Advertisement

Urolithiasis in Children

  • Vidar Edvardsson
Reference work entry

Abstract

Urolithiasis is a common health disorder in all parts of the world with an estimated lifetime prevalence of approximately 10–12 % in men and 5–6 % in women [1, 2]. In the 1950s to the 1970s, the estimated incidence of pediatric urolithiasis in the United States was 1–2 % that of adults [3, 4], and other earlier studies found stones to account for 1 in 7,600 to 1 in 1,000 pediatric US hospital admissions [5–7]. A recently published study of patients younger than 18 years hospitalized between 2002 and 2007, based on a validated collection of pediatric hospital data (the Pediatric Health Information System database), found childhood stone disease to account for 1 in 685 pediatric hospitalizations in the United States [8]. Although the epidemiology of urolithiasis in children and adolescents has to date been less well defined than in the adult population, two recent population-based studies [9, 10] have suggested a significant increase in the frequency of childhood kidney stone diagnosis.

Keywords

Kidney Stone Stone Formation Calcium Oxalate Stone Disease Calcium Oxalate Monohydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003;63(5):1817–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol. 2010;12(2–3):e86–96.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Bass HN, Emanuel B. Nephrolithiasis in childhood. J Urol. 1966;95(6):749–53.PubMedGoogle Scholar
  4. 4.
    Troup CW, Lawnicki CC, Bourne RB, Hodgson NB. Renal calculus in children. J Urol. 1972;107(2):306–7.PubMedGoogle Scholar
  5. 5.
    Walther PC, Lamm D, Kaplan GW. Pediatric urolithiases: a ten-year review. Pediatrics. 1980;65(6):1068–72.PubMedGoogle Scholar
  6. 6.
    Milliner DS, Murphy ME. Urolithiasis in pediatric patients. Mayo Clin Proc. 1993;68(3):241–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Nimkin K, Lebowitz RL, Share JC, Teele RL. Urolithiasis in a children’s hospital: 1985–1990. Urol Radiol. 1992;14(3):139–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Bush NC, Xu L, Brown BJ, Holzer MS, Gingrich A, Schuler B, et al. Hospitalizations for pediatric stone disease in United States, 2002–2007. J Urol. 2010;183(3):1151–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Sas DJ, Hulsey TC, Shatat IF, Orak JK. Increasing incidence of kidney stones in children evaluated in the emergency department. J Pediatr. 2010;157(1):132–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Dwyer ME, Krambeck AE, Bergstralh EJ, Milliner DS, Lieske JC, Rule AD. Temporal trends in incidence of kidney stones among children: a 25-year population based study. J Urol. 2012;188(1):247–52.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    VanDervoort K, Wiesen J, Frank R, Vento S, Crosby V, Chandra M, et al. Urolithiasis in pediatric patients: a single center study of incidence, clinical presentation and outcome. J Urol. 2007;177(6):2300–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Hoppe B, Kemper MJ. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr Nephrol. 2010;25(3):403–13.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Edvardsson VO, Indridason OS, Haraldsson G, Kjartansson O, Palsson R. Temporal trends in the incidence of kidney stone disease. Kidney Int. 2013;83(1):146–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Edvardsson V, Elidottir H, Indridason OS, Palsson R. High incidence of kidney stones in Icelandic children. Pediatr Nephrol. 2005;20(7):940–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Novak TE, Lakshmanan Y, Trock BJ, Gearhart JP, Matlaga BR. Sex prevalence of pediatric kidney stone disease in the United States: an epidemiologic investigation. Urology. 2009;74(1):104–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Matlaga BR, Schaeffer AJ, Novak TE, Trock BJ. Epidemiologic insights into pediatric kidney stone disease. Urol Res. 2010;38(6):453–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Lieske JC, de la Vega Pena LS, Slezak JM, Bergstralh EJ, Leibson CL, Ho KL, et al. Renal stone epidemiology in Rochester, Minnesota: an update. Kidney Int. 2006;69(4):760–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Du J, Johnston R, Rice M. Temporal trends of acute nephrolithiasis in Auckland, New Zealand. N Z Med J. 2009;122(1299):13–20.PubMedGoogle Scholar
  19. 19.
    Sas DJ. An update on the changing epidemiology and metabolic risk factors in pediatric kidney stone disease. Clin J Am Soc Nephrol. 2011;6(8):2062–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293(4):455–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA. 2006;295(13):1549–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Kieran K, Giel DW, Morris BJ, Wan JY, Tidwell CD, Giem A, et al. Pediatric urolithiasis–does body mass index influence stone presentation and treatment? J Urol. 2010;184(4 Suppl):1810–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Bergsland KJ, Coe FL, White MD, Erhard MJ, DeFoor WR, Mahan JD, et al. Urine risk factors in children with calcium kidney stones and their siblings. Kidney Int. 2012;81(11):1140–8.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Sarica K, Eryildirim B, Yencilek F, Kuyumcuoglu U. Role of overweight status on stone-forming risk factors in children: a prospective study. Urology. 2009;73(5):1003–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Eisner BH, Eisenberg ML, Stoller ML. Influence of body mass index on quantitative 24-hour urine chemistry studies in children with nephrolithiasis. J Urol. 2009;182(3):1142–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Ayoob R, Wang W, Schwaderer A. Body fat composition and occurrence of kidney stones in hypercalciuric children. Pediatr Nephrol. 2011;26(12):2173–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med. 1993;328(12):833–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Curhan GC, Willett WC, Knight EL, Stampfer MJ. Dietary factors and the risk of incident kidney stones in younger women: nurses’ health study II. Arch Intern Med. 2004;164(8):885–91.PubMedCrossRefGoogle Scholar
  29. 29.
    Taylor EN, Stampfer MJ, Curhan GC. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J Am Soc Nephrol. 2004;15(12):3225–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Hess B, Jost C, Zipperle L, Takkinen R, Jaeger P. High-calcium intake abolishes hyperoxaluria and reduces urinary crystallization during a 20-fold normal oxalate load in humans. Nephrol Dial Transplant. 1998;13(9):2241–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Borghi L, Schianchi T, Meschi T, Guerra A, Allegri F, Maggiore U, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002;346(2):77–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Fakheri RJ, Goldfarb DS. Ambient temperature as a contributor to kidney stone formation: implications of global warming. Kidney Int. 2011;79(11):1178–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Kant AK, Graubard BI. Contributors of water intake in US children and adolescents: associations with dietary and meal characteristics–National Health and Nutrition Examination Survey 2005–2006. Am J Clin Nutr. 2010;92(4):887–96.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Borghi L, Meschi T, Amato F, Briganti A, Novarini A, Giannini A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol. 1996;155(3):839–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Borghi L, Meschi T, Amato F, Novarini A, Romanelli A, Cigala F. Hot occupation and nephrolithiasis. J Urol. 1993;150(6):1757–60.PubMedGoogle Scholar
  36. 36.
    Borghi L, Meschi T, Schianchi T, Briganti A, Guerra A, Allegri F, et al. Urine volume: stone risk factor and preventive measure. Nephron. 1999;81 Suppl 1:31–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Curhan GC, Willett WC, Rimm EB, Spiegelman D, Stampfer MJ. Prospective study of beverage use and the risk of kidney stones. Am J Epidemiol. 1996;143(3):240–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Goldfarb DS, Asplin JR. Effect of grapefruit juice on urinary lithogenicity. J Urol. 2001;166(1):263–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Knight J, Deora R, Assimos DG, Holmes RP. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urolithiasis. 2013;41(3):187–96.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Grijalva CG, Nuorti JP, Griffin MR. Antibiotic prescription rates for acute respiratory tract infections in US ambulatory settings. JAMA. 2009;302(7):758–66.PubMedCrossRefGoogle Scholar
  41. 41.
    McCaig LF, Besser RE, Hughes JM. Trends in antimicrobial prescribing rates for children and adolescents. JAMA. 2002;287(23):3096–102.PubMedCrossRefGoogle Scholar
  42. 42.
    Scales Jr CD, Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America P. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160–5.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Ramello A, Vitale C, Marangella M. Epidemiology of nephrolithiasis. J Nephrol. 2000;13 Suppl 3:S45–50.PubMedGoogle Scholar
  44. 44.
    Routh JC, Graham DA, Nelson CP. Epidemiological trends in pediatric urolithiasis at United States freestanding pediatric hospitals. J Urol. 2010;184(3):1100–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Soucie JM, Thun MJ, Coates RJ, McClellan W, Austin H. Demographic and geographic variability of kidney stones in the United States. Kidney Int. 1994;46(3):893–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Gabrielsen JS, Laciak RJ, Frank EL, McFadden M, Bates CS, Oottamasathien S, et al. Pediatric urinary stone composition in the United States. J Urol. 2012;187(6):2182–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Wood KD, Stanasel IS, Koslov DS, Mufarrij PW, McLorie GA, Assimos DG. Changing stone composition profile of children with nephrolithiasis. Urology. 2013;82(1):210–3.PubMedCrossRefGoogle Scholar
  48. 48.
