher Dial. 2004;8(2):102–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Becker S, et al. HIV-associated thrombotic microangiopathy in the era of highly active antiretroviral therapy: an observational study. Clin Infect Dis. 2004;39 Suppl 5:S267–75.PubMedCrossRefGoogle Scholar
  43. 43.
    Constantinescu AR, et al. Non-enteropathic hemolytic uremic syndrome: causes and short-term course. Am J Kidney Dis. 2004;43(6):976–82.PubMedCrossRefGoogle Scholar
  44. 44.
    George JN. The association of pregnancy with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Curr Opin Hematol. 2003;10(5):339–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Mungall S, Mathieson P. Hemolytic uremic syndrome in metastatic adenocarcinoma of the prostate. Am J Kidney Dis. 2002;40(6):1334–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Pichette V, et al. Familial hemolytic-uremic syndrome and homozygous factor H deficiency. Am J Kidney Dis. 1994;24(6):936–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Pirson Y, et al. Hemolytic uremic syndrome in three adult siblings: a familial study and evolution. Clin Nephrol. 1987;28(5):250–5.PubMedGoogle Scholar
  48. 48.
    Kaplan BS, et al. Renal transplantation in adults with autosomal recessive inheritance of hemolytic uremic syndrome. Am J Kidney Dis. 1997;30(6):760–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Warwicker P, et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome [see comment]. Kidney Int. 1998;53(4):836–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Caprioli J, et al. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum Mol Genet. 2003;12(24):3385–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Caprioli J, et al. The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20. J Am Soc Nephrol. 2001;12(2):297–307.PubMedGoogle Scholar
  52. 52.
    Martinez-Barricarte R, et al. The complement factor H R1210C mutation is associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2008;19(3):639–46.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Perez-Caballero D, et al. Clustering of missense mutations in the C-terminal region of factor H in atypical hemolytic uremic syndrome. Am J Hum Genet. 2001;68(2):478–84.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Richards A, et al. Factor H mutations in hemolytic uremic syndrome cluster in exons 18-20, a domain important for host cell recognition. Am J Hum Genet. 2001;68(2):485–90.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Sanchez-Corral P, et al. Structural and functional characterization of factor H mutations associated with atypical hemolytic uremic syndrome. Am J Hum Genet. 2002;71(6):1285–95.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Fremeaux-Bacchi V, et al. The development of atypical haemolytic-uraemic syndrome is influenced by susceptibility factors in factor H and membrane cofactor protein: evidence from two independent cohorts. J Med Genet. 2005;42(11):852–6.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Noris M, et al. Familial haemolytic uraemic syndrome and an MCP mutation [see comment]. Lancet. 2003;362(9395):1542–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Richards A, et al. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2003;100(22):12966–71.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Fremeaux-Bacchi V, et al. Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet. 2004;41(6):e84.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Kavanagh D, et al. Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(7):2150–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Goicoechea de Jorge E, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome [erratum appears in Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10749]. Proc Natl Acad Sci U S A. 2007;104(1):240–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Fremeaux-Bacchi V, Regnier C, Blouin J, Dragon-Durey MA, Fridman WH, Janssen B, Loirat C. Protective or aggressive: paradoxical role of C3 in atypical hemolytic uremic syndrome. Mol Immunol. 2007;44(1):172.CrossRefGoogle Scholar
  63. 63.
    Caprioli J, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267–79.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    de Cordoba SR, de Jorge EG. Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin Exp Immunol. 2008;151(1):1–13.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Neumann HP, et al. Haemolytic uraemic syndrome and mutations of the factor H gene: a registry-based study of German speaking countries. J Med Genet. 2003;40(9):676–81.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Sellier-Leclerc AL, et al. Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2007;18(8):2392–400.PubMedCrossRefGoogle Scholar
  67. 67.
    Pickering MC, et al. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J Exp Med. 2007;204(6):1249–56.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Esparza-Gordillo J, et al. Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32 [erratum appears in Hum Mol Genet. 2005 Apr 15;14(8):1107]. Hum Mol Genet. 2005;14(5):703–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Esparza-Gordillo J, et al. Insights into hemolytic uremic syndrome: segregation of three independent predisposition factors in a large, multiple affected pedigree. Mol Immunol. 2006;43(11):1769–75.PubMedCrossRefGoogle Scholar
  70. 70.
    Zerres K, Rudnik-Schoneborn S, Deget F. Childhood onset autosomal dominant polycystic kidney disease in sibs: clinical picture and recurrence risk. German Working Group on Paediatric Nephrology (Arbeitsgemeinschaft fur Padiatrische Nephrologie). J Med Genet. 1993;30(7):583–8.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Fick GM, et al. Characteristics of very early onset autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1993;3(12):1863–70.PubMedGoogle Scholar
  72. 72.
    Peters DJ, Sandkuijl LA. Genetic heterogeneity of polycystic kidney disease in Europe. Contrib Nephrol. 1992;97:128–39.PubMedCrossRefGoogle Scholar
  73. 73.
    Harris PC, et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2006;17(11):3013–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Rossetti S, Harris PC. Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease [see comment]. J Am Soc Nephrol. 2007;18(5):1374–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Hateboer N, et al. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet. 1999;353(9147):103–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Michaud J, et al. Autosomal dominant polycystic kidney disease in the fetus. Am J Med Genet. 1994;51(3):240–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Torra R, et al. Linkage, clinical features, and prognosis of autosomal dominant polycystic kidney disease types 1 and 2. J Am Soc Nephrol. 1996;7(10):2142–51.PubMedGoogle Scholar
  78. 78.
    Rossetti S, et al. Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet. 2003;361(9376):2196–201.PubMedCrossRefGoogle Scholar
  79. 79.
    Rossetti S, et al. The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J Am Soc Nephrol. 2002;13(5):1230–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Paterson AD, et al. Progressive loss of renal function is an age-dependent heritable trait in type 1 autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2005;16(3):755–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Fain PR, et al. Modifier genes play a significant role in the phenotypic expression of PKD1 [see comment]. Kidney Int. 2005;67(4):1256–67.PubMedCrossRefGoogle Scholar
  82. 82.
    Pei Y. Nature and nurture on phenotypic variability of autosomal dominant polycystic kidney disease [comment]. Kidney Int. 2005;67(4):1630–1.PubMedCrossRefGoogle Scholar
  83. 83.
    Persu A, et al. Modifier effect of ENOS in autosomal dominant polycystic kidney disease. Hum Mol Genet. 2002;11(3):229–41.PubMedCrossRefGoogle Scholar
  84. 84.
    Walker D, et al. The ENOS polymorphism is not associated with severity of renal disease in polycystic kidney disease 1 [see comment]. Am J Kidney Dis. 2003;41(1):90–4.PubMedCrossRefGoogle Scholar
  85. 85.
    Furu L, et al. Milder presentation of recessive polycystic kidney disease requires presence of amino acid substitution mutations. J Am Soc Nephrol. 2003;14(8):2004–14.PubMedCrossRefGoogle Scholar
  86. 86.
    Rossetti S, et al. A complete mutation screen of PKHD1 in autosomal-recessive polycystic kidney disease (ARPKD) pedigrees. Kidney Int. 2003;64(2):391–403.PubMedCrossRefGoogle Scholar
  87. 87.
    Sharp AM, et al. Comprehensive genomic analysis of PKHD1 mutations in ARPKD cohorts. J Med Genet. 2005;42(4):336–49.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Mrug M, et al. Kinesin family member 12 is a candidate polycystic kidney disease modifier in the cpk mouse. J Am Soc Nephrol. 2005;16(4):905–16.PubMedCrossRefGoogle Scholar
  89. 89.
    Glassock RJ, et al. IgA nephropathy in Japan. Am J Nephrol. 1985;5(2):127–37.PubMedCrossRefGoogle Scholar
  90. 90.
    D’Amico G. The commonest glomerulonephritis in the world: IgA nephropathy. Q J Med. 1987;64(245):709–27.PubMedGoogle Scholar
  91. 91.
    Levy M, Berger J. Worldwide perspective of IgA nephropathy. Am J Kidney Dis. 1988;12(5):340–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Schena FP. A retrospective analysis of the natural history of primary IgA nephropathy worldwide. Am J Med. 1990;89(2):209–15.PubMedCrossRefGoogle Scholar
  93. 93.
    Hsu SI, et al. Evidence for genetic factors in the development and progression of IgA nephropathy. Kidney Int. 2000;57(5):1818–35.PubMedCrossRefGoogle Scholar
  94. 94.
    Johnson RJ, et al. Hypothesis: dysregulation of immunologic balance resulting from hygiene and socioeconomic factors may influence the epidemiology and cause of glomerulonephritis worldwide. Am J Kidney Dis. 2003;42(3):575–81.PubMedCrossRefGoogle Scholar
  95. 95.
    Coppo R. Pediatric IgA nephropathy: clinical and therapeutic perspectives. Semin Nephrol. 2008;28(1):18–26.PubMedCrossRefGoogle Scholar
  96. 96.
    Coppo R, et al. Frequency of renal diseases and clinical indications for renal biopsy in children (report of the Italian National Registry of Renal Biopsies in Children). Group of renal immunopathology of the Italian society of pediatric nephrology and group of renal immunopathology of the Italian society of nephrology. Nephrol Dial Transplant. 1998;13(2):293–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Lee YM, et al. Analysis of renal biopsies performed in children with abnormal findings in urinary mass screening [see comment]. Acta Paediatr. 2006;95(7):849–53.PubMedCrossRefGoogle Scholar
  98. 98.
    Yoshikawa N, Tanaka R, Iijima K. Pathophysiology and treatment of IgA nephropathy in children [see comment]. Pediatr Nephrol. 2001;16(5):446–57.PubMedCrossRefGoogle Scholar
  99. 99.
    Hogg RJ. IgA nephropathy: what’s new? Pediatr Nephrol. 2007;22(11):1809–14.PubMedCrossRefGoogle Scholar
  100. 100.
    Ronkainen J, et al. Long-term outcome 19 years after childhood IgA nephritis: a retrospective cohort study [see comment]. Pediatr Nephrol. 2006;21(9):1266–73.PubMedCrossRefGoogle Scholar
  101. 101.
    Coppo R, et al. Idiopathic nephropathy with IgA deposits. Pediatr Nephrol. 2000;15(1-2):139–50.PubMedCrossRefGoogle Scholar
  102. 102.
    Coppo R, D’Amico G. Factors predicting progression of IgA nephropathies. J Nephrol. 2005;18(5):503–12.PubMedGoogle Scholar
  103. 103.
    Yoshikawa N, Ito H, Nakamura H. Prognostic indicators in childhood IgA nephropathy. Nephron. 1992;60(1):60–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Linne T, et al. Course and long-term outcome of idiopathic IgA nephropathy in children. Pediatr Nephrol. 1991;5(4):383–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Levy M, et al. Berger’s disease in children. Natural history and outcome. Medicine. 1985;64(3):157–80.PubMedGoogle Scholar
  106. 106.
    Hastings MC, Delos Santos NM, Wyatt RJ. Renal survival in pediatric patients with IgA nephropathy [comment]. Pediatr Nephrol. 2007;22(2):317–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Nozawa R, et al. Clinicopathological features and the prognosis of IgA nephropathy in Japanese children on long-term observation. Clin Nephrol. 2005;64(3):171–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Wyatt RJ, et al. IgA nephropathy: long-term prognosis for pediatric patients. J Pediatr. 1995;127(6):913–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Tomana M, et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 1997;52(2):509–16.PubMedCrossRefGoogle Scholar
  110. 110.
    Tomana M, et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999;104(1):73–81.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Novak J, et al. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol. 2008;28(1):78–87.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Gharavi AG, et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat Genet. 2000;26(3):354–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Schena FP, et al. The IgA nephropathy Biobank. An important starting point for the genetic dissection of a complex trait. BMC Nephrol. 2005;6:14.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Bisceglia L, et al. Genetic heterogeneity in Italian families with IgA nephropathy: suggestive linkage for two novel IgA nephropathy loci. Am J Hum Genet. 2006;79(6):1130–4.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Paterson AD, et al. Genome-wide linkage scan of a large family with IgA nephropathy localizes a novel susceptibility locus to chromosome 2q36. J Am Soc Nephrol. 2007;18(8):2408–15.PubMedCrossRefGoogle Scholar
  116. 116.
    Beerman I, et al. The genetics of IgA nephropathy. Nat Clin Pract Nephrol. 2007;3(6):325–38.PubMedCrossRefGoogle Scholar
  117. 117.
    Li YJ, et al. Family-based association study showing that immunoglobulin A nephropathy is associated with the polymorphisms 2093C and 2180T in the 3′ untranslated region of the Megsin gene. J Am Soc Nephrol. 2004;15(7):1739–43.PubMedCrossRefGoogle Scholar
  118. 118.
    Xia YF, et al. A family-based association study of megsin A23167G polymorphism with susceptibility and progression of IgA nephropathy in a Chinese population. Clin Nephrol. 2006;65(3):153–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Kim YS, et al. Uteroglobin gene polymorphisms affect the progression of immunoglobulin A nephropathy by modulating the level of uteroglobin expression. Pharmacogenetics. 2001;11(4):299–305.PubMedCrossRefGoogle Scholar
  120. 120.
    Narita I, et al. Role of uteroglobin G38A polymorphism in the progression of IgA nephropathy in Japanese patients. Kidney Int. 2002;61(5):1853–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Matsunaga A, et al. Association of the uteroglobin gene polymorphism with IgA nephropathy. Am J Kidney Dis. 2002;39(1):36–41.PubMedCrossRefGoogle Scholar
  122. 122.
    Li GS, et al. Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy [see comment]. Kidney Int. 2007;71(5):448–53.PubMedCrossRefGoogle Scholar
  123. 123.
    Takei T, et al. Association between single-nucleotide polymorphisms in selectin genes and immunoglobulin A nephropathy. Am J Hum Genet. 2002;70(3):781–6.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Tuglular S, Berthoux P, Berthoux F. Polymorphisms of the tumour necrosis factor alpha gene at position -308 and TNFd microsatellite in primary IgA nephropathy. Nephrol Dial Transplant. 2003;18(4):724–31.PubMedCrossRefGoogle Scholar
  125. 125.
    Carturan S, et al. Association between transforming growth factor beta1 gene polymorphisms and IgA nephropathy. J Nephrol. 2004;17(6):786–93.PubMedGoogle Scholar
  126. 126.
    Masutani K, et al. Impact of interferon-gamma and interleukin-4 gene polymorphisms on development and progression of IgA nephropathy in Japanese patients. Am J Kidney Dis. 2003;41(2):371–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Akiyama F, et al. Single-nucleotide polymorphisms in the class II region of the major histocompatibility complex in Japanese patients with immunoglobulin A nephropathy. J Hum Genet. 2002;47(10):532–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Obara W, et al. Association of single-nucleotide polymorphisms in the polymeric immunoglobulin receptor gene with immunoglobulin A nephropathy (IgAN) in Japanese patients. J Hum Genet. 2003;48(6):293–9.PubMedGoogle Scholar
  129. 129.
    Ohtsubo S, et al. Association of a single-nucleotide polymorphism in the immunoglobulin mu-binding protein 2 gene with immunoglobulin A nephropathy. J Hum Genet. 2005;50(1):30–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Berthoux FC, et al. CC-chemokine receptor five gene polymorphism in primary IgA nephropathy: the 32 bp deletion allele is associated with late progression to end-stage renal failure with dialysis. Kidney Int. 2006;69(3):565–72.PubMedCrossRefGoogle Scholar
  131. 131.
    Panzer U, et al. The chemokine receptor 5 Delta32 mutation is associated with increased renal survival in patients with IgA nephropathy [erratum appears in Kidney Int. 2005 Mar;67(3):1213 Note: Kramer, Bernhard H [corrected to Kramer, Bernhard K]]. Kidney Int. 2005;67(1):75–81.PubMedCrossRefGoogle Scholar
  132. 132.
    Ogden CL, et al. Prevalence and trends in overweight among US children and adolescents, 1999–2000 [see comment]. JAMA. 2002;288(14):1728–32.PubMedCrossRefGoogle Scholar
  133. 133.
    Ogden CL, et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA. 2006;295(13):1549–55.PubMedCrossRefGoogle Scholar
  134. 134.
    Chinn S, Rona RJ. Prevalence and trends in overweight and obesity in three cross sectional studies of British Children, 1974–94. BMJ. 2001;322(7277):24–6.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    de Onis M, Blossner M. Prevalence and trends of overweight among preschool children in developing countries. Am J Clin Nutr. 2000;72(4):1032–9.PubMedGoogle Scholar
  136. 136.
    Filozof C, et al. Obesity prevalence and trends in Latin-American countries. Obes Rev. 2001;2(2):99–106.PubMedCrossRefGoogle Scholar
  137. 137.
    Wang Y, et al. Epidemic of childhood obesity: implications for kidney disease. Adv Chronic Kidney Dis. 2006;13(4):336–51.PubMedCrossRefGoogle Scholar
  138. 138.
    McDonald SP, Craig JC, A. Australian and New Zealand Paediatric Nephrology. Long-term survival of children with end-stage renal disease [see comment]. N Engl J Med. 2004;350(26):2654–62.PubMedCrossRefGoogle Scholar
  139. 139.
    Groothoff JW. Long-term outcomes of children with end-stage renal disease. Pediatr Nephrol. 2005;20(7):849–53.PubMedCrossRefGoogle Scholar
  140. 140.
    Balinsky W. Pediatric end-stage renal disease: incidence, management, and prevention. J Pediatr Health Care. 2000;14(6):304–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Iyengar SK, et al. Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND). Diabetes. 2007;56(6):1577–85.PubMedCrossRefGoogle Scholar
  142. 142.
    Imperatore G, et al. Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group. Diabetes. 1998;47(5):821–30.PubMedCrossRefGoogle Scholar
  143. 143.
    Moczulski DK, et al. Major susceptibility locus for nephropathy in type 1 diabetes on chromosome 3q: results of novel discordant sib-pair analysis. Diabetes. 1998;47(7):1164–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Yu H, et al. Identification of human plasma kallikrein gene polymorphisms and evaluation of their role in end-stage renal disease. Hypertension. 1998;31(4):906–11.PubMedCrossRefGoogle Scholar
  145. 145.
    Bowden DW, et al. A genome scan for diabetic nephropathy in African Americans. Kidney Int. 2004;66(4):1517–26.PubMedCrossRefGoogle Scholar
  146. 146.
    Yu H, et al. Linkage analysis between loci in the renin-angiotensin axis and end-stage renal disease in African Americans. J Am Soc Nephrol. 1996;7(12):2559–64.PubMedGoogle Scholar
  147. 147.
    Freedman BI, et al. Genetic linkage analysis of growth factor loci and end-stage renal disease in African Americans. Kidney Int. 1997;51(3):819–25.PubMedCrossRefGoogle Scholar
  148. 148.
    Freedman BI, et al. Linkage heterogeneity of end-stage renal disease on human chromosome 10. Kidney Int. 2002;62(3):770–4.PubMedCrossRefGoogle Scholar
  149. 149.
    Yu H, et al. Evaluation of markers on human chromosome 10, including the homologue of the rodent Rf-1 gene, for linkage to ESRD in black patients. Am J Kidney Dis. 1999;33(2):294–300.PubMedCrossRefGoogle Scholar
  150. 150.
    Vardarli I, et al. Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3-23. Kidney Int. 2002;62(6):2176–83.PubMedCrossRefGoogle Scholar
  151. 151.
    Iyengar SK, et al. Linkage analysis of candidate loci for end-stage renal disease due to diabetic nephropathy. J Am Soc Nephrol. 2003;14(7 Suppl 2):S195–201.PubMedCrossRefGoogle Scholar
  152. 152.
    Freedman BI, et al. A genome scan for all-cause end-stage renal disease in African Americans. Nephrol Dial Transplant. 2005;20(4):712–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Osterholm AM, et al. Genome-wide scan for type 1 diabetic nephropathy in the Finnish population reveals suggestive linkage to a single locus on chromosome 3q [see comment]. Kidney Int. 2007;71(2):140–5.PubMedCrossRefGoogle Scholar
  154. 154.
    Iyengar SK, Freedman BI, Sedor JR. Mining the genome for susceptibility to diabetic nephropathy: the role of large-scale studies and consortia. Semin Nephrol. 2007;27(2):208–22.PubMedCrossRefGoogle Scholar
  155. 155.
    Janssen B, et al. Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes. 2005;54(8):2320–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Freedman BI, et al. A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans. Nephrol Dial Transplant. 2007;22(4):1131–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Hanson RL, et al. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes. 2007;56(4):975–83.PubMedCrossRefGoogle Scholar
  158. 158.
    Shimazaki A, et al. Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes. 2005;54(4):1171–8.PubMedCrossRefGoogle Scholar
  159. 159.
    McKnight AJ, et al. A genome-wide DNA microsatellite association screen to identify chromosomal regions harboring candidate genes in diabetic nephropathy. J Am Soc Nephrol. 2006;17(3):831–6.PubMedCrossRefGoogle Scholar
  160. 160.
    Ewens KG, et al. Assessment of 115 candidate genes for diabetic nephropathy by transmission/disequilibrium test. Diabetes. 2005;54(11):3305–18.PubMedCrossRefGoogle Scholar
  161. 161.
    Schelling JR, et al. Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations: the Family Investigation of Nephropathy and Diabetes (FIND). Diabetes. 2008;57(1):235–43.PubMedCrossRefGoogle Scholar
  162. 162.
    Freedman BI, et al. A genome-wide scan for urinary albumin excretion in hypertensive families. Hypertension. 2003;42(3):291–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Lander ES, Schork NJ. Genetic dissection of complex traits [erratum appears in Science 1994 Oct 21;266(5184):353]. Science. 1994;265(5181):2037–48.PubMedCrossRefGoogle Scholar
  164. 164.
    Carlson CS, et al. Mapping complex disease loci in whole-genome association studies. Nature. 2004;429(6990):446–52.PubMedCrossRefGoogle Scholar
  165. 165.
    Ghosh S, Schork NJ. Genetic analysis of NIDDM. The study of quantitative traits. Diabetes. 1996;45(1):1–14.PubMedCrossRefGoogle Scholar
  166. 166.
    Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.PubMedCentralPubMedCrossRefGoogle Scholar
  167. 167.
    Ng PC, Kirkness EF. Whole genome sequencing. Methods Mol Biol. 2010;628:215–26.PubMedCrossRefGoogle Scholar
  168. 168.
    Mardis ER. Anticipating the 1,000 dollar genome. Genome Biol. 2006;7:112.PubMedCentralPubMedCrossRefGoogle Scholar
  169. 169.
    DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.PubMedCentralPubMedCrossRefGoogle Scholar
  170. 170.
    Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52:413–35.PubMedCentralPubMedCrossRefGoogle Scholar
  171. 171.
    Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K, Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F, Hajirasouliha I, Hormozdiari F, Iakoucheva LM, Iqbal Z, Kang S, Kidd JM, Konkel MK, Korn J, Khurana E, Kural D, Lam HY, Leng J, Li R, Li Y, Lin CY, Luo R, Mu XJ, Nemesh J, Peckham HE, Rausch T, Scally A, Shi X, Stromberg MP, Stutz AM, Urban AE, Walker JA, Wu J, Zhang Y, Zhang ZD, Batzer MA, Ding L, Marth GT, McVean G, Sebat J, Snyder M, Wang J, Eichler EE, Gerstein MB, Hurles ME, Lee C, McCarroll SA, Korbel JO. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470:59–65.PubMedCentralPubMedCrossRefGoogle Scholar
  172. 172.
    Project TG. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.CrossRefGoogle Scholar
  173. 173.
    Lee H, Tang H. Next-generation sequencing technologies and fragment assembly algorithms. Methods Mol Biol. 2012;855:155–74.PubMedCrossRefGoogle Scholar
  174. 174.
    Stein LD. An introduction to the informatics of “next-generation” sequencing. Curr Protoc Bioinformatics / editorial board, Andreas D Baxevanis [et al.]. 2011;Chapter 11:Unit 11 1.Google Scholar
  175. 175.
    MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner MM, Hunt T, Barnes IH, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C. A systematic survey of loss-of-function variants in human protein-coding genes. Science. 2012;335:823–8.PubMedCentralPubMedCrossRefGoogle Scholar
  176. 176.
    Otto EA, Ramaswami G, Janssen S, Chaki M, Allen SJ, Zhou W, Airik R, Hurd TW, Ghosh AK, Wolf MT, Hoppe B, Neuhaus TJ, Bockenhauer D, Milford DV, Soliman NA, Antignac C, Saunier S, Johnson CA, Hildebrandt F. Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy. J Med Genet. 2011;48:105–16.PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    Halbritter J, Porath JD, Diaz KA, Braun DA, Kohl S, Chaki M, Allen SJ, Soliman NA, Hildebrandt F, Otto EA. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum Genet. 2013;132:865–84.PubMedCentralPubMedCrossRefGoogle Scholar
  178. 178.
    Saisawat P, Tasic V, Vega-Warner V, Kehinde EO, Gunther B, Airik R, Innis JW, Hoskins BE, Hoefele J, Otto EA, Hildebrandt F. Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int. 2012;81:196–200.PubMedCrossRefGoogle Scholar
  179. 179.
    Saisawat P, Kohl S, Hilger AC, Hwang DY, Yung Gee H, Dworschak GC, Tasic V, Pennimpede T, Natarajan S, Sperry E, Matassa DS, Stajic N, Bogdanovic R, de Blaauw I, Marcelis CL, Wijers CH, Bartels E, Schmiedeke E, Schmidt D, Marzheuser S, Grasshoff-Derr S, Holland-Cunz S, Ludwig M, Nothen MM, Draaken M, Brosens E, Heij H, Tibboel D, Herrmann BG, Solomon BD, de Klein A, van Rooij IA, Esposito F, Reutter HM, Hildebrandt F. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int. 2014;85:1310–7.PubMedCentralPubMedCrossRefGoogle Scholar
  180. 180.
    Gee HY, Ashraf S, Wan X, Vega-Warner V, Esteve-Rudd J, Lovric S, Fang H, Hurd TW, Sadowski CE, Allen SJ, Otto EA, Korkmaz E, Washburn J, Levy S, Williams DS, Bakkaloglu SA, Zolotnitskaya A, Ozaltin F, Zhou W, Hildebrandt F. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am J Hum Genet. 2014;94:884–90.PubMedCentralPubMedCrossRefGoogle Scholar
  181. 181.
    Malone AF, Phelan PJ, Hall G, Cetincelik U, Homstad A, Alonso AS, Jiang R, Lindsey TB, Wu G, Sparks MA, Smith SR, Webb NJ, Kalra PA, Adeyemo AA, Shaw AS, Conlon PJ, Jennette JC, Howell DN, Winn MP, Gbadegesin RA. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 2014;86:1253–9.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Section of Genomic PediatricsMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of PediatricsMedical College of Wisconsin and Children’s Hospital of WisconsinMilwaukeeUSA

Personalised recommendations