Skip to main content

Physiology of the Developing Kidney: Sodium and Water Homeostasis and Its Disorders

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Salt and water are the stuff of life [1, 2]. The ancient and the modern voices have been invoked in the past to demonstrate that human beings intuitively appreciate the critical role played by sodium and water balance for the integrity of the plasma compartment and for continued existence on land. The third time around, I turn to a towering contemporary figure of our age as inspiration for this chapter. The material will review the physiological mechanisms involved in the control of sodium and water homeostasis. This knowledge will provide a basis for the analysis of the diseases that arise when these systems malfunction and a guide to the optimal therapy of conditions associated with excessive or deficient total body sodium and water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas DR, Cote TR, Lawhorne L, Levenson SA, Rubenmstein LZ, Smith DA, Stefanacci RG, Tangalos EG, Morley JE. Understanding clinical dehydration and its treatment. J Am Med Dir Assoc. 2008;9:292–301.

    Article  PubMed  Google Scholar 

  2. Fatehi P. Salt and water: a brief natural history. Kidney Int. 2008;64:3–4.

    Article  Google Scholar 

  3. Shaffer SG, Bradt SK, Hall RT. Postnatal changes in total body water and extracellular volume in the preterm infant with respiratory distress syndrome. J Pediatr. 1986;109:509–14.

    Article  CAS  PubMed  Google Scholar 

  4. Skorecki KL, Brenner BM. Body fluid homeostasis in man. Am J Med. 1981;70:77–88.

    Article  CAS  PubMed  Google Scholar 

  5. Holliday MA. Extracellular fluid and its proteins: dehydration, shock, and recovery. Pediatr Nephrol. 1999;13:989–95.

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen S, Kwon TH, Frokiaer J, Agre P. Regulation and dysregulation of aquaporins in water balance disorders. J Intern Med. 2007;261:53–64.

    Article  CAS  PubMed  Google Scholar 

  7. Devuyst O. Water transport across biological membranes: Overton, water channels, and peritoneal dialysis. Bull Mem Acad R Med Belg. 2010;165:250–5.

    CAS  PubMed  Google Scholar 

  8. Kaplan JH. Biochemistry of Na,K-ATPase. Annu Rev Biochem. 2002;71:511–35.

    Article  CAS  PubMed  Google Scholar 

  9. Huang CL, Kuo E. Mechanism of disease: WNK-ing at the mechanism of salt-sensitive hypertension. Nat Clin Pract Nephrol. 2007;3:623–30.

    Article  CAS  PubMed  Google Scholar 

  10. Trachtman H, Futterweit S, Tonidandel W, Gullans SR. The role of organic osmolytes in the cerebral cell volume regulatory response to acute and chronic renal failure. J Am Soc Nephrol. 1993;12:1913–9.

    Google Scholar 

  11. Kopp C, Linz P, Dahlmann A, et al. 23Na magnetic resonance imaging determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61:635–40.

    Article  CAS  PubMed  Google Scholar 

  12. Titze J, Dahlmann A, Lerchl K, Kopp C, Rakova N, Schroder A, Luft FC. Spooky sodium balance. Kidney Int. 2014;85(4):759–67.

    Article  CAS  PubMed  Google Scholar 

  13. Dahlmann A, Dorfelt K, Eicher F, Linz P, et al. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int 2015;87:434–41.

    Google Scholar 

  14. Glaser DS. Utility of the serum osmolal gap in the diagnosis of methanol or ethylene glycol ingestion. Ann Emerg Med. 1996;27:343–6.

    Google Scholar 

  15. Schelling JR, Howard RL, Winter SD, et al. Increased osmolal gap in alcoholic ketoacidosis and lactic acidosis. Ann Intern Med. 1990;113:580–2.

    Article  CAS  PubMed  Google Scholar 

  16. Lava SAG, Biachetti MG, Simonetti GD. Sodium intake in children and its consequence on blood pressure. Pediatr Nephrol. 2014; online.

    Google Scholar 

  17. Haycock GB. The influence of sodium on growth in infancy. Pediatr Nephrol. 1993;7(6):871–5.

    Article  CAS  PubMed  Google Scholar 

  18. Wassner SJ. Altered growth and protein turnover in rats fed sodium-deficient diets. Pediatr Res. 1989;26:608–13.

    Article  CAS  PubMed  Google Scholar 

  19. Reungjui S, Hu H, Mu W, Roncal CA, Croker BP, Patel JM, Nakagawa T, Srinivas T, Byer T, Simoni J, Sitprija V, Johnson RJ. Thiazide-induced subtle renal injury not observed in states of equivalent hypokalemia. Kidney Int. 2007;72:1483–92.