    Kamoun A, Daudon M, Abdelmoula J, Hamzaoui M, Chaouachi B, Houissa T, et al. Urolithiasis in Tunisian children: a study of 120 cases based on stone composition. Pediatr Nephrol. 1999;13(9):920–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Copelovitch L. Urolithiasis in children: medical approach. Pediatr Clin North Am. 2012;59(4):881–96.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Thalut K, Rizal A, Brockis JG, Bowyer RC, Taylor TA, Wisniewski ZS. The endemic bladder stones of Indonesia–-epidemiology and clinical features. Br J Urol. 1976;48(7):617–21.PubMedCrossRefGoogle Scholar
  51. 51.
    Coe FL, Parks JH, Asplin JR. The pathogenesis and treatment of kidney stones. N Engl J Med. 1992;327(16):1141–52.PubMedCrossRefGoogle Scholar
  52. 52.
    Asplin JR, Lingeman J, Kahnoski R, Mardis H, Parks JH, Coe FL. Metabolic urinary correlates of calcium oxalate dihydrate in renal stones. J Urol. 1998;159(3):664–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Coward RJM, Peters CJ, Duffy PG, Corry D, Kellett MJ, Choong S, et al. Epidemiology of paediatric renal stone disease in the UK. Arch Dis Child. 2003;88(11):962–5.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Levy FL, Adams-Huet B, Pak CY. Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol. Am J Med. 1995;98(1):50–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest. 2005;115(10):2598–608. Epub 2005/10/04.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Stapleton FB. Clinical approach to children with urolithiasis. Semin Nephrol. 1996;16(5):389–97.PubMedGoogle Scholar
  57. 57.
    Hess B, Hasler-Strub U, Ackermann D, Jaeger P. Metabolic evaluation of patients with recurrent idiopathic calcium nephrolithiasis. Nephrol Dial Transplant. 1997;12(7):1362–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Srivastava T, Alon US. Pathophysiology of hypercalciuria in children. Pediatr Nephrol. 2007;22(10):1659–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Lauderdale DS, Thisted RA, Wen M, Favus MJ. Bone mineral density and fracture among prevalent kidney stone cases in the Third National Health and Nutrition Examination Survey. J Bone Miner Res. 2001;16(10):1893–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Asplin JR, Bauer KA, Kinder J, Muller G, Coe BJ, Parks JH, et al. Bone mineral density and urine calcium excretion among subjects with and without nephrolithiasis. Kidney Int. 2003;63(2):662–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Garcia-Nieto V, Ferrandez C, Monge M, de Sequera M, Rodrigo MD. Bone mineral density in pediatric patients with idiopathic hypercalciuria. Pediatr Nephrol. 1997;11(5):578–83. Epub 1997/11/05.PubMedCrossRefGoogle Scholar
  62. 62.
    Robertson WG, Heyburn PJ, Peacock M, Hanes FA, Swaminathan R. The effect of high animal protein intake on the risk of calcium stone-formation in the urinary tract. Clin Sci (Lond). 1979;57(3):285–8.CrossRefGoogle Scholar
  63. 63.
    Hess B, Ackermann D, Essig M, Takkinen R, Jaeger P. Renal mass and serum calcitriol in male idiopathic calcium renal stone formers: role of protein intake. J Clin Endocrinol Metab. 1995;80(6):1916–21.PubMedGoogle Scholar
  64. 64.
    Ruml LA, Pearle MS, Pak CY. Medical therapy, calcium oxalate urolithiasis. Urol Clin North Am. 1997;24(1):117–33.PubMedCrossRefGoogle Scholar
  65. 65.
    Reddy ST, Wang CY, Sakhaee K, Brinkley L, Pak CY. Effect of low-carbohydrate high-protein diets on acid–base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis. 2002;40(2):265–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Goldfarb S. Dietary factors in the pathogenesis and prophylaxis of calcium nephrolithiasis. Kidney Int. 1988;34(4):544–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Sakhaee K, Harvey JA, Padalino PK, Whitson P, Pak CY. The potential role of salt abuse on the risk for kidney stone formation. J Urol. 1993;150(2 Pt 1):310–2. Epub 1993/08/01.PubMedGoogle Scholar
  68. 68.
    Aladjem M, Barr J, Lahat E, Bistritzer T. Renal and absorptive hypercalciuria: a metabolic disturbance with varying and interchanging modes of expression. Pediatrics. 1996;97(2):216–9.PubMedGoogle Scholar
  69. 69.
    Muldowney FP, Freaney R, Moloney MF. Importance of dietary sodium in the hypercalciuria syndrome. Kidney Int. 1982;22(3):292–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Muldowney FP. Prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002;346(21):1667–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Coe FL, Parks JH, Moore ES. Familial idiopathic hypercalciuria. N Engl J Med. 1979;300(7):337–40.PubMedCrossRefGoogle Scholar
  72. 72.
    Bushinsky DA, Frick KK, Nehrke K. Genetic hypercalciuric stone-forming rats. Curr Opin Nephrol Hypertens. 2006;15(4):403–18. Epub 2006/06/16.PubMedCrossRefGoogle Scholar
  73. 73.
    Favus MJ, Karnauskas AJ, Parks JH, Coe FL. Peripheral blood monocyte vitamin D receptor levels are elevated in patients with idiopathic hypercalciuria. J Clin Endocrinol Metab. 2004;89(10):4937–43. Epub 2004/10/09.PubMedCrossRefGoogle Scholar
  74. 74.
    Rellum DM, Feitz WF, van Herwaarden AE, Schreuder MF. Pediatric urolithiasis in a non-endemic country: a single center experience from The Netherlands. J Pediatr Urol. 2014;10(1):155–61. Epub 2013/08/29.PubMedCrossRefGoogle Scholar
  75. 75.
    Kalorin CM, Zabinski A, Okpareke I, White M, Kogan BA. Pediatric urinary stone disease–does age matter? J Urol. 2009;181(5):2267–71. discussion 71. Epub 2009/03/20.PubMedCrossRefGoogle Scholar
  76. 76.
    Spivacow FR, Negri AL, del Valle EE, Calvino I, Fradinger E, Zanchetta JR. Metabolic risk factors in children with kidney stone disease. Pediatr Nephrol. 2008;23(7):1129–33.PubMedCrossRefGoogle Scholar
  77. 77.
    Baggio B, Gambaro G, Favaro S, Borsatti A. Prevalence of hyperoxaluria in idiopathic calcium oxalate kidney stone disease. Nephron. 1983;35(1):11–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Laminski NA, Meyers AM, Kruger M, Sonnekus MI, Margolius LP. Hyperoxaluria in patients with recurrent calcium oxalate calculi: dietary and other risk factors. Br J Urol. 1991;68(5):454–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Edvardsson VO, Goldfarb DS, Lieske JC, Beara-Lasic L, Anglani F, Milliner DS, et al. Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol. 2013;28(10):1923–42. Epub 2013/01/22.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Asplin JR. Hyperoxaluric calcium nephrolithiasis. Endocrinol Metab Clin North Am. 2002;31(4):927–49.PubMedCrossRefGoogle Scholar
  81. 81.
    Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001;59(1):270–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Pak CY. Medical management of urinary stone disease. Nephron Clin Pract. 2004;98(2):c49–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Lieske JC, Tremaine WJ, De Simone C, O’Connor HM, Li X, Bergstralh EJ, et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 2010;78(11):1178–85. Epub 2010/08/26.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Worcester EM. Stones from bowel disease. Endocrinol Metab Clin North Am. 2002;31(4):979–99.PubMedCrossRefGoogle Scholar
  85. 85.
    Diefenbach KA, Breuer CK. Pediatric inflammatory bowel disease. World J Gastroenterol. 2006;12(20):3204–12. Epub 2006/05/24.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Hoppe B, von Unruh GE, Blank G, Rietschel E, Sidhu H, Laube N, et al. Absorptive hyperoxaluria leads to an increased risk for urolithiasis or nephrocalcinosis in cystic fibrosis. Am J Kidney Dis. 2005;46(3):440–5. Epub 2005/09/01.PubMedCrossRefGoogle Scholar
  87. 87.
    Milliner DS. Urolithiasis. In: Ellis D, Avner WEH, Niaudet P, Yoshikawa N, editors. Pediatric nephrology. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 1405–30.CrossRefGoogle Scholar
  88. 88.
    Gibney EM, Goldfarb DS. The association of nephrolithiasis with cystic fibrosis. Am J Kidney Dis. 2003;42(1):1–11.PubMedCrossRefGoogle Scholar
  89. 89.
    Perez-Brayfield MR, Caplan D, Gatti JM, Smith EA, Kirsch AJ. Metabolic risk factors for stone formation in patients with cystic fibrosis. J Urol. 2002;167(2 Pt 1):480–4.PubMedCrossRefGoogle Scholar
  90. 90.
    Lieske JC, Mehta RA, Milliner DS, Rule AD, Bergstralh EJ, Sarr MG. Kidney stones are common after bariatric surgery. Kidney Int. 2014. doi:10.1038/ki.2014.352. Epub 2014/10/30.Google Scholar
  91. 91.
    Asplin JR, Coe FL. Hyperoxaluria in kidney stone formers treated with modern bariatric surgery. J Urol. 2007;177(2):565–9. Epub 2007/01/16.PubMedCrossRefGoogle Scholar
  92. 92.
    Sinha MK, Collazo-Clavell ML, Rule A, Milliner DS, Nelson W, Sarr MG, et al. Hyperoxaluric nephrolithiasis is a complication of Roux-en-Y gastric bypass surgery. Kidney Int. 2007;72(1):100–7. Epub 2007/03/23.PubMedCrossRefGoogle Scholar
  93. 93.
    Wasserman H, Inge TH. Bariatric surgery in obese adolescents: opportunities and challenges. Pediatr Ann. 2014;43(9):e230–6. Epub 2014/09/10.PubMedCrossRefGoogle Scholar
  94. 94.
    Jacobsen D, McMartin KE. Methanol and ethylene glycol poisonings. Mechanism of toxicity, clinical course, diagnosis and treatment. Med Toxicol. 1986;1(5):309–34. Epub 1986/09/01.PubMedCrossRefGoogle Scholar
  95. 95.
    Menon M, Mahle CJ. Urinary citrate excretion in patients with renal calculi. J Urol. 1983;129(6):1158–60.PubMedGoogle Scholar
  96. 96.
    Nicar MJ, Skurla C, Sakhaee K, Pak CY. Low urinary citrate excretion in nephrolithiasis. Urology. 1983;21(1):8–14.PubMedCrossRefGoogle Scholar
  97. 97.
    Rizvi SA, Naqvi SA, Hussain Z, Hashmi A, Hussain M, Zafar MN, et al. Pediatric urolithiasis: developing nation perspectives. J Urol. 2002;168(4 Pt 1):1522–5. Epub 2002/09/28.PubMedCrossRefGoogle Scholar
  98. 98.
    Pak CY. Citrate and renal calculi. Miner Electrolyte Metab. 1987;13(4):257–66.PubMedGoogle Scholar
  99. 99.
    Hess B, Zipperle L, Jaeger P. Citrate and calcium effects on Tamm-Horsfall glycoprotein as a modifier of calcium oxalate crystal aggregation. Am J Physiol. 1993;265(6 Pt 2):F784–91.PubMedGoogle Scholar
  100. 100.
    Shah O, Assimos DG, Holmes RP. Genetic and dietary factors in urinary citrate excretion. J Endourol. 2005;19(2):177–82.PubMedCrossRefGoogle Scholar
  101. 101.
    Maalouf NM, Cameron MA, Moe OW, Sakhaee K. Novel insights into the pathogenesis of uric acid nephrolithiasis. Curr Opin Nephrol Hypertens. 2004;13(2):181–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Ettinger B, Tang A, Citron JT, Livermore B, Williams T. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med. 1986;315(22):1386–9. Epub 1986/11/27.PubMedCrossRefGoogle Scholar
  103. 103.
    Polinsky MS, Kaiser BA, Baluarte HJ. Urolithiasis in childhood. Pediatr Clin North Am. 1987;34(3):683–710. Epub 1987/06/01.PubMedGoogle Scholar
  104. 104.
    van’t Hoff WG. Aetiological factors in paediatric urolithiasis. Nephron Clin Pract. 2004;98(2):C45–8.CrossRefGoogle Scholar
  105. 105.
    Eisner BH, Deshmukh SM, Lange D. Struvite stones. In: Michael Grasson DSG, editor. Urinary stones, medical and surgical management. 1st ed. West Sussex: Wiley-Blackwell; 2014. p. 48–56.CrossRefGoogle Scholar
  106. 106.
    Choong S, Whitfield H. Biofilms and their role in infections in urology. BJU Int. 2000;86(8):935–41. Epub 2000/11/09.PubMedCrossRefGoogle Scholar
  107. 107.
    Flannigan R, Choy WH, Chew B, Lange D. Renal struvite stones–pathogenesis, microbiology, and management strategies. Nat Rev Urol. 2014;11(6):333–41. Epub 2014/05/14.PubMedCrossRefGoogle Scholar
  108. 108.
    Teichman JM, Long RD, Hulbert JC. Long-term renal fate and prognosis after staghorn calculus management. J Urol. 1995;153(5):1403–7. Epub 1995/05/01.PubMedCrossRefGoogle Scholar
  109. 109.
    Van Hooland S, Vandooren AK, Lerut E, Oyen R, Maes B. Alkaline encrusted pyelitis. Acta Clin Belg. 2005;60(6):369–72. Epub 2006/03/01.PubMedCrossRefGoogle Scholar
  110. 110.
    Lingeman JE, Siegel YI, Steele B. Metabolic evaluation of infected renal lithiasis: clinical relevance. J Endourol. 1995;9(1):51–4. Epub 1995/02/01.PubMedCrossRefGoogle Scholar
  111. 111.
    Michel Daudon PJ. Drug-induced stones. In: Michael Grasson DSG, editor. Urinary stones, medical and surgical management. 1st ed. West Sussex: Wiley-Blackwell; 2014. p. 106–19.CrossRefGoogle Scholar
  112. 112.
    Chiu MC. Melamine-tainted milk product (MTMP) renal stone outbreak in humans. Hong Kong Med J. 2008;14(6):424–6. Epub 2008/12/09.PubMedGoogle Scholar
  113. 113.
    Yang L, Wen JG, Wen JJ, Su ZQ, Zhu W, Huang CX, et al. Four years follow-up of 101 children with melamine-related urinary stones. Urolithiasis. 2013;41(3):265–6. Epub 2013/04/04.PubMedCrossRefGoogle Scholar
  114. 114.
    Edvardsson V, Ross S. Evaluation and management of pediatric stones. In: Michael Grasso DSG, editor. Urinary stones, medical and surgical management. 1st ed. West Sussex: Wiley-Blackwell; 2014. p. 70–80.CrossRefGoogle Scholar
  115. 115.
    Smith PJ, Basravi S, Schlomer BJ, Bush NC, Brown BJ, Gingrich A, et al. Comparative analysis of nephrolithiasis in otherwise healthy versus medically complex gastrostomy fed children. J Pediatr Urol. 2011;7(3):244–7. Epub 2011/04/30.PubMedCrossRefGoogle Scholar
  116. 116.
    Korkes F, Segal AB, Heilberg IP, Cattini H, Kessler C, Santili C. Immobilization and hypercalciuria in children. Pediatr Nephrol. 2006;21(8):1157–60. Epub 2006/07/05.PubMedCrossRefGoogle Scholar
  117. 117.
    Singh M, Jacobs IB, Spirnak JP. Nephrolithiasis in patients with duchenne muscular dystrophy. Urology. 2007;70(4):643–5. Epub 2007/08/21.PubMedCrossRefGoogle Scholar
  118. 118.
    Furth SL, Casey JC, Pyzik PL, Neu AM, Docimo SG, Vining EP, et al. Risk factors for urolithiasis in children on the ketogenic diet. Pediatr Nephrol. 2000;15(1–2):125–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Shavit L, Ferraro PM, Johri N, Robertson W, Walsh SB, Moochhala S, et al. Effect of being overweight on urinary metabolic risk factors for kidney stone formation. Nephrol Dial Transplant. 2014. pii: gfu350. Epub 2014/11/02.Google Scholar
  120. 120.
    Gilsanz V, Fernal W, Reid BS, Stanley P, Ramos A. Nephrolithiasis in premature infants. Radiology. 1985;154(1):107–10.PubMedCrossRefGoogle Scholar
  121. 121.
    Habbig S, Beck BB, Hoppe B. Nephrocalcinosis and urolithiasis in children. Kidney Int. 2011;80(12):1278–91.PubMedCrossRefGoogle Scholar
  122. 122.
    Schell-Feith EA, Kist-van Holthe JE, van der Heijden AJ. Nephrocalcinosis in preterm neonates. Pediatr Nephrol. 2010;25(2):221–30. Epub 2008/09/18.PubMedCrossRefGoogle Scholar
  123. 123.
    Schell-Feith EA, Kist-van Holthe JE, van Zwieten PH, Zonderland HM, Holscher HC, Swinkels DW, et al. Preterm neonates with nephrocalcinosis: natural course and renal function. Pediatr Nephrol. 2003;18(11):1102–8. Epub 2003/10/03.PubMedCrossRefGoogle Scholar
  124. 124.
    Cochat P, Pichault V, Bacchetta J, Dubourg L, Sabot JF, Saban C, et al. Nephrolithiasis related to inborn metabolic diseases. Pediatr Nephrol. 2010;25(3):415–24. Epub 2009/01/22.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Weinstein DA, Somers MJ, Wolfsdorf JI. Decreased urinary citrate excretion in type 1a glycogen storage disease. J Pediatr. 2001;138(3):378–82. Epub 2001/03/10.PubMedCrossRefGoogle Scholar
  126. 126.
    Wiebers DO, Wilson DM, McLeod RA, Goldstein NP. Renal stones in Wilson’s disease. Am J Med. 1979;67(2):249–54. Epub 1979/08/01.PubMedCrossRefGoogle Scholar
  127. 127.
    Hoppe B, Neuhaus T, Superti-Furga A, Forster I, Leumann E. Hypercalciuria and nephrocalcinosis, a feature of Wilson’s disease. Nephron. 1993;65(3):460–2. Epub 1993/01/01.PubMedCrossRefGoogle Scholar
  128. 128.
    Chang WN, Cheng YF. Nephrolithiasis and nephrocalcinosis in cerebrotendinous xanthomatosis: report of three siblings. Eur Neurol. 1995;35(1):55–7. Epub 1995/01/01.PubMedCrossRefGoogle Scholar
  129. 129.
    Siamopoulos KC, Mavridis AK, Elisaf M, Drosos AA, Moutsopoulos HM. Kidney involvement in primary Sjogren’s syndrome. Scand J Rheumatol Suppl. 1986;61:156–60.PubMedGoogle Scholar
  130. 130.
    Moutsopoulos HM, Cledes J, Skopouli FN, Elisaf M, Youinou P. Nephrocalcinosis in Sjogren’s syndrome: a late sequela of renal tubular acidosis. J Intern Med. 1991;230(2):187–91.PubMedCrossRefGoogle Scholar
  131. 131.
    Fabris A, Lupo A, Bernich P, Abaterusso C, Marchionna N, Nouvenne A, et al. Long-term treatment with potassium citrate and renal stones in medullary sponge kidney. Clin J Am Soc Nephrol. 2010;5(9):1663–8. Epub 2010/06/26.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Granberg PO, Lagergren C, Theve NO. Renal function studies in medullary sponge kidney. Scand J Urol Nephrol. 1971;5(2):177–80. Epub 1971/01/01.PubMedCrossRefGoogle Scholar
  133. 133.
    Osther PJ, Mathiasen H, Hansen AB, Nissen HM. Urinary acidification and urinary excretion of calcium and citrate in women with bilateral medullary sponge kidney. Urol Int. 1994;52(3):126–30. Epub 1994/01/01.PubMedCrossRefGoogle Scholar
  134. 134.
    Higashihara E, Nutahara K, Tago K, Ueno A, Niijima T. Medullary sponge kidney and renal acidification defect. Kidney Int. 1984;25(2):453–9. Epub 1984/02/01.PubMedCrossRefGoogle Scholar
  135. 135.
    Torres VE, Erickson SB, Smith LH, Wilson DM, Hattery RR, Segura JW. The association of nephrolithiasis and autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1988;11(4):318–25. Epub 1988/04/01.PubMedCrossRefGoogle Scholar
  136. 136.
    Nishiura JL, Neves RF, Eloi SR, Cintra SM, Ajzen SA, Heilberg IP. Evaluation of nephrolithiasis in autosomal dominant polycystic kidney disease patients. Clin J Am Soc Nephrol. 2009;4(4):838–44. Epub 2009/04/03.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Praga M, Martinez MA, Andres A, Alegre R, Vara J, Morales E, et al. Association of thin basement membrane nephropathy with hypercalciuria, hyperuricosuria and nephrolithiasis. Kidney Int. 1998;54(3):915–20.PubMedCrossRefGoogle Scholar
  138. 138.
    Coe FL, Evan AP, Worcester EM, Lingeman JE. Three pathways for human kidney stone formation. Urol Res. 2010;38(3):147–60. Epub 2010/04/23.PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Randall A. The origin and growth of renal calculi. Ann Surg. 1937;105(6):1009–27. Epub 1937/06/01.PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Khan SR, Canales BK. Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis. 2015;43(Suppl 1):109–23. doi:10.1007/s00240-014-0705-9Google Scholar
  141. 141.
    Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 2003;111(5):607–16.PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Linnes MP, Krambeck AE, Cornell L, Williams Jr JC, Korinek M, Bergstralh EJ, et al. Phenotypic characterization of kidney stone formers by endoscopic and histological quantification of intrarenal calcification. Kidney Int. 2013;84(4):818–25. Epub 2013/05/24.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Kuo RL, Lingeman JE, Evan AP, Paterson RF, Parks JH, Bledsoe SB, et al. Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int. 2003;64(6):2150–4. Epub 2003/11/25.PubMedCrossRefGoogle Scholar
  144. 144.
    Kim SC, Coe FL, Tinmouth WW, Kuo RL, Paterson RF, Parks JH, et al. Stone formation is proportional to papillary surface coverage by Randall’s plaque. J Urol. 2005;173(1):117–9. discussion 9.PubMedCrossRefGoogle Scholar
  145. 145.
    Bulger RE, Trump BF. Fine structure of the rat renal papilla. Am J Anat. 1966;118(3):685–721. Epub 1966/05/01.PubMedCrossRefGoogle Scholar
  146. 146.
    Low RK, Stoller ML. Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol. 1997;158(6):2062–4.PubMedCrossRefGoogle Scholar
  147. 147.
    Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, et al. Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int. 2005;67(2):576–91.PubMedCrossRefGoogle Scholar
  148. 148.
    Miller NL, Gillen DL, Williams Jr JC, Evan AP, Bledsoe SB, Coe FL, et al. A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall’s plaque. BJU Int. 2009;103(7):966–71. Epub 2008/11/22.PubMedCentralPubMedCrossRefGoogle Scholar
  149. 149.
    Evan AP, Coe FL, Lingeman JE, Shao Y, Matlaga BR, Kim SC, et al. Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int. 2006;69(12):2227–35.PubMedCrossRefGoogle Scholar
  150. 150.
    Asplin J, Parks J, Lingeman J, Kahnoski R, Mardis H, Lacey S, et al. Supersaturation and stone composition in a network of dispersed treatment sites. J Urol. 1998;159(6):1821–5.PubMedCrossRefGoogle Scholar
  151. 151.
    Asplin JR, Parks JH, Chen MS, Lieske JC, Toback FG, Pillay SN, et al. Reduced crystallization inhibition by urine from men with nephrolithiasis. Kidney Int. 1999;56(4):1505–16.PubMedCrossRefGoogle Scholar
  152. 152.
    Bergsland KJ, Kinder JM, Asplin JR, Coe BJ, Coe FL. Influence of gender and age on calcium oxalate crystal growth inhibition by urine from relatives of stone forming patients. J Urol. 2002;167(6):2372–6.PubMedCrossRefGoogle Scholar
  153. 153.
    Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR. Contribution of human uropontin to inhibition of calcium oxalate crystallization. Kidney Int. 1998;53(1):194–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Asplin J, Deganello S, Nakagawa YN, Coe FL. Evidence that nephrocalcin and urine inhibit nucleation of calcium oxalate monohydrate crystals. Am J Physiol. 1991;261(5 Pt 2):F824–30.PubMedGoogle Scholar
  155. 155.
    Mo L, Huang HY, Zhu XH, Shapiro E, Hasty DL, Wu XR. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int. 2004;66(3):1159–66.PubMedCrossRefGoogle Scholar
  156. 156.
    Carvalho M, Mulinari RA, Nakagawa Y. Role of Tamm-Horsfall protein and uromodulin in calcium oxalate crystallization. Braz J Med Biol Res. 2002;35(10):1165–72.PubMedCrossRefGoogle Scholar
  157. 157.
    Clubbe WH. Family disposition to urinary concretions. Lancet 1874 (1):823.Google Scholar
  158. 158.
    Indridason OS, Birgisson S, Edvardsson VO, Sigvaldason H, Sigfusson N, Palsson R. Epidemiology of kidney stones in Iceland: a population-based study. Scand J Urol Nephrol. 2006;40(3):215–20.PubMedCrossRefGoogle Scholar
  159. 159.
    Curhan GC, Willett WC, Rimm EB, Stampfer MJ. Family history and risk of kidney stones. J Am Soc Nephrol. 1997;8(10):1568–73.PubMedGoogle Scholar
  160. 160.
    Polito C, La Manna A, Nappi B, Villani J, Di Toro R. Idiopathic hypercalciuria and hyperuricosuria: family prevalence of nephrolithiasis. Pediatr Nephrol. 2000;14(12):1102–4.PubMedCrossRefGoogle Scholar
  161. 161.
    Resnick M, Pridgen DB, Goodman HO. Genetic predisposition to formation of calcium oxalate renal calculi. N Engl J Med. 1968;278(24):1313–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Goldfarb DS, Fischer ME, Keich Y, Goldberg J. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) registry. Kidney Int. 2005;67(3):1053–61. Epub 2005/02/09.PubMedCrossRefGoogle Scholar
  163. 163.
    Edvardsson VO, Palsson R, Indridason OS, Thorvaldsson S, Stefansson K. Familiality of kidney stone disease in Iceland. Scand J Urol Nephrol. 2009;43(5):420–4. Epub 2009/11/20.PubMedCrossRefGoogle Scholar
  164. 164.
    Gulcher J, Kong A, Stefansson K. The genealogic approach to human genetics of disease. Cancer J. 2001;7(1):61–8.PubMedGoogle Scholar
  165. 165.
    Scott P, Ouimet D, Valiquette L, Guay G, Proulx Y, Trouve ML, et al. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J Am Soc Nephrol. 1999;10(5):1007–13.PubMedGoogle Scholar
  166. 166.
    Relan V, Khullar M, Singh SK, Sharma SK. Association of vitamin D receptor genotypes with calcium excretion in nephrolithiatic subjects in northern India. Urol Res. 2004;32(3):236–40.PubMedCrossRefGoogle Scholar
  167. 167.
    Heilberg IP, Teixeira SH, Martini LA, Boim MA. Vitamin D receptor gene polymorphism and bone mineral density in hypercalciuric calcium-stone-forming patients. Nephron. 2002;90(1):51–7.PubMedCrossRefGoogle Scholar
  168. 168.
    Bid HK, Kumar A, Kapoor R, Mittal RD. Association of vitamin D receptor-gene (FokI) polymorphism with calcium oxalate nephrolithiasis. J Endourol. 2005;19(1):111–5.PubMedCrossRefGoogle Scholar
  169. 169.
    Chen WC, Chen HY, Lu HF, Hsu CD, Tsai FJ. Association of the vitamin D receptor gene start codon Fok I polymorphism with calcium oxalate stone disease. BJU Int. 2001;87(3):168–71.PubMedCrossRefGoogle Scholar
  170. 170.
    Nishijima S, Sugaya K, Naito A, Morozumi M, Hatano T, Ogawa Y. Association of vitamin D receptor gene polymorphism with urolithiasis. J Urol. 2002;167(5):2188–91.PubMedCrossRefGoogle Scholar
  171. 171.
    Riccardi D, Park J, Lee WS, Gamba G, Brown EM, Hebert SC. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci U S A. 1995;92(1):131–5. Epub 1995/01/03.PubMedCentralPubMedCrossRefGoogle Scholar
  172. 172.
    Tfelt-Hansen J, Brown EM. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Crit Rev Clin Lab Sci. 2005;42(1):35–70. Epub 2005/02/09.PubMedCrossRefGoogle Scholar
  173. 173.
    Stechman MJ, Loh NY, Thakker RV. Genetics of hypercalciuric nephrolithiasis: renal stone disease. Ann N Y Acad Sci. 2007;1116:461–84. Epub 2007/09/18.PubMedCrossRefGoogle Scholar
  174. 174.
    Vezzoli G, Terranegra A, Arcidiacono T, Biasion R, Coviello D, Syren ML, et al. R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int. 2007;71(11):1155–62. Epub 2007/03/03.PubMedCrossRefGoogle Scholar
  175. 175.
    Petrucci M, Scott P, Ouimet D, Trouve ML, Proulx Y, Valiquette L, et al. Evaluation of the calcium-sensing receptor gene in idiopathic hypercalciuria and calcium nephrolithiasis. Kidney Int. 2000;58(1):38–42.PubMedCrossRefGoogle Scholar
  176. 176.
    Reed BY, Gitomer WL, Heller HJ, Hsu MC, Lemke M, Padalino P, et al. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab. 2002;87(4):1476–85.PubMedCrossRefGoogle Scholar
  177. 177.
    Reed BY, Heller HJ, Gitomer WL, Pak CY. Mapping a gene defect in absorptive hypercalciuria to chromosome 1q23.3-q24. J Clin Endocrinol Metab. 1999;84(11):3907–13.PubMedGoogle Scholar
  178. 178.
    Econs MJ, Foroud T. The genetics of absorptive hypercalciuria–a note of caution. J Clin Endocrinol Metab. 2002;87(4):1473–5.PubMedGoogle Scholar
  179. 179.
    Lusenti T, Nicoli D, Farnetti E. Association analysis of the C923T polymorphism in soluble adenylate cyclase gene in Italian calcium stone formers with idiopathic hypercalciuria. Am Soc Nephrol. 2003;4:S703A (suppl 14; abstr).Google Scholar
  180. 180.
    Muller D, Hoenderop JG, Vennekens R, Eggert P, Harangi F, Mehes K, et al. Epithelial Ca(2+) channel (ECAC1) in autosomal dominant idiopathic hypercalciuria. Nephrol Dial Transplant. 2002;17(9):1614–20.PubMedCrossRefGoogle Scholar
  181. 181.
    Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest. 2003;112(12):1906–14. Epub 2003/12/18.PubMedCentralPubMedCrossRefGoogle Scholar
  182. 182.
    Renkema KY, Lee K, Topala CN, Goossens M, Houillier P, Bindels RJ, et al. TRPV5 gene polymorphisms in renal hypercalciuria. Nephrol Dial Transplant. 2009;24(6):1919–24. Epub 2009/01/10.PubMedCrossRefGoogle Scholar
  183. 183.
    Coe FL, Nakagawa Y, Asplin J, Parks JH. Role of nephrocalcin in inhibition of calcium oxalate crystallization and nephrolithiasis. Miner Electrolyte Metab. 1994;20(6):378–84.PubMedGoogle Scholar
  184. 184.
    Gao B, Yasui T, Itoh Y, Li Z, Okada A, Tozawa K, et al. Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int. 2007;72(5):592–8. Epub 2007/05/24.PubMedCrossRefGoogle Scholar
  185. 185.
    Gogebakan B, Igci YZ, Arslan A, Igci M, Erturhan S, Oztuzcu S, et al. Association between the T-593A and C6982T polymorphisms of the osteopontin gene and risk of developing nephrolithiasis. Arch Med Res. 2010;41(6):442–8. Epub 2010/11/04.PubMedCrossRefGoogle Scholar
  186. 186.
    Liu CC, Huang SP, Tsai LY, Wu WJ, Juo SH, Chou YH, et al. The impact of osteopontin promoter polymorphisms on the risk of calcium urolithiasis. Clin Chim Acta. 2010;411(9–10):739–43. Epub 2010/02/11.PubMedCrossRefGoogle Scholar
  187. 187.
    Chen WC, Wu HC, Chen HY, Wu MC, Hsu CD, Tsai FJ. Interleukin-1beta gene and receptor antagonist gene polymorphisms in patients with calcium oxalate stones. Urol Res. 2001;29(5):321–4.PubMedCrossRefGoogle Scholar
  188. 188.
    Chen WC, Wu HC, Lin WC, Wu MC, Hsu CD, Tsai FJ. The association of androgen- and oestrogen-receptor gene polymorphisms with urolithiasis in men. BJU Int. 2001;88(4):432–6.PubMedCrossRefGoogle Scholar
  189. 189.
    Tsai FJ, Lin CC, Lu HF, Chen HY, Chen WC. Urokinase gene 3′-UTR T/C polymorphism is associated with urolithiasis. Urology. 2002;59(3):458–61.PubMedCrossRefGoogle Scholar
  190. 190.
    Tsai FJ, Wu HC, Chen HY, Lu HF, Hsu CD, Chen WC. Association of E-cadherin gene 3′-UTR C/T polymorphism with calcium oxalate stone disease. Urol Int. 2003;70(4):278–81.PubMedCrossRefGoogle Scholar
  191. 191.
    Chen WC, Chen HY, Wu HC, Wu MC, Hsu CD, Tsai FJ. Vascular endothelial growth factor gene polymorphism is associated with calcium oxalate stone disease. Urol Res. 2003;31(3):218–22.PubMedCrossRefGoogle Scholar
  192. 192.
    Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet. 2009;41(8):926–30.PubMedCrossRefGoogle Scholar
  193. 193.
    Gudbjartsson DF, Holm H, Indridason OS, Thorleifsson G, Edvardsson V, Sulem P, et al. Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet. 2010;6(7):e1001039. Epub 2010/08/06.PubMedCentralPubMedCrossRefGoogle Scholar
  194. 194.
    Krause G, Winkler L, Piehl C, Blasig I, Piontek J, Muller SL. Structure and function of extracellular claudin domains. Ann N Y Acad Sci. 2009;1165:34–43. Epub 2009/06/23.PubMedCrossRefGoogle Scholar
  195. 195.
    Hess B, Nakagawa Y, Coe FL. Inhibition of calcium oxalate monohydrate crystal aggregation by urine proteins. Am J Physiol. 1989;257(1 Pt 2):F99–106. Epub 1989/07/01.PubMedGoogle Scholar
  196. 196.
    Monico CG, Milliner DS. Genetic determinants of urolithiasis. Nat Rev Nephrol. 2011;8(3):151–62.PubMedCentralPubMedCrossRefGoogle Scholar
  197. 197.
    Beara-Lasic L, Edvardsson V, Palsson R, Lieske J, Goldfarb D, Milliner D. Genetic causes of kidney stones and kidney failure. Clin Rev Bone Miner Metab. 2011;10:1–17.Google Scholar
  198. 198.
    Ludwig M, Utsch B, Monnens LA. Recent advances in understanding the clinical and genetic heterogeneity of Dent’s disease. Nephrol Dial Transplant. 2006;21(10):2708–17. Epub 2006/07/25.PubMedCrossRefGoogle Scholar
  199. 199.
    Waldegger S, Jentsch TJ. From tonus to tonicity: physiology of CLC chloride channels. J Am Soc Nephrol. 2000;11(7):1331–9.PubMedGoogle Scholar
  200. 200.
    Dutzler R. Structural basis for ion conduction and gating in ClC chloride channels. FEBS Lett. 2004;564(3):229–33.PubMedCrossRefGoogle Scholar
  201. 201.
    Devuyst O, Christie PT, Courtoy PJ, Beauwens R, Thakker RV. Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent’s disease. Hum Mol Genet. 1999;8(2):247–57. Epub 1999/02/05.PubMedCrossRefGoogle Scholar
  202. 202.
    Devuyst O, Thakker RV. Dent’s disease. Orphanet J Rare Dis. 2010;5:28. Epub 2010/10/16.PubMedCentralPubMedCrossRefGoogle Scholar
  203. 203.
    Lloyd SE, Pearce SH, Gunther W, Kawaguchi H, Igarashi T, Jentsch TJ, et al. Idiopathic low molecular weight proteinuria associated with hypercalciuric nephrocalcinosis in Japanese children is due to mutations of the renal chloride channel (CLCN5). J Clin Invest. 1997;99(5):967–74.PubMedCentralPubMedCrossRefGoogle Scholar
  204. 204.
    Reinhart SC, Norden AG, Lapsley M, Thakker RV, Pang J, Moses AM, et al. Characterization of carrier females and affected males with X-linked recessive nephrolithiasis. J Am Soc Nephrol. 1995;5(7):1451–61. Epub 1995/01/01.PubMedGoogle Scholar
  205. 205.
    Hoopes Jr RR, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, et al. Dent Disease with mutations in OCRL1. Am J Hum Genet. 2005;76(2):260–7. Epub 2005/01/01.PubMedCentralPubMedCrossRefGoogle Scholar
  206. 206.
    Tosetto E, Addis M, Caridi G, Meloni C, Emma F, Vergine G, et al. Locus heterogeneity of Dent’s disease: OCRL1 and TMEM27 genes in patients with no CLCN5 mutations. Pediatr Nephrol. 2009;24(10):1967–73.PubMedCrossRefGoogle Scholar
  207. 207.
    Hichri H, Rendu J, Monnier N, Coutton C, Dorseuil O, Poussou RV, et al. From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum Mutat. 2011;32(4):379–88.PubMedCrossRefGoogle Scholar
  208. 208.
    Wrong OM, Norden AG, Feest TG. Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. Q J Med. 1994;87(8):473–93. Epub 1994/08/01.Google Scholar
  209. 209.
    Copelovitch L, Nash MA, Kaplan BS. Hypothesis: Dent disease is an underrecognized cause of focal glomerulosclerosis. Clin J Am Soc Nephrol. 2007;2(5):914–8. Epub 2007/08/19.PubMedCrossRefGoogle Scholar
  210. 210.
    Frishberg Y, Dinour D, Belostotsky R, Becker-Cohen R, Rinat C, Feinstein S, et al. Dent’s disease manifesting as focal glomerulosclerosis: is it the tip of the iceberg? Pediatr Nephrol. 2009;24(12):2369–73. Epub 2009/10/07.PubMedCrossRefGoogle Scholar
  211. 211.
    Palsson R. Genetic causes of kidney stones. In: Michael Grasson DSG, editor. Urinary stones, medical and surgical management. 1st ed. West Sussex: Wiley-Blackwell; 2014. p. 57–69.CrossRefGoogle Scholar
  212. 212.
    Scheinman SJ. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int. 1998;53(1):3–17. Epub 1998/02/07.PubMedCrossRefGoogle Scholar
  213. 213.
    Cramer MT, Charlton JR, Fogo AB, Fathallah-Shaykh SA, Askenazi DJ, Guay-Woodford LM. Expanding the phenotype of proteinuria in Dent disease. A case series. Pediatr Nephrol. 2014;29(10):2051–4. Epub 2014/05/09.PubMedCrossRefGoogle Scholar
  214. 214.
    Stechman MJ, Loh NY, Thakker RV. Genetic causes of hypercalciuric nephrolithiasis. Pediatr Nephrol. 2009;24(12):2321–32.PubMedCentralPubMedCrossRefGoogle Scholar
  215. 215.
    Rodriguez-Soriano J, Vallo A, Garcia-Fuentes M. Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol. 1987;1(3):465–72. Epub 1987/07/01.PubMedCrossRefGoogle Scholar
  216. 216.
    Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999;285(5424):103–6. Epub 1999/07/03.PubMedCrossRefGoogle Scholar
  217. 217.
    Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006;79(5):949–57. Epub 2006/10/13.PubMedCentralPubMedCrossRefGoogle Scholar
  218. 218.
    Li J, Ananthapanyasut W, Yu AS. Claudins in renal physiology and disease. Pediatr Nephrol. 2011;26(12):2133–42. Epub 2011/03/03.PubMedCentralPubMedCrossRefGoogle Scholar
  219. 219.
    Blanchard A, Jeunemaitre X, Coudol P, Dechaux M, Froissart M, May A, et al. Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int. 2001;59(6):2206–15. Epub 2001/06/16.PubMedCrossRefGoogle Scholar
  220. 220.
    Haisch L, Almeida JR, da Silva Abreu PR, Schlingmann KP, Konrad M. The role of tight junctions in paracellular ion transport in the renal tubule: lessons learned from a rare inherited tubular disorder. Am J Kidney Dis. 2011;57(2):320–30. Epub 2010/12/28.PubMedCrossRefGoogle Scholar
  221. 221.
    Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol. 2002;13(4):875–86. Epub 2002/03/26.PubMedGoogle Scholar
  222. 222.
    Konrad M, Hou J, Weber S, Dotsch J, Kari JA, Seeman T, et al. CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2008;19(1):171–81. Epub 2007/11/16.PubMedCentralPubMedCrossRefGoogle Scholar
  223. 223.
    Godron A, Harambat J, Boccio V, Mensire A, May A, Rigothier C, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol. 2012;7(5):801–9. Epub 2012/03/17.PubMedCentralPubMedCrossRefGoogle Scholar
  224. 224.
    Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2001;12(9):1872–81.PubMedGoogle Scholar
  225. 225.
    Hampson G, Konrad MA, Scoble J. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC): compound heterozygous mutation in the claudin 16 (CLDN16) gene. BMC Nephrol. 2008;9:12. Epub 2008/09/26.PubMedCentralPubMedCrossRefGoogle Scholar
  226. 226.
    Praga M, Vara J, Gonzalez-Parra E, Andres A, Alamo C, Araque A, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int. 1995;47(5):1419–25.PubMedCrossRefGoogle Scholar
  227. 227.
    Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78(2):179–92. Epub 2005/12/17.PubMedCentralPubMedCrossRefGoogle Scholar
  228. 228.
    Prie D, Huart V, Bakouh N, Planelles G, Dellis O, Gerard B, et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med. 2002;347(13):983–91.PubMedCrossRefGoogle Scholar
  229. 229.
    Edvardsson V, Palsson R, Olafsson I, Hjaltadottir G, Laxdal T. Clinical features and genotype of adenine phosphoribosyltransferase deficiency in Iceland. Am J Kidney Dis. 2001;38(3):473–80. Epub 2001/09/05.PubMedCrossRefGoogle Scholar
  230. 230.
    Bollee G, Dollinger C, Boutaud L, Guillemot D, Bensman A, Harambat J, et al. Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J Am Soc Nephrol. 2010;21(4):679–88.PubMedCentralPubMedCrossRefGoogle Scholar
  231. 231.
    Harambat J, Bollee G, Daudon M, Ceballos-Picot I, Bensman A. Adenine phosphoribosyltransferase deficiency in children. Pediatr Nephrol. 2012;27(4):571–9.PubMedCrossRefGoogle Scholar
  232. 232.
    Sahota AS, Tischfield AJ, Kamatani N, Simmonds HA. Adenine phosphoribosyltransferase deficiency and 2,8-dihydroxyadenine lithiasis. In: Scriver CRBA, Sly WS, Valle D, Vogelstein B, Childs B, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 2571–84.Google Scholar
  233. 233.
    Broderick TP, Schaff DA, Bertino AM, Dush MK, Tischfield JA, Stambrook PJ. Comparative anatomy of the human APRT gene and enzyme: nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement. Proc Natl Acad Sci U S A. 1987;84(10):3349–53.PubMedCentralPubMedCrossRefGoogle Scholar
  234. 234.
    Edvardsson VO, Palsson R, Sahota A. Adenine Phosphoribosyltransferase Deficiency. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle: University of Washington, Seattle; 2012.Google Scholar
  235. 235.
    Kamatani N, Hakoda M, Otsuka S, Yoshikawa H, Kashiwazaki S. Only three mutations account for almost all defective alleles causing adenine phosphoribosyltransferase deficiency in Japanese patients. J Clin Invest. 1992;90(1):130–5.PubMedCentralPubMedCrossRefGoogle Scholar
  236. 236.
    Hidaka Y, Tarle SA, O’Toole TE, Kelley WN, Palella TD. Nucleotide sequence of the human APRT gene. Nucleic Acids Res. 1987;15(21):9086.PubMedCentralPubMedCrossRefGoogle Scholar
  237. 237.
    Sahota A, Chen J, Boyadjiev SA, Gault MH, Tischfield JA. Missense mutation in the adenine phosphoribosyltransferase gene causing 2,8-dihydroxyadenine urolithiasis. Hum Mol Genet. 1994;3(5):817–8.PubMedCrossRefGoogle Scholar
  238. 238.
    Nasr SH, Sethi S, Cornell LD, Milliner DS, Boelkins M, Broviac J, et al. Crystalline nephropathy due to 2,8-dihydroxyadeninuria: an under-recognized cause of irreversible renal failure. Nephrol Dial Transplant. 2010;25(6):1909–15.PubMedCrossRefGoogle Scholar
  239. 239.
    Greenwood MC, Dillon MJ, Simmonds HA, Barratt TM, Pincott JR, Metreweli C. Renal failure due to 2,8-dihydroxyadenine urolithiasis. Eur J Pediatr. 1982;138(4):346–9.PubMedCrossRefGoogle Scholar
  240. 240.
    Zaidan M, Palsson R, Merieau E, Cornec-Le Gall E, Garstka A, Maggiore U, et al. Recurrent 2,8-dihydroxyadenine nephropathy: a rare but preventable cause of renal allograft failure. Am J Transplant. 2014;14(11):2623–32. Epub 2014/10/14.PubMedCentralPubMedCrossRefGoogle Scholar
  241. 241.
    Becker MA, Schumacher Jr HR, Wortmann RL, MacDonald PA, Palo WA, Eustace D, et al. Febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase: a twenty-eight-day, multicenter, phase II, randomized, double-blind, placebo-controlled, dose–response clinical trial examining safety and efficacy in patients with gout. Arthritis Rheum. 2005;52(3):916–23.PubMedCrossRefGoogle Scholar
  242. 242.
    Lesch M, Nyhan WL. A familial disorder of uric acid metabolism and central nervous system function. Am J Med. 1964;36:561–70. Epub 1964/04/01.PubMedCrossRefGoogle Scholar
  243. 243.
    Seegmiller JE, Rosenbloom FM, Kelley WN. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967;155(3770):1682–4. Epub 1967/03/31.PubMedCrossRefGoogle Scholar
  244. 244.
    Fathallah-Shaykh SA, Cramer MT. Uric acid and the kidney. Pediatr Nephrol. 2014;29(6):999–1008. Epub 2013/07/05.PubMedCrossRefGoogle Scholar
  245. 245.
    Nyhan WL, O’Neill JP, Jinnah HA, Harris JC. Lesch-Nyhan Syndrome. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle: University of Washington; 2014.Google Scholar
  246. 246.
    Srivastava T, O'Neill JP, Dasouki M, Simckes AM. Childhood hyperuricemia and acute renal failure resulting from a missense mutation in the HPRT gene. Am J Med Genet. 2002;108(3):219–22. Epub 2002/03/14.PubMedCrossRefGoogle Scholar
  247. 247.
    Simmonds H. Hereditary xanthinuria. In: Van den Berghe G, editor. Orphanet encyclopedia. Paris: French National Institute of Health and Medical Research; Paris France 2003.Google Scholar
  248. 248.
    Ichida K, Amaya Y, Kamatani N, Nishino T, Hosoya T, Sakai O. Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. J Clin Invest. 1997;99(10):2391–7. Epub 1997/05/15.PubMedCentralPubMedCrossRefGoogle Scholar
  249. 249.
    Reiter S, Simmonds HA, Zollner N, Braun SL, Knedel M. Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase in xanthinuric patients not forming oxipurinol. Clin Chim Acta. 1990;187(3):221–34. Epub 1990/03/15.PubMedCrossRefGoogle Scholar
  250. 250.
    Minoshima S, Wang Y, Ichida K, Nishino T, Shimizu N. Mapping of the gene for human xanthine dehydrogenase (oxidase) (XDH) to band p23 of chromosome 2. Cytogenet Cell Genet. 1995;68(1–2):52–3. Epub 1995/01/01.PubMedCrossRefGoogle Scholar
  251. 251.
    Raivio KO, Saksela M, Lapatto R. Xanthine oxidoreductase – role in human pathophysiology and hereditary xanthinuria. In: Scriver CR, Beaudet A, Sly WS, Valle D, editors. The metabolic and molecular basis of inherited disease. New York: McGraw-Hill; 2001. p. 2653–62.Google Scholar
  252. 252.
    Al-Eisa AA, Al-Hunayyan A, Gupta R. Pediatric urolithiasis in Kuwait. Int Urol Nephrol. 2002;33(1):3–6.PubMedCrossRefGoogle Scholar
  253. 253.
    Gok F, Ichida K, Topaloglu R. Mutational analysis of the xanthine dehydrogenase gene in a Turkish family with autosomal recessive classical xanthinuria. Nephrol Dial Transplant. 2003;18(11):2278–83.PubMedCrossRefGoogle Scholar
  254. 254.
    Shen H, Feng C, Jin X, Mao J, Fu H, Gu W, et al. Recurrent exercise-induced acute kidney injury by idiopathic renal hypouricemia with a novel mutation in the SLC2A9 gene and literature review. BMC Pediatr. 2014;14:73. Epub 2014/03/19.PubMedCentralPubMedCrossRefGoogle Scholar
  255. 255.
    Sebesta I, Stiburkova B. Purine disorders with hypouricemia. Prilozi/Makedonska akademija na naukite i umetnostite, Oddelenie za bioloski i medicinski nauki = Contributions/Macedonian Academy of Sciences and Arts, Section of Biological and Medical. Sciences. 2014;35(1):87–92. Epub 2014/05/07.Google Scholar
  256. 256.
    Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40(4):437–42. Epub 2008/03/11.PubMedCrossRefGoogle Scholar
  257. 257.
    Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol. 2010;21(1):64–72. Epub 2009/11/21.PubMedCentralPubMedCrossRefGoogle Scholar
  258. 258.
    Sebesta I, Stiburkova B, Bartl J, Ichida K, Hosoyamada M, Taylor J, et al. Diagnostic tests for primary renal hypouricemia. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1112–6. Epub 2011/12/03.PubMedCrossRefGoogle Scholar
  259. 259.
    Becker MA, Puig JG, Mateos FA, Jimenez ML, Kim M, Simmonds HA. Inherited superactivity of phosphoribosylpyrophosphate synthetase: association of uric acid overproduction and sensorineural deafness. Am J Med. 1988;85(3):383–90. Epub 1988/09/01.PubMedCrossRefGoogle Scholar
  260. 260.
    Chillaron J, Font-Llitjos M, Fort J, Zorzano A, Goldfarb DS, Nunes V, et al. Pathophysiology and treatment of cystinuria. Nat Rev Nephrol. 2010;6(7):424–34.PubMedCrossRefGoogle Scholar
  261. 261.
    Lambert EH, Asplin JR, Herrell SD, Miller NL. Analysis of 24-hour urine parameters as it relates to age of onset of cystine stone formation. J Endourol. 2010;24(7):1179–82.PubMedCrossRefGoogle Scholar
  262. 262.
    Fernandez E, Carrascal M, Rousaud F, Abian J, Zorzano A, Palacin M, et al. rBAT-b(0,+)AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am J Physiol Renal Physiol. 2002;283(3):F540–8.PubMedCrossRefGoogle Scholar
  263. 263.
    Dello Strologo L, Laurenzi C, Legato A, Pastore A. Cystinuria in children and young adults: success of monitoring free-cystine urine levels. PediatrNephrol. 2007;22(11):1869–73.Google Scholar
  264. 264.
    Nakagawa Y, Coe FL. A modified cyanide-nitroprusside method for quantifying urinary cystine concentration that corrects for creatinine interference. Clin Chim Acta. 1999;289(1–2):57–68.PubMedCrossRefGoogle Scholar
  265. 265.
    Boutros M, Vicanek C, Rozen R, Goodyer P. Transient neonatal cystinuria. Kidney Int. 2005;67(2):443–8.PubMedCrossRefGoogle Scholar
  266. 266.
    Lieske JC, Spargo BH, Toback FG. Endocytosis of calcium oxalate crystals and proliferation of renal tubular epithelial cells in a patient with type 1 primary hyperoxaluria. J Urol. 1992;148(5):1517–9. Epub 1992/11/01.PubMedGoogle Scholar
  267. 267.
    Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int. 2009;75(12):1264–71. Epub 2009/02/20.PubMedCentralPubMedCrossRefGoogle Scholar
  268. 268.
    Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C, et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet. 2010;87(3):392–9. Epub 2010/08/28.PubMedCentralPubMedCrossRefGoogle Scholar
  269. 269.
    Danpure CJ. Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am J Nephrol. 2005;25(3):303–10. Epub 2005/06/18.PubMedCrossRefGoogle Scholar
  270. 270.
    Milliner DS. The primary hyperoxalurias: an algorithm for diagnosis. Am J Nephrol. 2005;25(2):154–60. Epub 2005/04/28.PubMedCrossRefGoogle Scholar
  271. 271.
    Monico CG, Rossetti S, Belostotsky R, Cogal AG, Herges RM, Seide BM, et al. Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol. 2011;6(9):2289–95.PubMedCentralPubMedCrossRefGoogle Scholar
  272. 272.
    Mandrile G, van Woerden CS, Berchialla P, Beck BB, Acquaviva Bourdain C, Hulton SA, et al. Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int. 2014;86(6):1197–204. Epub 2014/07/06.PubMedCrossRefGoogle Scholar
  273. 273.
    Jacob DE, Grohe B, Gessner M, Beck BB, Hoppe B. Kidney stones in primary hyperoxaluria: new lessons learnt. PLoS One. 2013;8(8):e70617. Epub 2013/08/14.PubMedCentralPubMedCrossRefGoogle Scholar
  274. 274.
    Hoppe B, Langman CB. A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr Nephrol. 2003;18(10):986–91. Epub 2003/08/16.PubMedCrossRefGoogle Scholar
  275. 275.
    Leumann E, Hoppe B, Neuhaus T. Management of primary hyperoxaluria: efficacy of oral citrate administration. Pediatr Nephrol. 1993;7(2):207–11. Epub 1993/04/01.PubMedCrossRefGoogle Scholar
  276. 276.
    Milliner D. Treatment of the primary hyperoxalurias: a new chapter. Kidney Int. 2006;70(7):1198–200.PubMedCrossRefGoogle Scholar
  277. 277.
    Monico CG, Rossetti S, Olson JB, Milliner DS. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int. 2005;67(5):1704–9. Epub 2005/04/21.PubMedCrossRefGoogle Scholar
  278. 278.
    Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ, et al. Efficacy and safety of oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant. 2011;26(11):3609–15. Epub 2011/04/05.PubMedCrossRefGoogle Scholar
  279. 279.
    Cochat P, Liutkus A, Fargue S, Basmaison O, Ranchin B, Rolland MO. Primary hyperoxaluria type 1: still challenging! Pediatr Nephrol. 2006;21(8):1075–81.PubMedCrossRefGoogle Scholar
  280. 280.
    Illies F, Bonzel KE, Wingen AM, Latta K, Hoyer PF. Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int. 2006;70(9):1642–8. Epub 2006/09/07.PubMedCrossRefGoogle Scholar
  281. 281.
    Tasian GE, Copelovitch L. Evaluation and medical management of kidney stones in children. J Urol. 2014;192(5):1329–36. Epub 2014/06/25.PubMedCrossRefGoogle Scholar
  282. 282.
    Lande MB, Varade W, Erkan E, Niederbracht Y, Schwartz GJ. Role of urinary supersaturation in the evaluation of children with urolithiasis. Pediatr Nephrol. 2005;20(4):491–4. Epub 2005/02/18.PubMedCrossRefGoogle Scholar
  283. 283.
    Routh JC, Graham DA, Nelson CP. Trends in imaging and surgical management of pediatric urolithiasis at American pediatric hospitals. J Urol. 2010;184(4 Suppl):1816–22. Epub 2010/08/24.PubMedCrossRefGoogle Scholar
  284. 284.
    Johnson EK, Faerber GJ, Roberts WW, Wolf Jr JS, Park JM, Bloom DA, et al. Are stone protocol computed tomography scans mandatory for children with suspected urinary calculi? Urology. 2011;78(3):662–6. Epub 2011/07/05.PubMedCrossRefGoogle Scholar
  285. 285.
    Passerotti C, Chow JS, Silva A, Schoettler CL, Rosoklija I, Perez-Rossello J, et al. Ultrasound versus computerized tomography for evaluating urolithiasis. J Urol. 2009;182(4 Suppl):1829–34. Epub 2009/08/21.PubMedCrossRefGoogle Scholar
  286. 286.
    Karmazyn B, Frush DP, Applegate KE, Maxfield C, Cohen MD, Jones RP. CT with a computer-simulated dose reduction technique for detection of pediatric nephroureterolithiasis: comparison of standard and reduced radiation doses. AJR Am J Roentgenol. 2009;192(1):143–9. Epub 2008/12/23.PubMedCrossRefGoogle Scholar
  287. 287.
    Oosterlinck W, Philp NH, Charig C, Gillies G, Hetherington JW, Lloyd J. A double-blind single dose comparison of intramuscular ketorolac tromethamine and pethidine in the treatment of renal colic. J Clin Pharmacol. 1990;30(4):336–41. Epub 1990/04/01.PubMedCrossRefGoogle Scholar
  288. 288.
    Bartfield JM, Kern AM, Raccio-Robak N, Snyder HS, Baevsky RH. Ketorolac tromethamine use in a university-based emergency department. Acad Emerg Med. 1994;1(6):532–8.PubMedCrossRefGoogle Scholar
  289. 289.
    Sandhu DP, Iacovou JW, Fletcher MS, Kaisary AV, Philip NH, Arkell DG. A comparison of intramuscular ketorolac and pethidine in the alleviation of renal colic. Br J Urol. 1994;74(6):690–3. Epub 1994/12/01.PubMedCrossRefGoogle Scholar
  290. 290.
    Gonzalez A, Smith DP. Minimizing hospital length of stay in children undergoing ureteroneocystostomy. Urology. 1998;52(3):501–4. Epub 1998/09/08.PubMedCrossRefGoogle Scholar
  291. 291.
    Eberson CP, Pacicca DM, Ehrlich MG. The role of ketorolac in decreasing length of stay and narcotic complications in the postoperative pediatric orthopaedic patient. J Pediatr Orthop. 1999;19(5):688–92. Epub 1999/09/17.PubMedGoogle Scholar
  292. 292.
    Splinter WM, Reid CW, Roberts DJ, Bass J. Reducing pain after inguinal hernia repair in children: caudal anesthesia versus ketorolac tromethamine. Anesthesiology. 1997;87(3):542–6. Epub 1997/10/08.PubMedCrossRefGoogle Scholar
  293. 293.
    Purday JP, Reichert CC, Merrick PM. Comparative effects of three doses of intravenous ketorolac or morphine on emesis and analgesia for restorative dental surgery in children. Can J Anaesth. 1996;43(3):221–5. Epub 1996/03/01.PubMedCrossRefGoogle Scholar
  294. 294.
    Salerno A, Nappo SG, Matarazzo E, De Dominicis M, Caione P. Treatment of pediatric renal stones in a Western country: a changing pattern. J Pediatr Surg. 2013;48(4):835–9. Epub 2013/04/16.PubMedCrossRefGoogle Scholar
  295. 295.
    Mee MJ, Egerton-Warburton D, Meek R. Treatment and assessment of emergency department nausea and vomiting in Australasia: a survey of anti-emetic management. Emerg Med Australas. 2011;23(2):162–8. Epub 2011/04/15.PubMedCrossRefGoogle Scholar
  296. 296.
    Aydogdu O, Burgu B, Gucuk A, Suer E, Soygur T. Effectiveness of doxazosin in treatment of distal ureteral stones in children. J Urol. 2009;182(6):2880–4. Epub 2009/10/23.PubMedCrossRefGoogle Scholar
  297. 297.
    Mokhless I, Zahran AR, Youssif M, Fahmy A. Tamsulosin for the management of distal ureteral stones in children: a prospective randomized study. J Pediatr Urol. 2012;8(5):544–8. Epub 2011/11/22.PubMedCrossRefGoogle Scholar
  298. 298.
    Tasian GE, Cost NG, Granberg CF, Pulido JE, Rivera M, Schwen Z, et al. Tamsulosin and spontaneous passage of ureteral stones in children: a multi-institutional cohort study. J Urol. 2014;192(2):506–11. Epub 2014/02/13.PubMedCentralPubMedCrossRefGoogle Scholar
  299. 299.
    Pietrow PK, Pope JCI, Adams MC, Shyr Y, Brock JWI. Clinical outcome of pediatric stone disease. J Urol. 2002;167(2 Pt 1):670–3.PubMedCrossRefGoogle Scholar
  300. 300.
    Diamond DA, Menon M, Lee PH, Rickwood AM, Johnston JH. Etiological factors in pediatric stone recurrence. J Urol. 1989;142(2 Pt 2):606–8. discussion 19. Epub 1989/08/01.PubMedGoogle Scholar
  301. 301.
    Nguyen NU, Dumoulin G, Henriet MT, Regnard J. Increase in urinary calcium and oxalate after fructose infusion. Horm Metab Res. 1995;27(3):155–8. Epub 1995/03/01.PubMedCrossRefGoogle Scholar
  302. 302.
    Taylor EN, Curhan GC. Role of nutrition in the formation of calcium-containing kidney stones. Nephron Physiol. 2004;98(2):55–63.CrossRefGoogle Scholar
  303. 303.
    Tekin A, Tekgul S, Atsu N, Bakkaloglu M, Kendi S. Oral potassium citrate treatment for idiopathic hypocitruria in children with calcium urolithiasis. J Urol. 2002;168(6):2572–4.PubMedCrossRefGoogle Scholar
  304. 304.
    Domrongkitchaiporn S, Khositseth S, Stitchantrakul W, Tapaneya-olarn W, Radinahamed P. Dosage of potassium citrate in the correction of urinary abnormalities in pediatric distal renal tubular acidosis patients. Am J Kidney Dis. 2002;39(2):383–91. Epub 2002/02/13.PubMedCrossRefGoogle Scholar
  305. 305.
    McNally MA, Pyzik PL, Rubenstein JE, Hamdy RF, Kossoff EH. Empiric use of potassium citrate reduces kidney-stone incidence with the ketogenic diet. Pediatrics. 2009;124(2):e300–4. Epub 2009/07/15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland and Faculty of Medicine, School of Health SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations