Pathogenesis of Acute Kidney Injury

  • David P. Basile
  • Rajasree Sreedharan
  • Scott K. Van Why
Reference work entry

Abstract

The sudden loss of renal function that may result from inadequate renal perfusion, arterial or venous obstruction, renal cell injury, or acute obstruction to urine flow historically has been termed acute renal failure (ARF). Several years ago the term acute kidney injury (AKI) was proposed to replace the term ARF [1]. Usage of “AKI” is now widespread. Unfortunately it is often used imprecisely, defeating the purpose of the change in nomenclature.

Keywords

Cholesterol Dopamine Superoxide Shrinkage Angiotensin 

References

  1. 1.
    Sudhir Shah M, Lieberthal W, Mehta R, Molitoris B, Okusa M, Rabb H, Siegel N, Star R, Venkatachalam MA. American Society of Nephrology renal research report. J Am Soc Nephrol. 2005;16(7):1886–903. PubMed PMID: 15888557. Epub 2005/05/13. eng.CrossRefGoogle Scholar
  2. 2.
    Palevsky PM. Renal angina: right concept…Wrong name? Clin J Am Soc Nephrol. 9(4):633–4. PubMed PMID: 24677556. Epub 2014/03/29. eng.Google Scholar
  3. 3.
    Endre ZH, Kellum JA, Di Somma S, Doi K, Goldstein SL, Koyner JL, et al. Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib Nephrol. 2013;182:30–44. PubMed PMID: 23689654.PubMedCrossRefGoogle Scholar
  4. 4.
    Thurau K, Boylan JW. Acute renal success. The unexpected logic of oliguria in acute renal failure. Am J Med. 1976;61(3):308–15. PubMed PMID: 961698. Epub 1976/09/01. eng.PubMedCrossRefGoogle Scholar
  5. 5.
    Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62(5):1539–49. PubMed PMID: 12371954.PubMedCrossRefGoogle Scholar
  6. 6.
    Siegel NJ, Devarajan P, Van Why S. Renal cell injury: metabolic and structural alterations. Pediatr Res. 1994;36(2):129–36. PubMed PMID: 7970927. Epub 1994/08/01. eng.PubMedCrossRefGoogle Scholar
  7. 7.
    Ashworth SL, Molitoris BA. Pathophysiology and functional significance of apical membrane disruption during ischemia. Curr Opin Nephrol Hypertens. 1999;8(4):449–58. PubMed PMID: 10491740. Epub 1999/09/24. eng.PubMedCrossRefGoogle Scholar
  8. 8.
    Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med. 1996;334(22):1448–60. PubMed PMID: 8618585. Epub 1996/05/30. eng.PubMedCrossRefGoogle Scholar
  9. 9.
    Matthys E, Patton MK, Osgood RW, Venkatachalam MA, Stein JH. Alterations in vascular function and morphology in acute ischemic renal failure. Kidney Int. 1983;23(5):717–24. PubMed PMID: 6876567. Epub 1983/05/01. eng.PubMedCrossRefGoogle Scholar
  10. 10.
    Kwon O, Phillips CL, Molitoris BA. Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol. 2002;282(6):F1012–9. PubMed PMID: 11997317. Epub 2002/05/09. eng.PubMedCrossRefGoogle Scholar
  11. 11.
    Terry BE, Jones DB, Mueller CB. Experimental ischemic renal arterial necrosis with resolution. Am J Pathol. 1970;58(1):69–83. PubMed PMID: 5414018. Epub 1970/01/01. eng.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Rabb H, O’Meara YM, Maderna P, Coleman P, Brady HR. Leukocytes, cell adhesion molecules and ischemic acute renal failure. Kidney Int. 1997;51(5):1463–8. PubMed PMID: 9150459. Epub 1997/05/01. eng.PubMedCrossRefGoogle Scholar
  13. 13.
    Star RA. Treatment of acute renal failure. Kidney Int. 1998;54(6):1817–31. PubMed PMID: 9853246.PubMedCrossRefGoogle Scholar
  14. 14.
    Donnahoo KK, Meng X, Ao L, Ayala A, Shames BD, Cain MP, et al. Differential cellular immunolocalization of renal tumour necrosis factor-alpha production during ischaemia versus endotoxaemia. Immunology. 2001;102(1):53–8. PubMed PMID: 11168637. Epub 2001/02/13. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Linas S, Whittenburg D, Repine JE. Nitric oxide prevents neutrophil-mediated acute renal failure. Am J Physiol. 1997;272(1 Pt 2):F48–54. PubMed PMID: 9039048. Epub 1997/01/01. eng.PubMedGoogle Scholar
  16. 16.
    Kelly KJ, Williams Jr WW, Colvin RB, Bonventre JV. Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci U S A. 1994;91(2):812–6. PubMed PMID: 7904759. Epub 1994/01/18. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR. Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol. 1999;277(3 Pt 2):R922–9. PubMed PMID: 10484513. Epub 1999/09/14. eng.PubMedGoogle Scholar
  18. 18.
    Kelly KJ, Williams Jr WW, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, et al. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest. 1996;97(4):1056–63. PubMed PMID: 8613529. Epub 1996/02/15. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Rabb H, Mendiola CC, Saba SR, Dietz JR, Smith CW, Bonventre JV, et al. Antibodies to ICAM-1 protect kidneys in severe ischemic reperfusion injury. Biochem Biophys Res Commun. 1995;211(1):67–73. PubMed PMID: 7779111. Epub 1995/06/06. eng.PubMedCrossRefGoogle Scholar
  20. 20.
    Willinger CC, Schramek H, Pfaller K, Pfaller W. Tissue distribution of neutrophils in postischemic acute renal failure. Virchows Arch B Cell Pathol Incl Mol Pathol. 1992;62(4):237–43. PubMed PMID: 1359696. Epub 1992/01/01. eng.PubMedCrossRefGoogle Scholar
  21. 21.
    Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, et al. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant. 2000;15(10):1562–74. PubMed PMID: 11007823. Epub 2000/09/29. eng.PubMedCrossRefGoogle Scholar
  22. 22.
    Harris RC. Growth factors and cytokines in acute renal failure. Adv Ren Replace Ther. 1997;4(2 Suppl 1):43–53. PubMed PMID: 9113240. Epub 1997/04/01. eng.PubMedGoogle Scholar
  23. 23.
    Nony PA, Schnellmann RG. Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther. 2003;304(3):905–12. PubMed PMID: 12604664. Epub 2003/02/27. eng.PubMedCrossRefGoogle Scholar
  24. 24.
    Hollenberg NK, Epstein M, Rosen SM, Basch RI, Oken DE, Merrill JP. Acute oliguric renal failure in man: evidence for preferential renal cortical ischemia. Medicine (Baltimore). 1968;47(6):455–74. PubMed PMID: 5715692. Epub 1968/11/01. eng.CrossRefGoogle Scholar
  25. 25.
    Oken DE. Acute renal failure (vasomotor nephropathy): micropuncture studies of the pathogenetic mechanisms. Annu Rev Med. 1975;26:307–19. PubMed PMID: 1096767. Epub 1975/01/01. eng.PubMedCrossRefGoogle Scholar
  26. 26.
    Stein JH, Lifschitz MD, Barnes LD. Current concepts on the pathophysiology of acute renal failure. Am J Physiol. 1978;234(3):F171–81. PubMed PMID: 343602. Epub 1978/03/01. eng.PubMedGoogle Scholar
  27. 27.
    Molinas SM, Cortes-Gonzalez C, Gonzalez-Bobadilla Y, Monasterolo LA, Cruz C, Elias MM, et al. Effects of losartan pretreatment in an experimental model of ischemic acute kidney injury. Nephron Exp Nephrol. 2009;112(1):e10–9. PubMed PMID: 19342869. Epub 2009/04/04. eng.PubMedCrossRefGoogle Scholar
  28. 28.
    Mejia-Vilet JM, Ramirez V, Cruz C, Uribe N, Gamba G, Bobadilla NA. Renal ischemia-reperfusion injury is prevented by the mineralocorticoid receptor blocker spironolactone. Am J Physiol Renal Physiol. 2007;293(1):F78–86. PubMed PMID: 17376767. Epub 2007/03/23. eng.PubMedCrossRefGoogle Scholar
  29. 29.
    Misurac JM, Knoderer CA, Leiser JD, Nailescu C, Wilson AC, Andreoli SP. Nonsteroidal anti-inflammatory drugs are an important cause of acute kidney injury in children. J Pediatr. 2013;162(6):1153–9, 9 e1. PubMed PMID: 23360563.PubMedCrossRefGoogle Scholar
  30. 30.
    Regner KR, Zuk A, Van Why SK, Shames BD, Ryan RP, Falck JR, et al. Protective effect of 20-HETE analogues in experimental renal ischemia reperfusion injury. Kidney Int. 2009;75(5):511–7. PubMed PMID: 19052533. Epub 2008/12/05. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bidani AK, Churchill PC. Aminophylline ameliorates glycerol-induced acute renal failure in rats. Can J Physiol Pharmacol. 1983;61(6):567–71. PubMed PMID: 6883209. Epub 1983/06/01. eng.PubMedCrossRefGoogle Scholar
  32. 32.
    Avison MJ, van Waarde A, Stromski ME, Gaudio K, Siegel NJ. Metabolic alterations in the kidney during ischemic acute renal failure. Semin Nephrol. 1989;9(1):98–101. PubMed PMID: 2740655. Epub 1989/03/01. eng.PubMedGoogle Scholar
  33. 33.
    Schnermann J, Homer W. Smith Award lecture. The juxtaglomerular apparatus: from anatomical peculiarity to physiological relevance. J Am Soc Nephrol. 2003;14(6):1681–94. PubMed PMID: 12761271.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW. A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol. 2004;286(2):F298–306. PubMed PMID: 14600029.PubMedCrossRefGoogle Scholar
  35. 35.
    Chan L, Chittinandana A, Shapiro JI, Shanley PF, Schrier RW. Effect of an endothelin-receptor antagonist on ischemic acute renal failure. Am J Physiol. 1994;266(1 Pt 2):F135–8. PubMed PMID: 8304480. Epub 1994/01/01. eng.PubMedGoogle Scholar
  36. 36.
    Kon V, Badr KF. Biological actions and pathophysiologic significance of endothelin in the kidney. Kidney Int. 1991;40(1):1–12. PubMed PMID: 1656130. Epub 1991/07/01. eng.PubMedCrossRefGoogle Scholar
  37. 37.
    Kon V, Yoshioka T, Fogo A, Ichikawa I. Glomerular actions of endothelin in vivo. J Clin Invest. 1989;83(5):1762–7. PubMed PMID: 2651481. Epub 1989/05/01. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Firth JD, Ratcliffe PJ, Raine AE, Ledingham JG. Endothelin: an important factor in acute renal failure? Lancet. 1988;2(8621):1179–82. PubMed PMID: 2903385. Epub 1988/11/19. eng.PubMedCrossRefGoogle Scholar
  39. 39.
    Wilhelm SM, Simonson MS, Robinson AV, Stowe NT, Schulak JA. Endothelin up-regulation and localization following renal ischemia and reperfusion. Kidney Int. 1999;55(3):1011–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Jerkic M, Miloradovic Z, Jovovic D, Mihailovic-Stanojevic N, Elena JV, Nastic-Miric D, et al. Relative roles of endothelin-1 and angiotensin II in experimental post-ischaemic acute renal failure. Nephrol Dial Transplant. 2004;19(1):83–94. PubMed PMID: 14671043.PubMedCrossRefGoogle Scholar
  41. 41.
    Gellai M, Jugus M, Fletcher T, DeWolf R, Nambi P. Reversal of postischemic acute renal failure with a selective endothelin A receptor antagonist in the rat. J Clin Invest. 1994;93(2):900–6. PubMed PMID: 8113422. Epub 1994/02/01. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Huang C, Huang C, Hestin D, Dent PC, Barclay P, Collis M, et al. The effect of endothelin antagonists on renal ischaemia-reperfusion injury and the development of acute renal failure in the rat. Nephrol Dial Transplant. 2002;17(9):1578–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Knoll T, Schult S, Birck R, Braun C, Michel MS, Bross S, et al. Therapeutic administration of an endothelin-A receptor antagonist after acute ischemic renal failure dose-dependently improves recovery of renal function. J Cardiovasc Pharmacol. 2001;37:483–8. PubMed PMID: 11300661.PubMedCrossRefGoogle Scholar
  44. 44.
    Büyükgebiz O, Aktan AÖ, Haklar G, Yalçin AS, Yeğen C, Yalin R, et al. BQ-123, a specific endothelin (ET1) receptor antagonist, prevents ischemia-reperfusion injury in kidney transplantation. Transpl Int. 1996;9(3):201–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Inscho EW, Imig JD, Cook AK, Pollock DM. ETA and ETB receptors differentially modulate afferent and efferent arteriolar responses to endothelin. Br J Pharmacol. 2005;146(7):1019–26.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Piechota M, Banach M, Irzmanski R, Barylski M, Piechota-Urbanska M, Kowalski J, et al. Plasma endothelin-1 levels in septic patients. J Intensive Care Med. 2007;22(4):232–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang A, Holcslaw T, Bashore TM, Freed MI, Miller D, Rudnick MR, et al. Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int. 2000;57(4):1675–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Peer G, Blum M, Iaina A. Nitric oxide and acute renal failure. Nephron. 1996;73(3):375–81. PubMed PMID: 8832593. Epub 1996/01/01. eng.PubMedCrossRefGoogle Scholar
  49. 49.
    Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994;265(5180):1883–5. PubMed PMID: 7522345. Epub 1994/09/23. eng.PubMedCrossRefGoogle Scholar
  50. 50.
    Mattson DL, Lu S, Cowley Jr AW. Role of nitric oxide in the control of the renal medullary circulation. Clin Exp Pharmacol Physiol. 1997;24(8):587–90.PubMedCrossRefGoogle Scholar
  51. 51.
    Zou AP, Wu F, Cowley Jr AW. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation. Hypertension. 1998;31:271–6. PubMed PMID: 9453315.PubMedCrossRefGoogle Scholar
  52. 52.
    Conger JD, Robinette JB, Schrier RW. Smooth muscle calcium and endothelium derived relaxing factor in the abnormal vascular responses of acute renal failure. J Clin Invest. 1988;82:532–7.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Wang W, Mitra A, Poole B, Falk S, Lucia MS, Tayal S, et al. Endothelial nitric oxide synthase-deficient mice exhibit increased susceptibility to endotoxin-induced acute renal failure. Am J Physiol Renal Physiol. 2004;287(5):F1044–8. PubMed PMID: 15475535. Epub 2004/10/12. eng.PubMedCrossRefGoogle Scholar
  54. 54.
    Dagher F, Pollina RM, Rogers DM, Gennaro M, Ascer E. The value and limitations of l-arginine infusion on glomerular and tubular function in the ischemic/reperfused kidney. J Vasc Surg. 1995;21(3):453–8; discussion 8–9. PubMed PMID: 7877227. Epub 1995/03/01. eng.PubMedCrossRefGoogle Scholar
  55. 55.
    Garcia-Criado FJ, Eleno N, Santos-Benito F, Valdunciel JJ, Reverte M, Lozano-Sanchez FS, et al. Protective effect of exogenous nitric oxide on the renal function and inflammatory response in a model of ischemia-reperfusion. Transplantation. 1998;66(8):982–90. PubMed PMID: 9808479. Epub 1998/11/10. eng.PubMedCrossRefGoogle Scholar
  56. 56.
    Kakoki M, Hirata Y, Hayakawa H, Suzuki E, Nagata D, Tojo A, et al. Effects of tetrahydrobiopterin on endothelial dysfunction in rats with ischemic acute renal failure. J Am Soc Nephrol. 2000;11(2):301–9. PubMed PMID: 10665937. Epub 2000/02/09. eng.PubMedGoogle Scholar
  57. 57.
    Schneider R, Raff U, Vornberger N, Schmidt M, Freund R, Reber M, et al. l-arginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats. Kidney Int. 2003;64(1):216–25. PubMed PMID: 12787412. Epub 2003/06/06. eng.PubMedCrossRefGoogle Scholar
  58. 58.
    Schramm L, La M, Heidbreder E, Hecker M, Beckman JS, Lopau K, et al. l-arginine deficiency and supplementation in experimental acute renal failure and in human kidney transplantation. Kidney Int. 2002;61(4):1423–32. PubMed PMID: 11918749. Epub 2002/03/29. eng.PubMedCrossRefGoogle Scholar
  59. 59.
    Sucher R, Gehwolf P, Oberhuber R, Hermann M, Margreiter C, Werner ER, et al. Tetrahydrobiopterin protects the kidney from ischemia-reperfusion injury. Kidney Int. 2010;77(8):681–9. PubMed PMID: 20164829. Epub 2010/02/19. eng.PubMedCrossRefGoogle Scholar
  60. 60.
    Noiri E, Peresleni T, Miller F, Goligorsky MS. In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest. 1996;97(10):2377–83. PubMed PMID: 8636419. Epub 1996/05/15. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Yu L, Gengaro PE, Niederberger M, Burke TJ, Schrier RW. Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci U S A. 1994;91(5):1691–5. PubMed PMID: 7510405. Epub 1994/03/01. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Mian AI, Du Y, Garg HK, Caviness AC, Goldstein SL, Bryan NS. Urinary nitrate might be an early biomarker for pediatric acute kidney injury in the emergency department. Pediatr Res. 2011;70(2):203–7. PubMed PMID: 21532528.PubMedCrossRefGoogle Scholar
  63. 63.
    Gaudio KM, Stromski M, Thulin G, Ardito T, Kashgarian M, Siegel NJ. Postischemic hemodynamics and recovery of renal adenosine triphosphate. Am J Physiol. 1986;251(4 Pt 2):F603–9. PubMed PMID: 3490185. Epub 1986/10/01. eng.PubMedGoogle Scholar
  64. 64.
    Paller MS, Anderson RJ, editors. Use of vasoactive agents in the therapy of acute renal failure. Philadelphia: WB Saunders; 1983.Google Scholar
  65. 65.
    Lameire NH, De Vriese A, Vanholder R. Prevention and nondialytic treatment of acute renal failure. Curr Opin Crit Care. 2003;96:481–90.CrossRefGoogle Scholar
  66. 66.
    Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 2004;66(2):480–5. PubMed PMID: 15253693.PubMedCrossRefGoogle Scholar
  67. 67.
    Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure. Kidney Int. 2004;66(2):486–91. PubMed PMID: 15253694.PubMedCrossRefGoogle Scholar
  68. 68.
    Molitoris BA, Sutton TA. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int. 2004;66(2):496–9. PubMed PMID: 15253696.PubMedCrossRefGoogle Scholar
  69. 69.
    Dagher PC, Herget-Rosenthal S, Ruehm SG, Jo SK, Star RA, Agarwal R, et al. Newly developed techniques to study and diagnose acute renal failure. J Am Soc Nephrol. 2003;14(8):2188–98. PubMed PMID: 12874475. Epub 2003/07/23. eng.PubMedCrossRefGoogle Scholar
  70. 70.
    Goligorsky MS. Whispers and shouts in the pathogenesis of acute renal ischaemia. Nephrol Dial Transplant. 2005;20(2):261–6. PubMed PMID: 15213316. Epub 2004/06/24. eng.PubMedCrossRefGoogle Scholar
  71. 71.
    Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA. Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol. 2003;285(2):F191–8. PubMed PMID: 12684225.PubMedCrossRefGoogle Scholar
  72. 72.
    Vallet B. Bench-to-bedside review: endothelial cell dysfunction in severe sepsis: a role in organ dysfunction? Crit Care. 2003;7(2):130–8. PubMed PMID: 12720559. Epub 2003/05/02. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Yamamoto T, Tada T, Brodsky SV, Tanaka H, Noiri E, Kajiya F, et al. Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am J Physiol Renal Physiol. 2002;282(6):F1150–5. PubMed PMID: 11997332. Epub 2002/05/09. eng.PubMedCrossRefGoogle Scholar
  74. 74.
    Brodsky SV, Yamamoto T, Tada T, Kim B, Chen J, Kajiya F, et al. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol. 2002;282(6):F1140–9. PubMed PMID: 11997331. Epub 2002/05/09. eng.PubMedCrossRefGoogle Scholar
  75. 75.
    Bezemer R, Legrand M, Klijn E, Heger M, Post ICJH, van Gulik TM, et al. Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging. Opt Express. 2010;18(14):15054–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Basile DP, Anderson M, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2(2):1303–53. PubMed PMID: 23798302. Epub 2012/04/01. eng.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Singbartl K, Ley K. Leukocyte recruitment and acute renal failure. J Mol Med. 2004;82(2):91–101. PubMed PMID: 14669001. Epub 2003/12/12. eng.PubMedCrossRefGoogle Scholar
  78. 78.
    Nemoto T, Burne MJ, Daniels F, O’Donnell MP, Crosson J, Berens K, et al. Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure. Kidney Int. 2001;60(6):2205–14. PubMed PMID: 11737594. Epub 2001/12/12. eng.PubMedCrossRefGoogle Scholar
  79. 79.
    Burne MJ, Rabb H. Pathophysiological contributions of fucosyltransferases in renal ischemia reperfusion injury. J Immunol. 2002;169(5):2648–52. PubMed PMID: 12193737. Epub 2002/08/24. eng.PubMedCrossRefGoogle Scholar
  80. 80.
    Singbartl K, Forlow SB, Ley K. Platelet, but not endothelial, p-selectin is critical for neutrophil-mediated acute postischemic renal failure. FASEB J. 2001;15(13):2337–44. PubMed PMID: 11689459. Epub 2001/11/02. eng.PubMedCrossRefGoogle Scholar
  81. 81.
    Roelofs JJ, Rouschop KM, Leemans JC, Claessen N, de Boer AM, Frederiks WM, et al. Tissue-type plasminogen activator modulates inflammatory responses and renal function in ischemia reperfusion injury. J Am Soc Nephrol. 2006;17(1):131–40. PubMed PMID: 16291841. Epub 2005/11/18. eng.PubMedCrossRefGoogle Scholar
  82. 82.
    Lieberthal W, Nigam SK. Acute renal failure. I. Relative importance of proximal vs. distal tubular injury. Am J Physiol. 1998;275(5 Pt 2):F623–31. PubMed PMID: 9815122. Epub 1998/11/14. eng.PubMedGoogle Scholar
  83. 83.
    Brezis M, Rosen S, Silva P, Epstein FH. Renal ischemia: a new perspective. Kidney Int. 1984;26(4):375–83. PubMed PMID: 6396435. Epub 1984/10/01. eng.PubMedCrossRefGoogle Scholar
  84. 84.
    Donohoe JF, Venkatachalam MA, Bernard DB, Levinsky NG. Tubular leakage and obstruction after renal ischemia: structural-functional correlations. Kidney Int. 1978;13(3):208–22. PubMed PMID: 651122. Epub 1978/03/01. eng.PubMedCrossRefGoogle Scholar
  85. 85.
    Gaudio KM, Ardito TA, Reilly HF, Kashgarian M, Siegel NJ. Accelerated cellular recovery after an ischemic renal injury. Am J Pathol. 1983;112(3):338–46. PubMed PMID: 6604459. Epub 1983/09/01. eng.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Gaudio KM, Taylor MR, Chaudry IH, Kashgarian M, Siegel NJ. Accelerated recovery of single nephron function by the postischemic infusion of ATP-MgCl2. Kidney Int. 1982;22(1):13–20. PubMed PMID: 7120752. Epub 1982/07/01. eng.PubMedCrossRefGoogle Scholar
  87. 87.
    Myers BD, Chui F, Hilberman M, Michaels AS. Transtubular leakage of glomerular filtrate in human acute renal failure. Am J Physiol. 1979;237(4):F319–25. PubMed PMID: 495725. Epub 1979/10/01. eng.PubMedGoogle Scholar
  88. 88.
    Gailit J, Colflesh D, Rabiner I, Simone J, Goligorsky MS. Redistribution and dysfunction of integrins in cultured renal epithelial cells exposed to oxidative stress. Am J Physiol. 1993;264(1 Pt 2):F149–57. PubMed PMID: 8430825. Epub 1993/01/01. eng.PubMedGoogle Scholar
  89. 89.
    Pennica D, Kohr WJ, Kuang WJ, Glaister D, Aggarwal BB, Chen EY, et al. Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science. 1987;236(4797):83–8. PubMed PMID: 3453112. Epub 1987/04/03. eng.PubMedCrossRefGoogle Scholar
  90. 90.
    Goligorsky MS, DiBona MS. Pathogenetic role of Arg-Gly-Asp-recognizing integrins in acute renal failure. off. Proc Natl Acad Sci U S A. 1993;90(12):5700–4. PubMed PMID: 8516318. Epub 1993/06/15. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Noiri E, Gailit J, Sheth D, Magazine H, Gurrath M, Muller G, et al. Cyclic RGD peptides ameliorate ischemic acute renal failure in rats. Kidney Int. 1994;46(4):1050–8. PubMed PMID: 7861698. Epub 1994/10/01. eng.PubMedCrossRefGoogle Scholar
  92. 92.
    Weinberg JM. The cell biology of ischemic renal injury. Kidney Int. 1991;39(3):476–500. PubMed PMID: 2062034. Epub 1991/03/01. eng.PubMedCrossRefGoogle Scholar
  93. 93.
    Stromski ME, Cooper K, Thulin G, Gaudio KM, Siegel NJ, Shulman RG. Chemical and functional correlates of postischemic renal ATP levels. Proc Natl Acad Sci U S A. 1986;83(16):6142–5. PubMed PMID: 3461481. Epub 1986/08/01. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Finn WF, Chevalier RL. Recovery from postischemic acute renal failure in the rat. Kidney Int. 1979;16(2):113–23. PubMed PMID: 513500. Epub 1979/08/01. eng.PubMedCrossRefGoogle Scholar
  95. 95.
    Van Why SK, Mann AS, Thulin G, Zhu XH, Kashgarian M, Siegel NJ. Activation of heat-shock transcription factor by graded reductions in renal ATP, in vivo, in the rat. J Clin Invest. 1994;94(4):1518–23. PubMed PMID: 7929828. Epub 1994/10/01. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    van Why SK, Kim S, Geibel J, Seebach FA, Kashgarian M, Siegel NJ. Thresholds for cellular disruption and activation of the stress response in renal epithelia. Am J Physiol. 1999;277(2 Pt 2):F227–34. PubMed PMID: 10444577. Epub 1999/08/13. eng.PubMedGoogle Scholar
  97. 97.
    Funk JA, Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am J Physiol Renal Physiol. 2012;302(7):F853–64. PubMed PMID: 22160772. Epub 2011/12/14. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Funk JA, Schnellmann RG. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1alpha activation following ischemia-reperfusion injury. Toxicol Appl Pharmacol. 2013;273(2):345–54. PubMed PMID: 24096033. Epub 2013/10/08. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Andreoli SP. Reactive oxygen molecules, oxidant injury and renal disease. Pediatr Nephrol. 1991;5(6):733–42. PubMed PMID: 1662982. Epub 1991/11/01. eng.PubMedCrossRefGoogle Scholar
  100. 100.
    McKelvey TG, Hollwarth ME, Granger DN, Engerson TD, Landler U, Jones HP. Mechanisms of conversion of xanthine dehydrogenase to xanthine oxidase in ischemic rat liver and kidney. Am J Physiol. 1988;254(5 Pt 1):G753–60. PubMed PMID: 3163235. Epub 1988/05/01. eng.PubMedGoogle Scholar
  101. 101.
    Halliwell B, Gutteridge J. Iron and free radical reactions: two aspects of antioxidant protection. Trends Biochem Sci. 1986;11:372–5.CrossRefGoogle Scholar
  102. 102.
    Paller MS. Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. Am J Physiol. 1988;255(3 Pt 2):F539–44. PubMed PMID: 3414810. Epub 1988/09/01. eng.PubMedGoogle Scholar
  103. 103.
    Doi K, Suzuki Y, Nakao A, Fujita T, Noiri E. Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int. 2004;65(5):1714–23. PubMed PMID: 15086910.PubMedCrossRefGoogle Scholar
  104. 104.
    Dragsten PR, Hallaway PE, Hanson GJ, Berger AE, Bernard B, Hedlund BE. First human studies with a high-molecular-weight iron chelator. J Lab Clin Med. 2000;135(1):57–65. PubMed PMID: 10638695. Epub 2000/01/19. eng.PubMedCrossRefGoogle Scholar
  105. 105.
    de Vries B, Walter SJ, von Bonsdorff L, Wolfs TG, van Heurn LW, Parkkinen J, et al. Reduction of circulating redox-active iron by apotransferrin protects against renal ischemia-reperfusion injury. Transplantation. 2004;77(5):669–75. PubMed PMID: 15021827.PubMedCrossRefGoogle Scholar
  106. 106.
    Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15(12):3073–82. PubMed PMID: 15579510. Epub 2004/12/08. eng.PubMedCrossRefGoogle Scholar
  107. 107.
    Himmelfarb J, McMonagle E, Freedman S, Klenzak J, McMenamin E, Le P, et al. Oxidative stress is increased in critically ill patients with acute renal failure. J Am Soc Nephrol. 2004;15(9):2449–56. PubMed PMID: 15339994.PubMedCrossRefGoogle Scholar
  108. 108.
    Perianayagam MC, Liangos O, Kolyada AY, Wald R, MacKinnon RW, Li L, et al. NADPH oxidase p22phox and catalase gene variants are associated with biomarkers of oxidative stress and adverse outcomes in acute renal failure. J Am Soc Nephrol. 2007;18(1):255–63.PubMedCrossRefGoogle Scholar
  109. 109.
    Arnold PE, Lumlertgul D, Burke TJ, Schrier RW. In vitro versus in vivo mitochondrial calcium loading in ischemic acute renal failure. Am J Physiol. 1985;248(6 Pt 2):F845–50. PubMed PMID: 2408488. Epub 1985/06/01. eng.PubMedGoogle Scholar
  110. 110.
    Weinberg JM. Oxygen deprivation-induced injury to isolated rabbit kidney tubules. J Clin Invest. 1985;76(3):1193–208. PubMed PMID: 4044830. Epub 1985/09/01. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Kribben A, Wieder ED, Wetzels JF, Yu L, Gengaro PE, Burke TJ, et al. Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury. J Clin Invest. 1994;93(5):1922–9. PubMed PMID: 8182125. Epub 1994/05/01. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Ogata M, Iwamoto T, Tazawa N, Nishikawa M, Yamashita J, Takaoka M, et al. A novel and selective Na+/Ca2+ exchange inhibitor, SEA0400, improves ischemia/reperfusion-induced renal injury. Eur J Pharmacol. 2003;478(2–3):187–98. PubMed PMID: 14575804. Epub 2003/10/25. eng.PubMedCrossRefGoogle Scholar
  113. 113.
    Yamashita J, Kita S, Iwamoto T, Ogata M, Takaoka M, Tazawa N, et al. Attenuation of ischemia/reperfusion-induced renal injury in mice deficient in Na+/Ca2+ exchanger. J Pharmacol Exp Ther. 2003;304(1):284–93. PubMed PMID: 12490603. Epub 2002/12/20. eng.PubMedCrossRefGoogle Scholar
  114. 114.
    Cheng CW, Rifai A, Ka SM, Shui HA, Lin YF, Lee WH, et al. Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure. Kidney Int. 2005;68(6):2694–703. PubMed PMID: 16316344. Epub 2005/12/01. eng.PubMedCrossRefGoogle Scholar
  115. 115.
    Cummings BS, McHowat J, Schnellmann RG. Phospholipase A(2)s in cell injury and death. J Pharmacol Exp Ther. 2000;294(3):793–9. PubMed PMID: 10945826. Epub 2000/08/17. eng.PubMedGoogle Scholar
  116. 116.
    Humes HD, Nguyen VD, Cieslinski DA, Messana JM. The role of free fatty acids in hypoxia-induced injury to renal proximal tubule cells. Am J Physiol. 1989;256(4 Pt 2):F688–96. PubMed PMID: 2705539. Epub 1989/04/01. eng.PubMedGoogle Scholar
  117. 117.
    Zager RA, Burkhart KM, Conrad DS, Gmur DJ, Iwata M. Phospholipase A2-induced cytoprotection of proximal tubules: potential determinants and specificity for ATP depletion-mediated injury. J Am Soc Nephrol. 1996;7(1):64–72. PubMed PMID: 8808111. Epub 1996/01/01. eng.PubMedGoogle Scholar
  118. 118.
    Chen Y, Morimoto S, Kitano S, Koh E, Fukuo K, Jiang B, et al. Lysophosphatidylcholine causes Ca2+ influx, enhanced DNA synthesis and cytotoxicity in cultured vascular smooth muscle cells. Atherosclerosis. 1995;112(1):69–76. PubMed PMID: 7772068. Epub 1995/01/06. eng.PubMedCrossRefGoogle Scholar
  119. 119.
    Cummings BS, McHowat J, Schnellmann RG. Role of an endoplasmic reticulum Ca(2+)-independent phospholipase A(2) in oxidant-induced renal cell death. Am J Physiol Renal Physiol. 2002;283(3):F492–8. PubMed PMID: 12167600. Epub 2002/08/09. eng.PubMedCrossRefGoogle Scholar
  120. 120.
    Johnson AC, Stahl A, Zager RA. Triglyceride accumulation in injured renal tubular cells: alterations in both synthetic and catabolic pathways. Kidney Int. 2005;67(6):2196–209. PubMed PMID: 15882263. Epub 2005/05/11. eng.PubMedCrossRefGoogle Scholar
  121. 121.
    Zager RA, Kalhorn TF. Changes in free and esterified cholesterol: hallmarks of acute renal tubular injury and acquired cytoresistance. Am J Pathol. 2000;157(3):1007–16. PubMed PMID: 10980139. Epub 2000/09/12. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Zager RA, Burkhart KM, Johnson AC, Sacks BM. Increased proximal tubular cholesterol content: implications for cell injury and “acquired cytoresistance”. Kidney Int. 1999;56(5):1788–97. PubMed PMID: 10571787. Epub 1999/11/26. eng.PubMedCrossRefGoogle Scholar
  123. 123.
    Molitoris BA. New insights into the cell biology of ischemic acute renal failure. J Am Soc Nephrol. 1991;1(12):1263–70. PubMed PMID: 1912388. Epub 1991/06/01. eng.PubMedGoogle Scholar
  124. 124.
    Molitoris BA. Putting the actin cytoskeleton into perspective: pathophysiology of ischemic alterations. Am J Physiol. 1997;272(4 Pt 2):F430–3. PubMed PMID: 9140042. Epub 1997/04/01. eng.PubMedGoogle Scholar
  125. 125.
    Atkinson SJ, Hosford MA, Molitoris BA. Mechanism of actin polymerization in cellular ATP depletion. J Biol Chem. 2004;279(7):5194–9. PubMed PMID: 14623892.PubMedCrossRefGoogle Scholar
  126. 126.
    Madara JL, Barenberg D, Carlson S. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J Cell Biol. 1986;102(6):2125–36. PubMed PMID: 3711143. Epub 1986/06/01. eng.PubMedCrossRefGoogle Scholar
  127. 127.
    Kashgarian M, Van Why SK, Hildebrand F, et al., editors. Regulation of expression and polar distribution of Na,K ATPase in renal epithelium during recovery from ischemic injury. New York: The Rockefeller University Press; 1991.Google Scholar
  128. 128.
    Molitoris BA, Dahl R, Hosford M. Cellular ATP depletion induces disruption of the spectrin cytoskeletal network. Am J Physiol. 1996;271(4 Pt 2):F790–8. PubMed PMID: 8898008. Epub 1996/10/01. eng.PubMedGoogle Scholar
  129. 129.
    Woroniecki R, Ferdinand JR, Morrow JS, Devarajan P. Dissociation of spectrin-ankyrin complex as a basis for loss of Na-K-ATPase polarity after ischemia. Am J Physiol Renal Physiol. 2003;284(2):F358–64. PubMed PMID: 12409278. Epub 2002/11/01. eng.PubMedCrossRefGoogle Scholar
  130. 130.
    Ashworth SL, Southgate EL, Sandoval RM, Meberg PJ, Bamburg JR, Molitoris BA. ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion. Am J Physiol Renal Physiol. 2003;284(4):F852–62. PubMed PMID: 12620926. Epub 2003/03/07. eng.PubMedCrossRefGoogle Scholar
  131. 131.
    Ashworth SL, Sandoval RM, Hosford M, Bamburg JR, Molitoris BA. Ischemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells. Am J Physiol Renal Physiol. 2001;280(5):F886–94. PubMed PMID: 11292632. Epub 2001/04/09. eng.PubMedGoogle Scholar
  132. 132.
    Ashworth SL, Wean SE, Campos SB, Temm-Grove CJ, Southgate EL, Vrhovski B, et al. Renal ischemia induces tropomyosin dissociation-destabilizing microvilli microfilaments. Am J Physiol Renal Physiol. 2004;286(5):F988–96. PubMed PMID: 15075195. Epub 2004/04/13. eng.PubMedCrossRefGoogle Scholar
  133. 133.
    Gopalakrishnan S, Hallett MA, Atkinson SJ, Marrs JA. aPKC-PAR complex dysfunction and tight junction disassembly in renal epithelial cells during ATP depletion. Am J Physiol Cell Physiol. 2007;292(3):C1094–102. PubMed PMID: 16928777. Epub 2006/08/25. eng.PubMedCrossRefGoogle Scholar
  134. 134.
    Racusen L, editor. The morphologic basis of acute renal failure. Philadelphia: W. B. Saunders; 2001.Google Scholar
  135. 135.
    Levine JA, Lieberthal W, editors. Terminal pathways to cell death. Philadelphia: W. B. Saunders; 2001.Google Scholar
  136. 136.
    Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013;187(5):509–17. PubMed PMID: 23348975. Pubmed Central PMCID: 3733408.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Marrs J, Gopalakrishnan S, Bacallao R, editors. Tight junction and adherens junction dysfunction during ischemic injury. Philadelphia: W. B Saunders; 2001.Google Scholar
  138. 138.
    Jaffe R, Ariel I, Beeri R, Paltiel O, Hiss Y, Rosen S, et al. Frequent apoptosis in human kidneys after acute renal hypoperfusion. Exp Nephrol. 1997;5(5):399–403. PubMed PMID: 9386976. Epub 1997/12/05. eng.PubMedGoogle Scholar
  139. 139.
    Lieberthal W, Menza SA, Levine JS. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol. 1998;274(2 Pt 2):F315–27. PubMed PMID: 9486226. Epub 1998/03/05. eng.PubMedGoogle Scholar
  140. 140.
    Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Feuerstein D, Kaskel FJ, Tellis V, et al. Activation of mitochondrial apoptotic pathways in human renal allografts after ischemia reperfusion injury. Transplantation. 2003;76(1):50–4. PubMed PMID: 12865785. Epub 2003/07/17. eng.PubMedCrossRefGoogle Scholar
  141. 141.
    Safirstein RL. Acute renal failure: from renal physiology to the renal transcriptome. Kidney Int Suppl. 2004;91:S62–6. PubMed PMID: 15461706.PubMedCrossRefGoogle Scholar
  142. 142.
    Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA. Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol. 1997;151(5):1205–13. PubMed PMID: 9358745. Epub 1997/11/14. eng.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Hagar H, Ueda N, Shah SV. Endonuclease induced DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Kidney Int. 1996;49(2):355–61. PubMed PMID: 8821817. Epub 1996/02/01. eng.PubMedCrossRefGoogle Scholar
  144. 144.
    Kelly KJ, Sandoval RM, Dunn KW, Molitoris BA, Dagher PC. A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis. Am J Physiol Cell Physiol. 2003;284(5):C1309–18. PubMed PMID: 12676658. Epub 2003/04/05. eng.PubMedCrossRefGoogle Scholar
  145. 145.
    Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol. 2003;284(4):F608–27. PubMed PMID: 12620919. Epub 2003/03/07. eng.PubMedCrossRefGoogle Scholar
  146. 146.
    Nogae S, Miyazaki M, Kobayashi N, Saito T, Abe K, Saito H, et al. Induction of apoptosis in ischemia-reperfusion model of mouse kidney: possible involvement of Fas. J Am Soc Nephrol. 1998;9(4):620–31. PubMed PMID: 9555665. Epub 1998/04/29. eng.PubMedGoogle Scholar
  147. 147.
    Feldenberg LR, Thevananther S, del Rio M, de Leon M, Devarajan P. Partial ATP depletion induces Fas- and caspase-mediated apoptosis in MDCK cells. Am J Physiol. 1999;276(6 Pt 2):F837–46. PubMed PMID: 10362772. Epub 1999/06/11. eng.PubMedGoogle Scholar
  148. 148.
    Del Rio M, Imam A, DeLeon M, Gomez G, Mishra J, Ma Q, et al. The death domain of kidney ankyrin interacts with Fas and promotes Fas-mediated cell death in renal epithelia. J Am Soc Nephrol. 2004;15(1):41–51. PubMed PMID: 14694156. Epub 2003/12/25. eng.PubMedCrossRefGoogle Scholar
  149. 149.
    Hamar P, Song E, Kokeny G, Chen A, Ouyang N, Lieberman J. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2004;101(41):14883–8. PubMed PMID: 15466709. Epub 2004/10/07. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281(5381):1309–12. PubMed PMID: 9721092. Epub 1998/08/28. eng.PubMedCrossRefGoogle Scholar
  151. 151.
    Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 1998;60:619–42. PubMed PMID: 9558479. Epub 1998/04/29. eng.PubMedCrossRefGoogle Scholar
  152. 152.
    Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, et al. Mitochondrial control of nuclear apoptosis. J Exp Med. 1996;183(4):1533–44. PubMed PMID: 8666911. Epub 1996/04/01. eng.PubMedCrossRefGoogle Scholar
  153. 153.
    Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P, Macho A, et al. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol. 1996;157(2):512–21. PubMed PMID: 8752896. Epub 1996/07/15. eng.PubMedGoogle Scholar
  154. 154.
    Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, et al. Inhibition of Bax channel-forming activity by Bcl-2. Science. 1997;277(5324):370–2. PubMed PMID: 9219694. Epub 1997/07/18. eng.PubMedCrossRefGoogle Scholar
  155. 155.
    Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281(5381):1322–6. PubMed PMID: 9735050. Epub 1998/09/12. eng.PubMedCrossRefGoogle Scholar
  156. 156.
    Saikumar P, Dong Z, Patel Y, Hall K, Hopfer U, Weinberg JM, et al. Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene. 1998;17(26):3401–15. PubMed PMID: 10030664. Epub 1999/02/25. eng.PubMedCrossRefGoogle Scholar
  157. 157.
    Wei Q, Alam MM, Wang MH, Yu F, Dong Z. Bid activation in kidney cells following ATP depletion in vitro and ischemia in vivo. Am J Physiol Renal Physiol. 2004;286(4):F803–9. PubMed PMID: 14678945. Epub 2003/12/18. eng.PubMedCrossRefGoogle Scholar
  158. 158.
    Dagher PC. Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int. 2004;66(2):506–9. PubMed PMID: 15253698. Epub 2004/07/16. eng.PubMedCrossRefGoogle Scholar
  159. 159.
    Wei Q, Yin XM, Wang MH, Dong Z. Bid deficiency ameliorates ischemic renal failure and delays animal death in C57BL/6 mice. Am J Physiol Renal Physiol. 2006;290(1):F35–42. PubMed PMID: 16106037. Epub 2005/08/18. eng.PubMedCrossRefGoogle Scholar
  160. 160.
    Schwarz C, Hauser P, Steininger R, Regele H, Heinze G, Mayer G, et al. Failure of BCL-2 up-regulation in proximal tubular epithelial cells of donor kidney biopsy specimens is associated with apoptosis and delayed graft function. Lab Invest. 2002;82(7):941–8. PubMed PMID: 12118096.PubMedCrossRefGoogle Scholar
  161. 161.
    Salahudeen AK, Huang H, Joshi M, Moore NA, Jenkins JK. Involvement of the mitochondrial pathway in cold storage and rewarming-associated apoptosis of human renal proximal tubular cells. Am J Transplant. 2003;3(3):273–80. PubMed PMID: 12614281. Epub 2003/03/05. eng.PubMedCrossRefGoogle Scholar
  162. 162.
    Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86(1):147–57. PubMed PMID: 8689682. Epub 1996/07/12. eng.PubMedCrossRefGoogle Scholar
  163. 163.
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90(3):405–13. PubMed PMID: 9267021. Epub 1997/08/08. eng.PubMedCrossRefGoogle Scholar
  164. 164.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479–89. PubMed PMID: 9390557. Epub 1997/12/09. eng.PubMedCrossRefGoogle Scholar
  165. 165.
    Periyasamy-Thandavan S, Jiang M, Schoenlein P, Dong Z. Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol. 2009;297(2):F244–56. PubMed PMID: 19279132. Epub 2009/03/13. eng.PubMedCrossRefGoogle Scholar
  166. 166.
    Fuller TF, Sattler B, Binder L, Vetterlein F, Ringe B, Lorf T. Reduction of severe ischemia/reperfusion injury in rat kidney grafts by a soluble P-selectin glycoprotein ligand. Transplantation. 2001;72(2):216–22. PubMed PMID: 11477341. Epub 2001/07/31. eng.PubMedCrossRefGoogle Scholar
  167. 167.
    Furuichi K, Wada T, Iwata Y, Sakai N, Yoshimoto K, Kobayashi Ki K, et al. Administration of FR167653, a new anti-inflammatory compound, prevents renal ischaemia/reperfusion injury in mice. Nephrol Dial Transplant. 2002;17(3):399–407. PubMed PMID: 11865084. Epub 2002/02/28. eng.PubMedCrossRefGoogle Scholar
  168. 168.
    Langer R, Wang M, Stepkowski SM, Hancock WW, Han R, Li P, et al. Selectin inhibitor bimosiamose prolongs survival of kidney allografts by reduction in intragraft production of cytokines and chemokines. J Am Soc Nephrol. 2004;15(11):2893–901. PubMed PMID: 15504942. Epub 2004/10/27. eng.PubMedCrossRefGoogle Scholar
  169. 169.
    Ramesh G, Reeves WB. Inflammatory cytokines in acute renal failure. Kidney Int Suppl. 2004;91:S56–61. PubMed PMID: 15461705. Epub 2004/10/06. eng.PubMedCrossRefGoogle Scholar
  170. 170.
    Kielar ML, John R, Bennett M, Richardson JA, Shelton JM, Chen L, et al. Maladaptive role of IL-6 in ischemic acute renal failure. J Am Soc Nephrol. 2005;16(11):3315–25. PubMed PMID: 16192425. Epub 2005/09/30. eng.PubMedCrossRefGoogle Scholar
  171. 171.
    Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 2001;60(6):2118–28. PubMed PMID: 11737586. Epub 2001/12/12. eng.PubMedCrossRefGoogle Scholar
  172. 172.
    Patel NS, Chatterjee PK, Di Paola R, Mazzon E, Britti D, De Sarro A, et al. Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J Pharmacol Exp Ther. 2005;312(3):1170–8. PubMed PMID: 15572648. Epub 2004/12/02. eng.PubMedCrossRefGoogle Scholar
  173. 173.
    Vesey DA, Cheung C, Pat B, Endre Z, Gobe G, Johnson DW. Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant. 2004;19(2):348–55. PubMed PMID: 14736958. Epub 2004/01/23. eng.PubMedCrossRefGoogle Scholar
  174. 174.
    Spandou E, Tsouchnikas I, Karkavelas G, Dounousi E, Simeonidou C, Guiba-Tziampiri O, et al. Erythropoietin attenuates renal injury in experimental acute renal failure ischaemic/reperfusion model. Nephrol Dial Transplant. 2006;21(2):330–6. PubMed PMID: 16221709. Epub 2005/10/14. eng.PubMedCrossRefGoogle Scholar
  175. 175.
    Gueler F, Rong S, Park JK, Fiebeler A, Menne J, Elger M, et al. Postischemic acute renal failure is reduced by short-term statin treatment in a rat model. J Am Soc Nephrol. 2002;13(9):2288–98. PubMed PMID: 12191973. Epub 2002/08/23. eng.PubMedCrossRefGoogle Scholar
  176. 176.
    Sabbatini M, Pisani A, Uccello F, Serio V, Seru R, Paterno R, et al. Atorvastatin improves the course of ischemic acute renal failure in aging rats. J Am Soc Nephrol. 2004;15(4):901–9. PubMed PMID: 15034092. Epub 2004/03/23. eng.PubMedCrossRefGoogle Scholar
  177. 177.
    Gong H, Wang W, Kwon TH, Jonassen T, Li C, Ring T, et al. EPO and alpha-MSH prevent ischemia/reperfusion-induced down-regulation of AQPs and sodium transporters in rat kidney. Kidney Int. 2004;66(2):683–95. PubMed PMID: 15253723. Epub 2004/07/16. eng.PubMedCrossRefGoogle Scholar
  178. 178.
    Dagher PC, Basile DP. An expanding role of toll-like receptors in sepsis-induced acute kidney injury. Am J Physiol Renal Physiol. 2008;294(5):F1048–9. PubMed PMID: 18353874. Epub 2008/03/21. eng.PubMedCrossRefGoogle Scholar
  179. 179.
    Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, Kirschning CJ, et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest. 2005;115(10):2894–903. PubMed PMID: 16167081. Epub 2005/09/17. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  180. 180.
    Gould SE, Day M, Jones SS, Dorai H. BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int. 2002;61(1):51–60. PubMed PMID: 11786084. Epub 2002/01/12. eng.PubMedCrossRefGoogle Scholar
  181. 181.
    Dear JW, Yasuda H, Hu X, Hieny S, Yuen PS, Hewitt SM, et al. Sepsis-induced organ failure is mediated by different pathways in the kidney and liver: acute renal failure is dependent on MyD88 but not renal cell apoptosis. Kidney Int. 2006;69(5):832–6. PubMed PMID: 16518342. Epub 2006/03/07. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  182. 182.
    Yasuda H, Leelahavanichkul A, Tsunoda S, Dear JW, Takahashi Y, Ito S, et al. Chloroquine and inhibition of toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am J Physiol Renal Physiol. 2008;294(5):F1050–8. PubMed PMID: 18305095. Epub 2008/02/29. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  183. 183.
    Kulkarni OP, Hartter I, Mulay SR, Hagemann J, Darisipudi MN, Kumar Vr S, et al. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J Am Soc Nephrol. 2014;25(5):978–89. PubMed PMID: 24459235. Epub 2014/01/25. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  184. 184.
    Xu MJ, Feng D, Wang H, Guan Y, Yan X, Gao B. IL-22 ameliorates renal ischemia-reperfusion injury by targeting proximal tubule epithelium. J Am Soc Nephrol. 2014;25(5):967–77. PubMed PMID: 24459233. Epub 2014/01/25. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  185. 185.
    Cao CC, Ding XQ, Ou ZL, Liu CF, Li P, Wang L, et al. In vivo transfection of NF-kappaB decoy oligodeoxynucleotides attenuate renal ischemia/reperfusion injury in rats. Kidney Int. 2004;65(3):834–45. PubMed PMID: 14871403. Epub 2004/02/12. eng.PubMedCrossRefGoogle Scholar
  186. 186.
    Day YJ, Huang L, Ye H, Linden J, Okusa MD. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am J Physiol Renal Physiol. 2005;288(4):F722–31. PubMed PMID: 15561971. Epub 2004/11/25. eng.PubMedCrossRefGoogle Scholar
  187. 187.
    Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose Jr CE, et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 2008;74(12):1526–37. PubMed PMID: 18843253. Epub 2008/10/10. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  188. 188.
    Ysebaert DK, De Greef KE, De Beuf A, Van Rompay AR, Vercauteren S, Persy VP, et al. T cells as mediators in renal ischemia/reperfusion injury. Kidney Int. 2004;66(2):491–6. PubMed PMID: 15253695. Epub 2004/07/16. eng.PubMedCrossRefGoogle Scholar
  189. 189.
    Rabb H, Daniels F, O’Donnell M, Haq M, Saba SR, Keane W, et al. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol. 2000;279(3):F525–31. PubMed PMID: 10966932. Epub 2000/09/01. eng.PubMedGoogle Scholar
  190. 190.
    Yokota N, Daniels F, Crosson J, Rabb H. Protective effect of T cell depletion in murine renal ischemia-reperfusion injury. Transplantation. 2002;74(6):759–63. PubMed PMID: 12364852. Epub 2002/10/05. eng.PubMedCrossRefGoogle Scholar
  191. 191.
    Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O’Donnell MP, et al. Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest. 2001;108(9):1283–90. PubMed PMID: 11696572. Epub 2001/11/07. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  192. 192.
    Park P, Haas M, Cunningham PN, Bao L, Alexander JJ, Quigg RJ. Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes. Am J Physiol Renal Physiol. 2002;282(2):F352–7. PubMed PMID: 11788450. Epub 2002/01/15. eng.PubMedCrossRefGoogle Scholar
  193. 193.
    Faubel S, Ljubanovic D, Poole B, Dursun B, He Z, Cushing S, et al. Peripheral CD4 T-cell depletion is not sufficient to prevent ischemic acute renal failure. Transplantation. 2005;80(5):643–9. PubMed PMID: 16177639. Epub 2005/09/24. eng.PubMedCrossRefGoogle Scholar
  194. 194.
    Li L, Huang L, Sung SS, Lobo PI, Brown MG, Gregg RK, et al. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J Immunol. 2007;178(9):5899–911. PubMed PMID: 17442974. Epub 2007/04/20. eng.PubMedCrossRefGoogle Scholar
  195. 195.
    Yokota N, Burne-Taney M, Racusen L, Rabb H. Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2003;285(2):F319–25. PubMed PMID: 12709397. Epub 2003/04/24. eng.PubMedCrossRefGoogle Scholar
  196. 196.
    Kinsey GR, Okusa MD. Expanding role of T cells in acute kidney injury. Curr Opin Nephrol Hypertens. 2013;23(1):9–16. PubMed PMID: 24231312. Epub 2013/11/16. eng.CrossRefGoogle Scholar
  197. 197.
    Burne-Taney MJ, Ascon DB, Daniels F, Racusen L, Baldwin W, Rabb H. B cell deficiency confers protection from renal ischemia reperfusion injury. J Immunol. 2003;171(6):3210–5. PubMed PMID: 12960350. Epub 2003/09/10. eng.PubMedCrossRefGoogle Scholar
  198. 198.
    Thurman JM, Ljubanovic D, Edelstein CL, Gilkeson GS, Holers VM. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J Immunol. 2003;170(3):1517–23. PubMed PMID: 12538716. Epub 2003/01/23. eng.PubMedCrossRefGoogle Scholar
  199. 199.
    Thurman JM, Lucia MS, Ljubanovic D, Holers VM. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int. 2005;67(2):524–30. PubMed PMID: 15673300. Epub 2005/01/28. eng.PubMedCrossRefGoogle Scholar
  200. 200.
    de Vries B, Walter SJ, Peutz-Kootstra CJ, Wolfs TG, van Heurn LW, Buurman WA. The mannose-binding lectin-pathway is involved in complement activation in the course of renal ischemia-reperfusion injury. Am J Pathol. 2004;165(5):1677–88. PubMed PMID: 15509537. Epub 2004/10/29. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  201. 201.
    Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–52. PubMed PMID: 15771587. Epub 2005/03/18. eng.PubMedCrossRefGoogle Scholar
  202. 202.
    Arumugam TV, Shiels IA, Strachan AJ, Abbenante G, Fairlie DP, Taylor SM. A small molecule C5a receptor antagonist protects kidneys from ischemia/reperfusion injury in rats. Kidney Int. 2003;63(1):134–42. PubMed PMID: 12472776. Epub 2002/12/11. eng.PubMedCrossRefGoogle Scholar
  203. 203.
    de Vries B, Kohl J, Leclercq WK, Wolfs TG, van Bijnen AA, Heeringa P, et al. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils. J Immunol. 2003;170(7):3883–9. PubMed PMID: 12646657. Epub 2003/03/21. eng.PubMedCrossRefGoogle Scholar
  204. 204.
    Fayyazi A, Scheel O, Werfel T, Schweyer S, Oppermann M, Gotze O, et al. The C5a receptor is expressed in normal renal proximal tubular but not in normal pulmonary or hepatic epithelial cells. Immunology. 2000;99(1):38–45. PubMed PMID: 10651939. Epub 2000/01/29. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  205. 205.
    Lameire N, Van Biesen W, Vanholder R. Acute renal failure. Lancet. 2005;365(9457):417–30. PubMed PMID: 15680458. Epub 2005/02/01. eng.PubMedCrossRefGoogle Scholar
  206. 206.
    Williams DM, Sreedhar SS, Mickell JJ, Chan JC. Acute kidney failure: a pediatric experience over 20 years. Arch Pediatr Adolesc Med. 2002;156(9):893–900. PubMed PMID: 12197796.PubMedCrossRefGoogle Scholar
  207. 207.
    Dittrich S, Priesemann M, Fischer T, Boettcher W, Muller C, Alexi-Meskishvili V, et al. Circulatory arrest and renal function in open-heart surgery on infants. Pediatr Cardiol. 2002;23(1):15–9. PubMed PMID: 11922502. Epub 2002/04/02. eng.PubMedCrossRefGoogle Scholar
  208. 208.
    Morris MC, Ittenbach RF, Godinez RI, Portnoy JD, Tabbutt S, Hanna BD, et al. Risk factors for mortality in 137 pediatric cardiac intensive care unit patients managed with extracorporeal membrane oxygenation. Crit Care Med. 2004;32(4):1061–9. PubMed PMID: 15071402. Epub 2004/04/09. eng.PubMedCrossRefGoogle Scholar
  209. 209.
    Goldstein SL. Pediatric acute renal failure: demographics and treatment. Contrib Nephrol. 2004;144:284–90. PubMed PMID: 15264417. Epub 2004/07/22. eng.PubMedCrossRefGoogle Scholar
  210. 210.
    Kelly KJ. Acute renal failure: much more than a kidney disease. Semin Nephrol. 2006;26(2):105–13. PubMed PMID: 16530603. Epub 2006/03/15. eng.PubMedCrossRefGoogle Scholar
  211. 211.
    Hassoun HT, Grigoryev DN, Lie ML, Liu M, Cheadle C, Tuder RM, et al. Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy. Am J Physiol Renal Physiol. 2007;293(1):F30–40. PubMed PMID: 17327501. Epub 2007/03/01. eng.PubMedCrossRefGoogle Scholar
  212. 212.
    Grigoryev DN, Liu M, Hassoun HT, Cheadle C, Barnes KC, Rabb H. The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol. 2008;19(3):547–58. PubMed PMID: 18235097. Epub 2008/02/01. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  213. 213.
    Deng J, Hu X, Yuen PS, Star RA. Alpha-melanocyte-stimulating hormone inhibits lung injury after renal ischemia/reperfusion. Am J Respir Crit Care Med. 2004;169(6):749–56. PubMed PMID: 14711793. Epub 2004/01/09. eng.PubMedCrossRefGoogle Scholar
  214. 214.
    Fekete A, Treszl A, Toth-Heyn P, Vannay A, Tordai A, Tulassay T, et al. Association between heat shock protein 72 gene polymorphism and acute renal failure in premature neonates. Pediatr Res. 2003;54(4):452–5. PubMed PMID: 12840151. Epub 2003/07/04. eng.PubMedCrossRefGoogle Scholar
  215. 215.
    Vasarhelyi B, Toth-Heyn P, Treszl A, Tulassay T. Genetic polymorphisms and risk for acute renal failure in preterm neonates. Pediatr Nephrol. 2005;20(2):132–5. PubMed PMID: 15627170. Epub 2005/01/01. eng.PubMedCrossRefGoogle Scholar
  216. 216.
    Lu JC, Coca SG, Patel UD, Cantley L, Parikh CR. Searching for genes that matter in acute kidney injury: a systematic review. Clin J Am Soc Nephrol. 2009;4(6):1020–31. PubMed PMID: 19443624. Epub 2009/05/16. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  217. 217.
    Basile DP, Donohoe D, Cao X, Van Why SK. Resistance to ischemic acute renal failure in the Brown Norway rat: a new model to study cytoprotection. Kidney Int. 2004;65(6):2201–11. PubMed PMID: 15149333. Epub 2004/05/20. eng.PubMedCrossRefGoogle Scholar
  218. 218.
    Basile DP, Dwinell MR, Wang SJ, Shames BD, Donohoe DL, Chen S, et al. Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats. Kidney Int. 2013;83(2):242–50. PubMed PMID: 23235564. Epub 2012/12/14. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  219. 219.
    Devarajan P, Mishra J, Supavekin S, Patterson LT, Steven Potter S. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab. 2003;80(4):365–76. PubMed PMID: 14654349. Epub 2003/12/05. eng.PubMedCrossRefGoogle Scholar
  220. 220.
    Kurella M, Hsiao LL, Yoshida T, Randall JD, Chow G, Sarang SS, et al. DNA microarray analysis of complex biologic processes. J Am Soc Nephrol. 2001;12(5):1072–8. PubMed PMID: 11316867. Epub 2001/04/24. eng.PubMedGoogle Scholar
  221. 221.
    Higgins JP, Wang L, Kambham N, Montgomery K, Mason V, Vogelmann SU, et al. Gene expression in the normal adult human kidney assessed by complementary DNA microarray. Mol Biol Cell. 2004;15(2):649–56. PubMed PMID: 14657249. Epub 2003/12/06. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  222. 222.
    Schwab K, Patterson LT, Aronow BJ, Luckas R, Liang HC, Potter SS. A catalogue of gene expression in the developing kidney. Kidney Int. 2003;64(5):1588–604. PubMed PMID: 14531791. Epub 2003/10/09. eng.PubMedCrossRefGoogle Scholar
  223. 223.
    Liang M, Cowley Jr AW, Hessner MJ, Lazar J, Basile DP, Pietrusz JL. Transcriptome analysis and kidney research: toward systems biology. Kidney Int. 2005;67(6):2114–22. PubMed PMID: 15882254. Epub 2005/05/11. eng.PubMedCrossRefGoogle Scholar
  224. 224.
    Bonventre JV, Yang L. Kidney injury molecule-1. Curr Opin Crit Care. 2010;16(6):556–61. PubMed PMID: 20930626. Epub 2010/10/12. eng.PubMedCrossRefGoogle Scholar
  225. 225.
    Singer E, Marko L, Paragas N, Barasch J, Dragun D, Muller DN, et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol (Oxf). 2013;207(4):663–72. PubMed PMID: 23375078. Epub 2013/02/05. eng.CrossRefGoogle Scholar
  226. 226.
    Sprenkle P, Russo P. Molecular markers for ischemia, do we have something better then creatinine and glomerular filtration rate? Arch Esp Urol. 2013;66(1):99–114. PubMed PMID: 23406805. Epub 2013/02/15. eng.PubMedGoogle Scholar
  227. 227.
    Fujigaki Y, Goto T, Sakakima M, Fukasawa H, Miyaji T, Yamamoto T, et al. Kinetics and characterization of initially regenerating proximal tubules in S3 segment in response to various degrees of acute tubular injury. Nephrol Dial Transplant. 2006;21(1):41–50. PubMed PMID: 16077144. Epub 2005/08/04. eng.PubMedCrossRefGoogle Scholar
  228. 228.
    Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol. 2003;14 Suppl 1:S55–61. PubMed PMID: 12761240.PubMedCrossRefGoogle Scholar
  229. 229.
    Gobe GC, Johnson DW. Distal tubular epithelial cells of the kidney: potential support for proximal tubular cell survival after renal injury. Int J Biochem Cell Biol. 2007;39(9):1551–61. PubMed PMID: 17590379. Epub 2007/06/26. eng.PubMedCrossRefGoogle Scholar
  230. 230.
    Nover L, editor. Heat shock response. Boca Raton: CRC Press; 1991.Google Scholar
  231. 231.
    Emami A, Schwartz JH, Borkan SC. Transient ischemia or heat stress induces a cytoprotectant protein in rat kidney. Am J Physiol. 1991;260(4 Pt 2):F479–85. PubMed PMID: 2012203. Epub 1991/04/01. eng.PubMedGoogle Scholar
  232. 232.
    Van Why SK, Hildebrandt F, Ardito T, Mann AS, Siegel NJ, Kashgarian M. Induction and intracellular localization of HSP-72 after renal ischemia. Am J Physiol. 1992;263(5 Pt 2):F769–75. PubMed PMID: 1443167. Epub 1992/11/01. eng.PubMedGoogle Scholar
  233. 233.
    Van Why SK, Mann AS, Ardito T, Siegel NJ, Kashgarian M. Expression and molecular regulation of Na(+)-K(+)-ATPase after renal ischemia. Am J Physiol. 1994;267(1 Pt 2):F75–85. PubMed PMID: 8048568. Epub 1994/07/01. eng.PubMedGoogle Scholar
  234. 234.
    Aufricht C, Lu E, Thulin G, Kashgarian M, Siegel NJ, Van Why SK. ATP releases HSP-72 from protein aggregates after renal ischemia. Am J Physiol. 1998;274(2 Pt 2):F268–74. PubMed PMID: 9486221. Epub 1998/03/05. eng.PubMedGoogle Scholar
  235. 235.
    Riordan M, Sreedharan R, Wang S, Thulin G, Mann A, Stankewich M, et al. HSP70 binding modulates detachment of Na-K-ATPase following energy deprivation in renal epithelial cells. Am J Physiol Renal Physiol. 2005;288(6):F1236–42. PubMed PMID: 15701813. Epub 2005/02/11. eng.PubMedCrossRefGoogle Scholar
  236. 236.
    Van Why SK, Mann AS, Ardito T, Thulin G, Ferris S, Macleod MA, et al. Hsp27 associates with actin and limits injury in energy depleted renal epithelia. J Am Soc Nephrol. 2003;14(1):98–106. PubMed PMID: 12506142. Epub 2002/12/31. eng.PubMedCrossRefGoogle Scholar
  237. 237.
    Riordan M, Garg V, Thulin G, Kashgarian M, Siegel NJ. Differential inhibition of HSP72 and HSP25 produces profound impairment of cellular integrity. J Am Soc Nephrol. 2004;15(6):1557–66. PubMed PMID: 15153566. Epub 2004/05/22. eng.PubMedCrossRefGoogle Scholar
  238. 238.
    Sreedharan R, Riordan M, Thullin G, Van Why S, Siegel NJ, Kashgarian M. The maximal cytoprotective function of the heat shock protein 27 is dependent on heat shock protein 70. Biochim Biophys Acta. 2011;1813(1):129–35. PubMed PMID: 20934464. Epub 2010/10/12. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  239. 239.
    Chen SW, Kim M, Song JH, Park SW, Wells D, Brown K, et al. Mice that overexpress human heat shock protein 27 have increased renal injury following ischemia reperfusion. Kidney Int. 2009;75(5):499–510. PubMed PMID: 19020532. Epub 2008/11/21. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  240. 240.
    Kim M, Park SW, Chen SW, Gerthoffer WT, D’Agati VD, Lee HT. Selective renal overexpression of human heat shock protein 27 reduces renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol. 2010;299(2):F347–58. PubMed PMID: 20484296. Epub 2010/05/21. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  241. 241.
    Gaudio KM, Thulin G, Mann A, Kashgarian M, Siegel NJ. Role of heat stress response in the tolerance of immature renal tubules to anoxia. Am J Physiol. 1998;274(6 Pt 2):F1029–36. PubMed PMID: 9841493. Epub 1998/12/05. eng.PubMedGoogle Scholar
  242. 242.
    Vicencio A, Bidmon B, Ryu J, Reidy K, Thulin G, Mann A, et al. Developmental expression of HSP-72 and ischemic tolerance of the immature kidney. Pediatr Nephrol. 2003;18(2):85–91. PubMed PMID: 12579393. Epub 2003/02/13. eng.PubMedGoogle Scholar
  243. 243.
    Sreedharan R, Riordan M, Wang S, Thulin G, Kashgarian M, Siegel NJ. Reduced tolerance of immature renal tubules to anoxia by HSF-1 decoy. Am J Physiol Renal Physiol. 2005;288(2):F322–6. PubMed PMID: 15467004. Epub 2004/10/07. eng.PubMedCrossRefGoogle Scholar
  244. 244.
    Sreedharan R, Chen S, Miller M, Haribhai D, Williams CB, Van Why SK. Mice with an absent stress response are protected against ischemic renal injury. Kidney Int. 2014;86:515–24. PubMed PMID: 24805105. Epub 2014/05/09. Eng.PubMedCentralPubMedCrossRefGoogle Scholar
  245. 245.
    Soifer NE, Van Why SK, Ganz MB, Kashgarian M, Siegel NJ, Stewart AF. Expression of parathyroid hormone-related protein in the rat glomerulus and tubule during recovery from renal ischemia. J Clin Invest. 1993;92(6):2850–7. PubMed PMID: 8254039. Epub 1993/12/01. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  246. 246.
    Ichimura T, Bonventre JV. Growth factors, signaling, and renal injury and repair. In: Bruce Molitoris WFF, editor. Acute renal failure: a companion to Brenner & Rector’s the kidney. 6th ed. Philadelphia: Elsevier Health Sciences; 2001. p. 101–18.Google Scholar
  247. 247.
    Gobe G, Zhang XJ, Willgoss DA, Schoch E, Hogg NA, Endre ZH. Relationship between expression of Bcl-2 genes and growth factors in ischemic acute renal failure in the rat. J Am Soc Nephrol. 2000;11(3):454–67. PubMed PMID: 10703669. Epub 2000/03/07. eng.PubMedGoogle Scholar
  248. 248.
    Hu MC, Kuro-o M, Moe OW. Renal and extrarenal actions of Klotho. Semin Nephrol. 2013;33(2):118–29. PubMed PMID: 23465499. Epub 2013/03/08. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  249. 249.
    Tanaka H, Terada Y, Kobayashi T, Okado T, Inoshita S, Kuwahara M, et al. Expression and function of Ets-1 during experimental acute renal failure in rats. J Am Soc Nephrol. 2004;15(12):3083–92. PubMed PMID: 15579511. Epub 2004/12/08. eng.PubMedCrossRefGoogle Scholar
  250. 250.
    Terada Y, Tanaka H, Okado T, Shimamura H, Inoshita S, Kuwahara M, et al. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J Am Soc Nephrol. 2003;14(5):1223–33. PubMed PMID: 12707392. Epub 2003/04/23. eng.PubMedCrossRefGoogle Scholar
  251. 251.
    Villanueva S, Cespedes C, Gonzalez A, Vio CP. bFGF induces an earlier expression of nephrogenic proteins after ischemic acute renal failure. Am J Physiol Regul Integr Comp Physiol. 2006;291(6):R1677–87. PubMed PMID: 16873559. Epub 2006/07/29. eng.PubMedCrossRefGoogle Scholar
  252. 252.
    Sharples EJ, Patel N, Brown P, Stewart K, Mota-Philipe H, Sheaff M, et al. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol. 2004;15(8):2115–24. PubMed PMID: 15284297. Epub 2004/07/31. eng.PubMedCrossRefGoogle Scholar
  253. 253.
    Fiaschi-Taesch NM, Santos S, Reddy V, Van Why SK, Philbrick WF, Ortega A, et al. Prevention of acute ischemic renal failure by targeted delivery of growth factors to the proximal tubule in transgenic mice: the efficacy of parathyroid hormone-related protein and hepatocyte growth factor. J Am Soc Nephrol. 2004;15(1):112–25. PubMed PMID: 14694163. Epub 2003/12/25. eng.PubMedCrossRefGoogle Scholar
  254. 254.
    Cantley LG. Adult stem cells in the repair of the injured renal tubule. Nat Clin Pract Nephrol. 2005;1(1):22–32. PubMed PMID: 16932361. Epub 2006/08/26. eng.PubMedCrossRefGoogle Scholar
  255. 255.
    Gupta S, Verfaillie C, Chmielewski D, Kim Y, Rosenberg ME. A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int. 2002;62(4):1285–90. PubMed PMID: 12234298. Epub 2002/09/18. eng.PubMedCrossRefGoogle Scholar
  256. 256.
    Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest. 2003;112(1):42–9. PubMed PMID: 12824456. Epub 2003/06/26. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  257. 257.
    Lin F, Cordes K, Li L, Hood L, Couser WG, Shankland SJ, et al. Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol. 2003;14(5):1188–99. PubMed PMID: 12707389. Epub 2003/04/23. eng.PubMedCrossRefGoogle Scholar
  258. 258.
    Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest. 2005;115(7):1743–55. PubMed PMID: 16007251. Epub 2005/07/12. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  259. 259.
    Fang TC, Alison MR, Cook HT, Jeffery R, Wright NA, Poulsom R. Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury. J Am Soc Nephrol. 2005;16(6):1723–32. PubMed PMID: 15814835. Epub 2005/04/09. eng.PubMedCrossRefGoogle Scholar
  260. 260.
    Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV. Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A. 2011;108(22):9226–31. PubMed PMID: 21576461. Epub 2011/05/18. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  261. 261.
    Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest. 2005;115(7):1756–64. PubMed PMID: 16007252. Epub 2005/07/12. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  262. 262.
    Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001;195(2):229–35. PubMed PMID: 11592103. Epub 2001/10/10. eng.PubMedCrossRefGoogle Scholar
  263. 263.
    Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289(1):F31–42. PubMed PMID: 15713913. Epub 2005/02/17. eng.PubMedCrossRefGoogle Scholar
  264. 264.
    Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol. 2007;292(5):F1626–35. PubMed PMID: 17213465. Epub 2007/01/11. eng.PubMedCrossRefGoogle Scholar
  265. 265.
    Stokman G, Leemans JC, Claessen N, Weening JJ, Florquin S. Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution. J Am Soc Nephrol. 2005;16(6):1684–92. PubMed PMID: 15829714. Epub 2005/04/15. eng.PubMedCrossRefGoogle Scholar
  266. 266.
    Iwasaki M, Adachi Y, Minamino K, Suzuki Y, Zhang Y, Okigaki M, et al. Mobilization of bone marrow cells by G-CSF rescues mice from cisplatin-induced renal failure, and M-CSF enhances the effects of G-CSF. J Am Soc Nephrol. 2005;16(3):658–66. PubMed PMID: 15689404. Epub 2005/02/04. eng.PubMedCrossRefGoogle Scholar
  267. 267.
    Togel FE, Westenfelder C. Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis. 2012;60(6):1012–22. PubMed PMID: 23036928. Epub 2012/10/06. eng.PubMedCrossRefGoogle Scholar
  268. 268.
    Briggs JD, Kennedy AC, Young LN, Luke RG, Gray M. Renal function after acute tubular necrosis. Br Med J. 1967;3(5564):513–6. PubMed PMID: 6038314. Epub 1967/08/26. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  269. 269.
    Lewers DT, Mathew TH, Maher JF, Schreiner GE. Long-term follow-up of renal function and histology after acute tubular necrosis. Ann Intern Med. 1970;73(4):523–9. PubMed PMID: 5506003. Epub 1970/10/01. eng.PubMedCrossRefGoogle Scholar
  270. 270.
    Bonomini V, Stefoni S, Vangelista A. Long-term patient and renal prognosis in acute renal failure. Nephron. 1984;36(3):169–72. PubMed PMID: 6700808. Epub 1984/01/01. eng.PubMedCrossRefGoogle Scholar
  271. 271.
    Lowe KG. The late prognosis in acute tubular necrosis; an interim follow-up report on 14 patients. Lancet. 1952;1(6718):1086–8. PubMed PMID: 14928581. Epub 1952/05/31. eng.PubMedCrossRefGoogle Scholar
  272. 272.
    Finkenstaedt JT, Merrill JP. Renal function after recovery from acute renal failure. N Engl J Med. 1956;254(22):1023–6. PubMed PMID: 13322205. Epub 1956/05/31. eng.PubMedCrossRefGoogle Scholar
  273. 273.
    Alon US. Neonatal acute renal failure: the need for long-term follow-up. Clin Pediatr (Phila). 1998;37(6):387–9. PubMed PMID: 9637905. Epub 1998/06/25. eng.CrossRefGoogle Scholar
  274. 274.
    Polito C, Papale MR, La Manna A. Long-term prognosis of acute renal failure in the full-term neonate. Clin Pediatr (Phila). 1998;37(6):381–5. PubMed PMID: 9637904. Epub 1998/06/25. eng.CrossRefGoogle Scholar
  275. 275.
    Shaw NJ, Brocklebank JT, Dickinson DF, Wilson N, Walker DR. Long-term outcome for children with acute renal failure following cardiac surgery. Int J Cardiol. 1991;31(2):161–5. PubMed PMID: 1869324. Epub 1991/05/01. eng.PubMedCrossRefGoogle Scholar
  276. 276.
    Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 2006;69(1):184–9. PubMed PMID: 16374442. Epub 2005/12/24. eng.PubMedCrossRefGoogle Scholar
  277. 277.
    Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 2012;82(5):516–24.PubMedCrossRefGoogle Scholar
  278. 278.
    Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.PubMedCentralPubMedCrossRefGoogle Scholar
  279. 279.
    Pagtalunan ME, Olson JL, Tilney NL, Meyer TW. Late consequences of acute ischemic injury to a solitary kidney. J Am Soc Nephrol. 1999;10(2):366–73. PubMed PMID: 10215337. Epub 1999/04/24. eng.PubMedGoogle Scholar
  280. 280.
    Pagtalunan ME, Olson JL, Meyer TW. Contribution of angiotensin II to late renal injury after acute ischemia. J Am Soc Nephrol. 2000;11(7):1278–86. PubMed PMID: 10864584. Epub 2000/06/23. eng.PubMedGoogle Scholar
  281. 281.
    Chandraker A, Takada M, Nadeau KC, Peach R, Tilney NL, Sayegh MH. CD28-b7 blockade in organ dysfunction secondary to cold ischemia/reperfusion injury. Kidney Int. 1997;52(6):1678–84. PubMed PMID: 9407517. Epub 1998/01/04. eng.PubMedCrossRefGoogle Scholar
  282. 282.
    Kramann R, Tanaka M, Humphreys BD. Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice. J Am Soc Nephrol. 2014;25:1924–31.PubMedCentralPubMedCrossRefGoogle Scholar
  283. 283.
    Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 2007;72:151–6.PubMedCrossRefGoogle Scholar
  284. 284.
    Basile DP, Donohoe DL, Roethe K, Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol. 2001;281(10):F887–99.Google Scholar
  285. 285.
    Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK. Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol. 2010;298(5):F1078–94.PubMedCentralPubMedCrossRefGoogle Scholar
  286. 286.
    Humphreys BD, Lin S-L, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85–97.PubMedCentralPubMedCrossRefGoogle Scholar
  287. 287.
    Broekema M, Harmsen MC, van Luyn M, Koerts J, Persersen AH, Kooten TG, et al. Bone marrow-derived myofibroblasts contribute to renal interstitial myofibroblasts population and produce procollagen I after ischemia reperfusion in rats. J Am Soc Nephrol. 2007;18:165–75.PubMedCrossRefGoogle Scholar
  288. 288.
    Basile DP, Friedrich JL, Spahic J, Knipe NL, Mang HE, Leonard EC, et al. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Renal Physiol. 2011;300:F721–33.PubMedCentralPubMedCrossRefGoogle Scholar
  289. 289.
    Basile DP, Leonard EC, Beal AG, Schleuter D, Friedrich JL. Persistent oxidative stress following renal ischemia reperfusion injury increases Ang II hemodynamic and fibrotic activity. Am J Physiol Renal Physiol. 2012;302:F1494–502.PubMedCentralPubMedCrossRefGoogle Scholar
  290. 290.
    Kim J, Seok YM, Jung K-J, Park KM. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol. 2009;297(2):F461–70.PubMedCrossRefGoogle Scholar
  291. 291.
    Geng H, Lan R, Wang G, Siddiqi AR, Naski MC, Brooks AI, et al. Inhibition of autoregulated TGF-B signaling simultaneously enhances proliferation and differentiation of kidney epithelium and promotes repair following renal ischemia. Am J Pathol. 2009;174(4):1291–308.PubMedCentralPubMedCrossRefGoogle Scholar
  292. 292.
    Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535–43.PubMedCentralPubMedCrossRefGoogle Scholar
  293. 293.
    Ma Z, Wei Q, Dong G, Huo Y, Dong Z. DNA damage response in renal ischemia–reperfusion and ATP-depletion injury of renal tubular cells. Biochim Biophys Acta Mol Basis Dis. 2014;1842(7):1088–96.CrossRefGoogle Scholar
  294. 294.
    Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, et al. Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol. 2013;24(6):943–53.PubMedCentralPubMedCrossRefGoogle Scholar
  295. 295.
    Novitskaya T, McDermott L, Zhang KX, Chiba T, Paueksakon P, Hukriede NA, et al. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. Am J Physiol Renal Physiol. 2014;306:F496–504.PubMedCentralPubMedCrossRefGoogle Scholar
  296. 296.
    Stallons LJ, Whitaker RM, Schnellmann RG. Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicol Lett. 2014;224(3):326–32.PubMedCentralPubMedCrossRefGoogle Scholar
  297. 297.
    Djamali A, Sadowski EA, Muehrer RJ, Reese S, Smavatkul C, Vidyasagar A, et al. BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol. 2007;292(2):F513–22. PubMed PMID: 17062846. Epub 2006/10/26. eng.PubMedCrossRefGoogle Scholar
  298. 298.
    Leonard EC, Friderich J, Basile DP. VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. Am J Physiol Renal Physiol. 2008;295:F1648–57.PubMedCentralPubMedCrossRefGoogle Scholar
  299. 299.
    Basile DP, Yoder MC. Circulating and tissue resident endothelial progenitor cells. J Cell Physiol. 2014;229(1):10–6.PubMedGoogle Scholar
  300. 300.
    Spurgeon KR, Donohoe DL, Basile DP. Transforming growth factor-beta in acute renal failure: receptor expression, effects on proliferation, cellularity, and vascularization after recovery from injury. Am J Physiol Renal Physiol. 2005;288(3):F568–77. PubMed PMID: 15536165. Epub 2004/11/13. eng.PubMedCrossRefGoogle Scholar
  301. 301.
    Choi ME, Ballermann BJ. Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-beta receptors. J Biol Chem. 1995;270(36):21144–50. PubMed PMID: 7673146. Epub 1995/09/08. eng.PubMedCrossRefGoogle Scholar
  302. 302.
    O’Riordan E, Mendelev N, Patschan S, Patschan D, Eskander J, Cohen-Gould L, et al. Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am J Physiol Heart Circ Physiol. 2007;292(1):H285–94. PubMed PMID: 16963618. Epub 2006/09/12. eng.PubMedCrossRefGoogle Scholar
  303. 303.
    Norman JT, Fine LG. Intrarenal oxygenation in chronic renal failure. Clin Exp Pharmacol Physiol. 2006;33(10):989–96. PubMed PMID: 17002678. Epub 2006/09/28. eng.PubMedCrossRefGoogle Scholar
  304. 304.
    Zager RA, Johnson ACM, Andress D, Becker K. Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int. 2013;84(4):703–12.PubMedCentralPubMedCrossRefGoogle Scholar
  305. 305.
    Matsumoto M, Makino Y, Tanaka T, Tanaka H, Ishizaka N, Noiri E, et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J Am Soc Nephrol. 2003;14(7):1825–32.PubMedCrossRefGoogle Scholar
  306. 306.
    Kapitsinou PP, Jaffe J, Michael M, Swan CE, Duffy KJ, Erickson-Miller CL, et al. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. Am J Physiol Renal Physiol. 2012;302:F1172–9.PubMedCentralPubMedCrossRefGoogle Scholar
  307. 307.
    Liu M, Reddy NM, Higbee EM, Potteti HR, Noel S, Racusen L, et al. The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice. Kidney Int. 2014;85(1):134–41.PubMedCrossRefGoogle Scholar
  308. 308.
    Wu J, Liu X, Fan J, Chen W, Wang J, Zeng Y, et al. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway. Toxicology. 2014;318:22–31.PubMedCrossRefGoogle Scholar
  309. 309.
    Lieberthal W, Levine JS. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am J Physiol. 1996;271(3 Pt 2):F477–88. PubMed PMID: 8853409. Epub 1996/09/01. eng.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • David P. Basile
    • 1
  • Rajasree Sreedharan
    • 2
  • Scott K. Van Why
    • 2
  1. 1.Indiana University School of MedicineIndianapolisUSA
  2. 2.Medical College of WisconsinMilwaukeeUSA

Personalised recommendations