    Article  CAS  PubMed  Google Scholar 

  20. Wassner SJ. The effect of sodium repletion on growth and protein turnover in sodium-depleted rats. Pediatr Nephrol. 1991;5:501–4.

    Article  CAS  PubMed  Google Scholar 

  21. Al-Dahhan J, Jannoun L, Haycock G. Effect of salt supplementation of newborn premature infants on neurodevelopmental outcome at 10–13 years of age. Arch Dis Child Fetal Neonatal Ed. 2002;86(2):F120–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sulyok E, Varga F, Nemeth M, Tenyi I, Csaba IF, Ertl T, Gyory E. Furosemide-induced alterations in electrolyte status, the function of the renin-angiotensin-aldosterone system, and the urinary excretion of prostaglandins in newborn infants. Pediatr Res. 1980;14:765–8.

    Article  CAS  PubMed  Google Scholar 

  23. O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, Yan H, Lee SF, Mony P, Devanath A, Rosengren A, Lopez-Jaramillo P, Diaz R, Avezum A, Lanas F, Yusoff K, Iqbal R, Ilow R, Mohammadifard N, Gulec S, Yusufali AH, Kruger L, Yusuf R, Chifamba J, Kabali C, Dagenais G, Lear SA, Teo K, Yusuf S, PURE Investigators. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014;371:612–23.

    Article  PubMed  CAS  Google Scholar 

  24. Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, Morrison H, Li W, Wang X, Di C, Mony P, Devanath A, Rosengren A, Oguz A, Zatonska K, Yusufali AH, Lopez-Jaramillo P, Avezum A, Ismail N, Lanas F, Puoane T, Diaz R, Kelishadi R, Iqbal R, Yusuf R, Chifamba J, Khatib R, Teo K, Yusuf S, PURE Investigators. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014;371:601–11.

    Article  PubMed  CAS  Google Scholar 

  25. Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, Lim S, Danaei G, Ezzati M, Powles J, Global Burden of Diseases Nutrition and Chronic Diseases Expert Group. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014;371:624–34.

    Article  PubMed  Google Scholar 

  26. Fan L, Tighiouart H, Levey AS, Beck GJ, Sarnak MJ. Urinary sodium excretion and kidney failure in nondiabetic chronic kidney disease. Kidney Int. 2014;86:582–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Holmes E, Loo RL, Stamler J, Bictash M, Yap IKS, Chan Q, Ebbels T, De Iorio M, Brown IJ, Veselkov KA, Daviglus ML, Kesteloot H, Ueshima H, Zhao L, Nicholson JK, Elliott P. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 2008;453:396–400.

    Article  CAS  PubMed  Google Scholar 

  28. Holliday M. The evolution of therapy for dehydration: should deficit therapy still be taught? Pediatrics. 1996;98:171–7.

    CAS  PubMed  Google Scholar 

  29. Bell EF, Neidich GA, Cashore WJ, et al. Combined effect of radiant warmer and phototherapy on insensible water loss in low-birth weight infants. J Pediatr. 1979;94:810–3.

    Article  CAS  PubMed  Google Scholar 

  30. Schoorlemmer GH, Evered MD. Water and solute balance in rats during 10 h water deprivation and rehydration. Can J Physiol Pharmacol. 1993;71:379–86.

    Article  CAS  PubMed  Google Scholar 

  31. Berl T. Impact of solute intake on urine flow and water excretion. J Am Soc Nephrol. 2008;19:1076–8.

    Article  CAS  PubMed  Google Scholar 

  32. Wang CJ, Grantham JJ, Wetmore JB. The medicinal use of water in renal disease. Kidney Int. 2013;84:45–53.

    Article  PubMed  Google Scholar 

  33. Holliday MA, Segar ME. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19:823–32.

    CAS  PubMed  Google Scholar 

  34. Holliday MA, Friedman AL, Segar WE, Chesney R, Finberg L. Acute hospital-induced hyponatremia in children: a physiologic approach. J Pediatr. 2004;145:584–7.

    Article  PubMed  Google Scholar 

  35. Ray PE. Neurological complications from dysnatremias in children: a different point of view. Pediatr Nephrol. 2006;21:1048–9.

    Article  PubMed  Google Scholar 

  36. Holliday MA, Ray PE, Friedman AL. Fluid therapy for children: facts, fashions, and questions. Arch Dis Child. 2007;92:546–50.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Moritz ML, Ayus JC. Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics. 2003;111:227–30.

    Article  PubMed  Google Scholar 

  38. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342:1581–9.

    Article  CAS  PubMed  Google Scholar 

  39. Achinger SG, Moritz ML, Ayus JC. Dysnatremias: why are patients still dying? South Med J. 2006;99:353–62.

    Article  PubMed  Google Scholar 

  40. Moritz ML, Ayus JC. Hospital-acquired hyponatremia – why are hypotonic parenteral fluids still being used? Nat Clin Pract Nephrol. 2007;3:374–82.

    Article  CAS  PubMed  Google Scholar 

  41. Choong K, Bohn D. Maintenance parenteral fluids in the critically ill child. J Pediatr (Rio J). 2007;83(2 Suppl):S3–10.

    Article  Google Scholar 

  42. Choong K, Arora S, Cheng J, Farrokhyar F, Reddy D, Thabane L, et al. Hypotonic versus isotonic maintenance fluids after surgery for children: a randomized controlled trial. Pediatrics. 2011;128:857–66.

    Article  PubMed  Google Scholar 

  43. Foster BA, Tom D, Hill V. Hypotonic versus isotonic fluids in hospitalized children: a systematic review and meta-analysis. J Pediatr. 2014;165(1):163–9. e162.

    Article  PubMed  Google Scholar 

  44. Ince C, Johan Groeneveld AB. The case for 0.9 % NaCl: is the undefendable, defensible? Kidney Int. 2014;86:1087–95.

    Article  CAS  PubMed  Google Scholar 

  45. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566–72.

    Article  CAS  PubMed  Google Scholar 

  46. Danovitch GM, Bourgoignie J, Bricker NS. Reversibility of the “salt losing” tendency of chronic renal failure. N Engl J Med. 1976;296:14–9.

    Article  Google Scholar 

  47. Di Somma S, Navarin S, Giordano S, Spadini F, Lippi G, Cervellin G, et al. The emerging role of biomarkers and bio-impedance in evaluating hydration status in patients with acute heart failure. Clin Chem Lab Med. 2014;50(12):2093–105.

    Google Scholar 

  48. Kushner RF, Schoeller DA, Fjeld CR, Danford L. Is the impedance index (ht2/R) significant in predicting total body water? Am J Clin Nutr. 1992;56(5):835–9.

    CAS  PubMed  Google Scholar 

  49. Hyun SH, Choi JY, Cho JH, Park SH, Kim CD, Kim YL. Assessment of fluid and nutritional status using multifrequency bioelectrical impedance analysis in peritoneal dialysis patients. Blood Purif. 2014;37(2):152–62.

    Article  CAS  PubMed  Google Scholar 

  50. Trachtman H. Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances. Pediatr Nephrol. 1991;5:743–52 (Part I) and 1992;6:104–112 (Part II).

    Article  CAS  PubMed  Google Scholar 

  51. Kleeman CR. Metabolic coma. Kidney Int. 1989;36:1142–58.

    Article  CAS  PubMed  Google Scholar 

  52. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJP, Zuker CS. The cells and logic for mammalian sour taste detection. Nature. 2006;442:934–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Morita H, Tanaka K, Hosomi H. Chemical inactivation of the nucleus tractus solitarius abolished hepatojejunal reflex in the rat. J Auton Nerv Syst. 1994;48:207–12.

    Article  CAS  PubMed  Google Scholar 

  54. Firth JD, Raine AEG, Ledingham JGG. Raised venous pressure: a direct cause of renal sodium retention in edema. Lancet. 1988;331:1033–5.

    Article  Google Scholar 

  55. Fater D, Schultz HD, Sundet WD, et al. Effects of left atrial stretch in cardiac-denervated and intact conscious dogs. Am J Physiol. 1982;242:H1056–64.

    CAS  PubMed  Google Scholar 

  56. Levy M, Wexler MJ. Sodium excretion in dogs with low-grade caval constriction: role of hepatic nerves. Am J Physiol. 1987;253:F672–8.

    CAS  PubMed  Google Scholar 

  57. Paintal AS. Vagal sensory receptors and their reflex effects. Physiol Rev. 1973;53:159–227.

    CAS  PubMed  Google Scholar 

  58. Kirchheim HR, Ehmke H, Hackenthal E, et al. Autoregulation of renal blood flow, glomerular filtration rate, and renin release in conscious dogs. Pflugers Arch. 1987;410:441–9.

    Article  CAS  PubMed  Google Scholar 

  59. Quail AW, Woods RL, Korner PI. Cardiac and arterial baroreceptor influences in release of vasopressin and renin during hemorrhage. Am J Physiol. 1987;252:H1120–6.

    CAS  PubMed  Google Scholar 

  60. Harrigan MR. Cerebral salt wasting syndrome: a review. Neurosurgery. 1996;38:152–60.

    Article  CAS  PubMed  Google Scholar 

  61. Feng Y, Yue X, Xia H, Bindom SM, Hickman PJ, Filipeanu CM, Wu G, Lazartigues E. Angiotensin converting enzyme 2 overexpression in the subfornical organ prevents angiotensin II-mediated pressor and drinking responses and is associated with angiotensin II type I1 receptor downregulation. Circ Res. 2008;102:729–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Schrier RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy. N Engl J Med. 1988;319:1065–72. & 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  63. Schrier RW. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341:577–85.

    Article  CAS  PubMed  Google Scholar 

  64. Share L, Kimura T, Matsui K, Shade RE, Crofton JT. Metabolism of vasopressin. Fed Proc. 1985;44:59–61.

    CAS  PubMed  Google Scholar 

  65. Hays RM. Antidiuretic hormone. N Engl J Med. 1976;295:659–65.

    Article  CAS  Google Scholar 

  66. Robinson AG, Roberts MM, Evron WA, et al. Hyponatremia in rats induces downregulation of vasopressin synthesis. J Clin Invest. 1990;86:1023–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Robertson GL. Abnormalities of thirst regulation. Kidney Int. 1984;25:460–9.

    Article  CAS  PubMed  Google Scholar 

  68. Blair-West JR, Carey KD, Denton DA, Weisinger RS, Shade RE. Evidence that brain angiotensin II is involved in both thirst and sodium appetite in baboons. Am J Physiol. 1998;275:R1639–46.

    CAS  PubMed  Google Scholar 

  69. Ichikawa I, Harris RC. Angiotensin actions in the kidney: renewed insight into the old hormone. Kidney Int. 1991;40:583–9.

    Article  CAS  Google Scholar 

  70. Santos RA, Ferreira AJ, Simoes E, Silva AC. Recent advances in the angiotensin converting enzyme2-angiotensin(1-7)-Mas axis. Exp Physiol. 2008;93:519–27.

    Article  CAS  PubMed  Google Scholar 

  71. Tsutsumi Y, Matsubara H, Masaki H, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilatation. J Clin Invest. 1999;104:925–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Liu FY, Cogan MG. Role of angiotensin II in glomerulotubular balance. Am J Physiol. 1990;259:F72–9.

    CAS  PubMed  Google Scholar 

  73. Matsusaka T, Niimura F, Pastan I, Shintani A, Nishiyama A, Ichikawa I. Podocyte injury enhances filtration of liver-derived angiotensinogen and renal angiotensin II generation. Kidney Int. 2014;85:1068–77.

    Article  CAS  PubMed  Google Scholar 

  74. Verrey F. Early aldosterone action: toward filling the gap between transcription and transport. Am J Physiol. 1999;277:F319–27.

    CAS  PubMed  Google Scholar 

  75. Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE, Stanton RC, Pitt B, Loscalzo J. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med. 2007;13:189–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Fujita T. Mechanism of salt sensitive hypertension: focus on adrenal and sympathetic nervous system. J Am Soc Nephrol. 2014;25:1148–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Hunley TE, Kon V. Update on endothelins: biology and clinical implications. Pediatr Nephrol. 2001;16:752–62.

    Article  CAS  PubMed  Google Scholar 

  78. DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol. 2000;279:R1517–24.

    CAS  Google Scholar 

  79. Jose PA, Eisner GM, Felder RA. Role of dopamine receptors in the kidney in the regulation of blood pressure. Curr Opin Nephrol Hypertens. 2002;11:87–92.

    Article  PubMed  Google Scholar 

  80. Armando I, Konkalmatt P, Felder RA, Jose PA. The renal dopaminergic system: novel diagnostic and therapeutic approaches in hypertension and kidney disease. Transl Res. 2014. doi:10.1016/j.trsl.2014.07.006. pii: S1931-5244(14)00269-2.

    PubMed  Google Scholar 

  81. Carvalho MJ, Van den Meiracker AH, Boomsma F, et al. Role of sympathetic nervous system in cyclosporine-induced rise in blood pressure. Hypertension. 1999;34:102–6.

    Article  CAS  PubMed  Google Scholar 

  82. Hoorn EJ, Walsh SB, McCormick JA, Fürstenberg A, Yang CL, Roeschel T, Paliege A, Howie AJ, Conley J, Bachmann S, Unwin RJ, Ellison DH. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011;17:1304–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–8.

    Article  CAS  PubMed  Google Scholar 

  84. Martinez-Rumayor A, Richards AM, Burnett JC, Januzzi Jr JL. Biology of natriuretic peptides. Am J Cardiol. 2008;101:3–8.

    Article  PubMed  CAS  Google Scholar 

  85. Cody RJ, Atlas SA, Laragh JH. Atrial natriuretic factor in normal subjects and heart failure patients: plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest. 1986;78:1362–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and –2. J Biol Chem. 1996;271:33157–60.

    Article  CAS  PubMed  Google Scholar 

  87. Patrono C, Dunn MJ. The clinical significance of inhibition of renal prostaglandin synthesis. Kidney Int. 1987;32:1–12.

    Article  CAS  PubMed  Google Scholar 

  88. Gueutin V, Vallet M, Jayet M, Pet-Peterdi J, Corniere N, Leviel F, Sohet F, Wagner CA, Eladari D, Chambrey R. Renal β-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest. 2013;123:4219–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Wang T. Role of iNOS and eNOS in modulating proximal tubule transport an acid-base balance. Am J Physiol. 2002;283:F658–62.

    Google Scholar 

  90. Stoos BA, Carretero OA, Garvin JL. Endothelial-derived nitric oxide inhibits sodium transport by affecting apical membrane channels in cultured collecting duct cells. J Am Soc Nephrol. 1994;4:1855–60.

    CAS  PubMed  Google Scholar 

  91. Schultz PJ, Tolins JP. Adaptation to increased dietary salt intake: role of endogenous nitric oxide. J Clin Invest. 1992;91:642–50.

    Article  Google Scholar 

  92. Kagota S, Tamashiro A, Yamaguchi Y, et al. Downregulation of soluble guanylate cyclase induced by high salt intake in spontaneously hypertensive rats. Br J Pharmacol. 2001;134:737–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Phipps JA, Feener EP. The kallikrein-kinin system in diabetic retinopathy: lessons for the kidney. Kidney Int. 2008;73:1114–9.

    Article  CAS  PubMed  Google Scholar 

  94. Tonel J, Madrid MI, Garcia-Salom M, Wirth KJ, Fenoy FJ. Role of kinins in the control of renal papillary blood flow, pressure natriuresis, and arterial pressure. Circ Res. 2000;86:589–95.

    Article  Google Scholar 

  95. Fuster DG, Bobulescu IA, Zhang J, Wade J, Moe OW. Characterization of the regulation of renal Na+/H+ exchanger NHE3 by insulin. Am J Physiol Renal Physiol. 2007;292:F577–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Chávez-Canales M, Arroyo JP, Ko B, Vázquez N, Bautista R, Castañeda-Bueno M, Bobadilla NA, Hoover RS, Gamba G. Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens. 2013;31:303–11.

    PubMed Central  PubMed  Google Scholar 

  97. Nishida H, Sohara E, Nomura N, Chiga M, Alessi DR, Rai T, Sasaki S, Uchida S. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice. Hypertension. 2012;60:981–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Boyle LD, Wilding JP. Emerging sodium/glucose co-transporter 2 inhibitors for type 2 diabetes. Expert Opin Emerg Drugs. 2013;18:375–91.

    Article  CAS  PubMed  Google Scholar 

  99. Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, Pohl EE, Erben RG. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014;6:744–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Taylor MM, Samson WK. Adrenomedullin and the integrative physiology of fluid and electrolyte balance. Microsc Res Tech. 2002;57:105–9.

    Article  CAS  PubMed  Google Scholar 

  101. Alessi DR, Zhang J, Khanna A, Hochdörfer T, Shang Y, Kahle KT. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride co-transporters. Sci Signal. 2014;7(334):re3. doi:10.1126/scisignal.2005365.

    Article  PubMed  CAS  Google Scholar 

  102. Bolignano D, Cabassi A, Fiaccadori E, Ghigo E, Pasquali R, Peracino A, Peri A, Plebani M, Santoro A, Settanni F, Zoccali C. Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clin Chem Lab Med. 2014. doi:10.1515/cclm-2014-0379. pii: /j/cclm.ahead-of-print/cclm-2014-0379/cclm-2014-0379.xml.

    PubMed  Google Scholar 

  103. Phillips PA, Rolls BJ, Ledingham JGG, et al. Reduced thirst after water deprivation in healthy elderly men. N Engl J Med. 1984;311:753–9.

    Article  CAS  PubMed  Google Scholar 

  104. Thompson CJ, Burd JM, Baylis PH. Acute suppression of plasma vasopressin and thirst after drinking in hypernatremic humans. Am J Physiol. 1987;252:R1138–42.

    CAS  PubMed  Google Scholar 

  105. Dirks JH, Cirkensa WJ, Berliner RW. The effect of saline infusion on sodium reabsorption by the proximal tubule of the dog. J Clin Invest. 1965;44:1875–85.

    Article  Google Scholar 

  106. Brenner BM, Troy JL, Daugharty TM. On the mechanism of inhibition of fluid reabsorption by the renal proximal tubule of the volume-expanded rat. J Clin Invest. 1971;50:1596–602.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Better OS, Schrier RW. Disturbed volume homeostasis in patients with cirrhosis of the liver. Kidney Int. 1983;23:303–11.

    Article  CAS  PubMed  Google Scholar 

  108. Hricik D, Broning PJ, Kopelman R, Goorno WE, Madias NE, Dzau VJ. Captopril-induced functional renal insufficiency in patients with bilateral renal artery stenosis or renal artery stenosis in a solitary kidney. N Engl J Med. 1983;308:373–6.

    Article  CAS  PubMed  Google Scholar 

  109. Verry F, Fakitsas P, Adam G, Staub O. Early transcriptional control of ENaC (de)ubiquitylation by aldosterone. Kidney Int. 2008;73:691–6.

    Article  CAS  Google Scholar 

  110. Stokes JB. Disorders of the epithelial sodium channel: insights into the regulation of extracellular volume and blood pressure. Kidney Int. 1999;56:2318–33.

    Article  CAS  PubMed  Google Scholar 

  111. Staub O, Verrey F. Impact of Nedd4 proteins and serum and glucocorticoid-induced kinases on epithelial Na + transport in the distal nephron. J Am Soc Nephrol. 2005;16:3167–74.

    Article  CAS  PubMed  Google Scholar 

  112. Harris Jr HW, Strange K, Zeidel ML. Current understanding of the cellular biology and molecular structure of the antidiuretic hormone-stimulated water transport pathway. J Clin Invest. 1991;88:1–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Knoers NV, Deen PM. Molecular and cellular defects in nephrogenic diabetes insipidus. Pediatr Nephrol. 2001;16:1146–52.

    Article  CAS  PubMed  Google Scholar 

  114. Feldman BJ, Rosenthal SM, Vargas GA, Fenwick RG, Huang EA, Matsuda-Abedini M, Lustig RH, Mathias RS, Portale AA, Miller WL, Gitelman SE. Nephrogenic syndrome of inappropriate antidiuresis. N Engl J Med. 2005;352:1884–90.

    Article  CAS  PubMed  Google Scholar 

  115. Rochdi MD, Vargas GA, Carpentier E, Oligny-Longpré G, Chen S, Kovoor A, Gitelman SE, Rosenthal SM, von Zastrow M, Bouvier M. Functional characterization of vasopressin type 2 receptor substitutions (R137H/C/L) leading to nephrogenic diabetes insipidus and nephrogenic syndrome of inappropriate antidiuresis: implications for treatments. Mol Pharmacol. 2010;77:836–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Kozono D, Yasui M, King LS, Agre P. Aquaporin water channels: atomic structure and molecular dynamics meet clinical medicine. J Clin Invest. 2002;109:1395–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Deen PM, Verdijk MA, Knoers NV, Wieringa B, Monnens LA, Van Os CH, Van Oost BA. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science. 1994;264:92–5.

    Article  CAS  PubMed  Google Scholar 

  118. Ma T, Song Y, Yang B, et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channel. Proc Natl Acad Sci USA. 2000;97:4386–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Morello JP, Bichet DG. Nephrogenic diabetes insipidus. Annu Rev Physiol. 2001;63:603–30.

    Article  Google Scholar 

  120. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov. 2014;13(4):259–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Kirchlechner V, Koller DY, Seidl R, Waldhauser F. Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. Arch Dis Child. 1999;80:548–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Kim GH, Lee JW, Oh YK, Chang HR, Joo KW, Na KY, Earm JH, Knepper MA, Han JS. Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol. 2004;15:2836–43.

    Article  CAS  PubMed  Google Scholar 

  123. Berliner RW. Mechanisms of urine concentration. Kidney Int. 1982;22:202–11.

    Article  CAS  PubMed  Google Scholar 

  124. Cai Q, Michea L, Andrews P, Zhang Z, Rocha G, Dmitrieva N, Burg MB. Rate of increase of osmolality determines osmotic tolerance of mouse inner medullary epithelial cell. Am J Physiol. 2002;283:F792–8.

    Article  Google Scholar 

  125. Ayus JC, Arieff AI. Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. J Am Med Assoc. 1999;281:2299–304.

    Article  CAS  Google Scholar 

  126. Trachtman H, Yancey PH, Gullans SR. Cerebral cell volume regulation during hypernatremia in developing rats. Brain Res. 1995;693:155–62.

    Article  CAS  PubMed  Google Scholar 

  127. Duck SC, Wyatt DT. Factors associated with brain herniation in the treatment of diabetic ketoacidosis. J Pediatr. 1988;113:10–4.

    Article  CAS  PubMed  Google Scholar 

  128. Harris GD, Fiordalisi I. Physiologic management of diabetic ketoacidemia: a 5-year prospective experience in 231 episodes. Arch Pediatr Adolesc Med. 1994;148:1046–52.

    Article  CAS  PubMed  Google Scholar 

  129. Saavedra JM, Harris GD, Finberg L. Capillary refill (skin turgor) in the assessment of dehydration. Am J Dis Child. 1991;145:296–8.

    CAS  PubMed  Google Scholar 

  130. Prevot A, Mosig D, Guignard JP. The effects of losartan on renal function in the newborn rabbit. Pediatr Res. 2002;51:728–32.

    Article  CAS  PubMed  Google Scholar 

  131. Trachtman H. Volume depletion state: dehydration or denatration? Pediatr Nephrol. 1991;5:271–2.

    Article  CAS  PubMed  Google Scholar 

  132. Mange K, Matsuura D, Cizman B, et al. Language guiding therapy: the case of dehydration versus volume depletion. Ann Intern Med. 1997;127:848–53.

    Article  CAS  PubMed  Google Scholar 

  133. Mackenzie A, Barnes G, Shann F. Clinical signs of dehydration in children. Lancet. 1989;334:605–7.

    Article  Google Scholar 

  134. Schierhout G, Roberts I. Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomized trials. BMJ. 1998;316:961–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Patel A, Laffan MA, Waheed U, Brett SJ. Randomised trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349:g4561. doi:10.1136/bmj.g4561.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Mutter TC, Ruth CA, Dart AB. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2013;7, CD007594. doi:10.1002/14651858.CD007594.pub3.

    PubMed  Google Scholar 

  137. Holliday MA, Friedman AL, Wassner SJ. Extracellular fluid restoration in dehydration: a critique of rapid versus slow. Pediatr Nephrol. 1999;13:292–7.

    Article  CAS  PubMed  Google Scholar 

  138. Pizarro D, Posada G, Sandi L, Moran JR. Rice-based electrolyte solutions for the management of infantile diarrhea. N Engl J Med. 1991;324:517–21.

    Article  CAS  PubMed  Google Scholar 

  139. Ramakrishna BS, Venkataraman S, Srinivasan P, et al. Amylase-resistant starch plus oral rehydration solution for cholera. N Engl J Med. 2000;342:308–13.

    Article  CAS  PubMed  Google Scholar 

  140. Rodriguez-Iturbe B, Herrera-Acosta J, Johnson RJ. Interstitial inflammation, sodium retention, and the pathogenesis of nephrotic edema: a unifying hypothesis. Kidney Int. 2002;62:1379–84.

    Article  CAS  PubMed  Google Scholar 

  141. Haws RM, Baum M. Efficacy of albumin and diuretic therapy in children with nephrotic syndrome. Pediatrics. 1993;91:1142–6.

    CAS  PubMed  Google Scholar 

  142. Forni LG, Hilton PJ. Continuous hemofiltration in the treatment of acute renal failure. N Engl J Med. 1997;336:1303–9.

    Article  CAS  PubMed  Google Scholar 

  143. Marcialis MA, Dessi A, Pintus MC, Irmesi R, Fanos V. Neonatal hyponatremia: differential diagnosis and treatment. J Matern Fetal Neonatal Med. 2011;24 Suppl 1:75–9.

    Article  PubMed  Google Scholar 

  144. Modi N. Hyponatraemia in the newborn. Arch Dis Child Fetal Neonatal Ed. 1998;78(2):F81–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Suarez-Rivera M, Bonilla-Felix M. Fluid and electrolyte disorders in the newborn: sodium and potassium. Curr Pediatr Rev. 2014;10(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  146. Williams CN, Belzer JS, Riva-Cambrin J, Presson AP, Bratton SL. The incidence of postoperative hyponatremia and associated neurological sequelae in children with intracranial neoplasms. J Neurosurg Pediatr. 2014;13:283–90.

    Article  PubMed  Google Scholar 

  147. Sersté T, Gustot T, Rautou PE, Francoz C, Njimi H, Durand F, Valla D, Lebrec D, Moreau R. Severe hyponatremia is a better predictor of mortality than MELDNa in patients with cirrhosis and refractory ascites. J Hepatol. 2012;57(2):274–80.

    Article  PubMed  CAS  Google Scholar 

  148. Fraser CL, Arieff AI. Epidemiology, pathophysiology, and management of hyponatremic encephalopathy. Am J Med. 1997;102:67–77.

    Article  CAS  PubMed  Google Scholar 

  149. Ayus CC, Armstrong D, Arieff AI. Hyponatremia with hypoxia: effects on brain adaptation, perfusion, and histology in rodents. Kidney Int. 2006;69:1319–25.

    Article  CAS  PubMed  Google Scholar 

  150. Sterns RH. Severe hyponatremia: the case for conservative management. Crit Care Med. 1992;20:534–9.

    Article  CAS  PubMed  Google Scholar 

  151. Berl T. Treating hyponatremia: damned if we do and damned if we don’t. Kidney Int. 1990;37:1006–18.

    Article  CAS  PubMed  Google Scholar 

  152. Sarnaik AP, Meert K, Hackbarth R, et al. Management of hyponatremic seizures in children with hypertonic saline: a safe and effective strategy. Crit Care Med. 1991;19:758–62.

    Article  CAS  PubMed  Google Scholar 

  153. Keating JP, Schears GJ, Dodge PR. Oral water intoxication in infants: an American epidemic. Am J Dis Child. 1991;145:985–90.

    Article  CAS  PubMed  Google Scholar 

  154. Gankam Kengne F, Couturier BS, Soupart A, Decaux G. Urea minimizes brain complications following rapid correction of chronic hyponatremia compared with vasopressin antagonist or hypertonic saline. Kidney Int. 2015:87(2):323–31.

    Google Scholar 

  155. Miller M. Inappropriate antidiuretic hormone secretion. Curr Ther Endocrinol Metab. 1994;5:186–9.

    CAS  PubMed  Google Scholar 

  156. Fujisawa G, Ishikawa S, Tsuboi Y, et al. Therapeutic efficacy of non-peptide ADH antagonist OPC-31260 in SIADH rats. Kidney Int. 1993;44:19–23.

    Article  CAS  PubMed  Google Scholar 

  157. Shimizu K. aquaretic effect of the nonpeptide V2 antagonist OPC-31260 in hydropenic humans. Kidney Int. 1995;48:220–6.

    Article  CAS  PubMed  Google Scholar 

  158. Lehrich RW, Greenberg A. When is it appropriate to use vasopressin receptor antagonists? J Am Soc Nephrol. 2008;19:1054–8.

    Article  CAS  PubMed  Google Scholar 

  159. Moritz ML, Ayus JC. The changing pattern of hypernatremia in hospitalized children. Pediatrics. 1999;104:435–9.

    Article  CAS  PubMed  Google Scholar 

  160. Cooper WO, Atherton HD, Kahana M, Kotagal UR. Increased incidence of severe breastfeeding malnutrition and hypernatremia in a metropolitan area. Pediatrics. 1995;96:957–60.

    CAS  PubMed  Google Scholar 

  161. Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342:1493–9.

    Article  CAS  PubMed  Google Scholar 

  162. Finberg L, Luttrell C, Redd H. Pathogenesis of lesion in the nervous system in hypernatremic states. II. Experimental studies of gross anatomic changes and alterations of chemical composition of the tissues. Pediatrics. 1959;23:46–53.

    CAS  PubMed  Google Scholar 

  163. Lee JH, Arcinue E, Ross BD. Organic osmolytes in the brain of an infant with hypernatremia. N Engl J Med. 1994;334:439–42.

    Article  Google Scholar 

  164. Lien YHH, Shapiro JI, Chan L. Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia: implications for the pathogenesis of central pontine myelinolysis. J Clin Invest. 1991;88:303–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Banister A, Matin-Siddiqi SA, Hatcher G. Treatment of hypernatremic dehydration in infancy. Arch Dis Child. 1975;50:179–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author wishes to thank Laura Malaga-Dieguez, MD, PhD, for her careful review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Trachtman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Madden, N., Trachtman, H. (2016). Physiology of the Developing Kidney: Sodium and Water Homeostasis and Its Disorders. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics