Advertisement

Diabetic Nephropathy in Children

Reference work entry

Abstract

The incidence of childhood-onset type 1 diabetes (T1D) is increasing worldwide at an annual rate of around 3 % [1, 2]. Although T1D can be diagnosed at any age, around 50–60 % of patients with T1D are diagnosed before the age of 15 years, and in most Western countries, T1D accounts for over 90 % of cases of childhood and adolescent diabetes [1, 2]. Based on recent data from the International Diabetes Federation, the overall number of children younger than 14 years with T1D worldwide is 497,100, and each year there are 79,100 newly diagnosed cases [3].

Keywords

DNDiabetic Nephropathy CTGFConnective Tissue Growth Factor Aldose Reductase Albumin Excretion Rate United Kingdom Prospective Diabetes Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet. 2009;373(9680):2027–33.PubMedCrossRefGoogle Scholar
  3. 3.
    (IDF) IDF. http://www.idf.org/sites/default/files/EN_6E_Atlas_Full_0.pdf. 2014. Last accessed 21 June 2014.
  4. 4.
    Marcovecchio ML, Chiarelli F. Microvascular disease in children and adolescents with type 1 diabetes and obesity. Pediatr Nephrol. 2011;26(3):365–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Secrest AM, Becker DJ, Kelsey SF, Laporte RE, Orchard TJ. Cause-specific mortality trends in a large population-based cohort with long-standing childhood-onset type 1 diabetes. Diabetes. 2010;59(12):3216–22.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013;17(1):20–33.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Laing SP, Swerdlow AJ, Slater SD, Burden AC, Morris A, Waugh NR, et al. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia. 2003;46(6):760–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Orchard TJ, Costacou T, Kretowski A, Nesto RW. Type 1 diabetes and coronary artery disease. Diabetes Care. 2006;29(11):2528–38.PubMedCrossRefGoogle Scholar
  9. 9.
    Reinehr T. Type 2 diabetes mellitus in children and adolescents. World J Diabetes. 2013;4(6):270–81.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Dart AB, Martens PJ, Rigatto C, Brownell MD, Dean HJ, Sellers EA. Earlier onset of complications in youth with type 2 diabetes. Diabetes Care. 2014;37(2):436–43.PubMedCrossRefGoogle Scholar
  12. 12.
    TODAY Study Group. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 2013;36(6):1735–41.PubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32 Suppl 2:64–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Mogensen CE. Microalbuminuria, blood pressure and diabetic renal disease: origin and development of ideas. Diabetologia. 1999;42(3):263–85.PubMedCrossRefGoogle Scholar
  16. 16.
    O’Bryan GT, Hostetter TH. The renal hemodynamic basis of diabetic nephropathy. Semin Nephrol. 1997;17(2):93–100.PubMedGoogle Scholar
  17. 17.
    Dunger DB, Schwarze CP, Cooper JD, Widmer B, Neil HA, Shield J, et al. Can we identify adolescents at high risk for nephropathy before the development of microalbuminuria? Diabet Med. 2007;24(2):131–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Schultz CJ, Neil HA, Dalton RN, Dunger DB. Risk of nephropathy can be detected before the onset of microalbuminuria during the early years after diagnosis of type 1 diabetes. Diabetes Care. 2000;23(12):1811–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Fioretto P, Steffes MW, Mauer M. Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes. 1994;43(11):1358–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Amin R, Widmer B, Prevost AT, Schwarze P, Cooper J, Edge J, et al. Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ. 2008;336(7646):697–701.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348(23):2285–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Rossing P. Prediction, progression and prevention of diabetic nephropathy. The Minkowski Lecture 2005. Diabetologia. 2006;49(1):11–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Gonzalez Suarez ML, Thomas DB, Barisoni L, Fornoni A. Diabetic nephropathy: is it time yet for routine kidney biopsy? World J Diabetes. 2013;4(6):245–55.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Valmadrid CT, Klein R, Moss SE, Klein BE. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch Intern Med. 2000;160(8):1093–100.PubMedCrossRefGoogle Scholar
  25. 25.
    Groop PH, Thomas MC, Moran JL, Waden J, Thorn LM, Makinen VP, et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;58(7):1651–8.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Orchard TJ, Secrest AM, Miller RG, Costacou T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2010;53(11):2312–9.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Joner G, Brinchmann-Hansen O, Torres CG, Hanssen KF. A nationwide cross-sectional study of retinopathy and microalbuminuria in young Norwegian type 1 (insulin-dependent) diabetic patients. Diabetologia. 1992;35(11):1049–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Mortensen HB, Marinelli K, Norgaard K, Main K, Kastrup KW, Ibsen KK, et al. A nation-wide cross-sectional study of urinary albumin excretion rate, arterial blood pressure and blood glucose control in Danish children with type 1 diabetes mellitus. Danish Study Group of Diabetes in Childhood. Diabet Med. 1990;7(10):887–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Lawson ML, Sochett EB, Chait PG, Balfe JW, Daneman D. Effect of puberty on markers of glomerular hypertrophy and hypertension in IDDM. Diabetes. 1996;45(1):51–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Kostraba JN, Dorman JS, Orchard TJ, Becker DJ, Ohki Y, Ellis D, et al. Contribution of diabetes duration before puberty to development of microvascular complications in IDDM subjects. Diabetes Care. 1989;12(10):686–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Steinke JM, Mauer M. Lessons learned from studies of the natural history of diabetic nephropathy in young type 1 diabetic patients. Pediatr Endocrinol Rev. 2008;5 Suppl 4:958–63.PubMedGoogle Scholar
  32. 32.
    Amin R, Turner C, van Aken S, Bahu TK, Watts A, Lindsell DR, et al. The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: the Oxford Regional Prospective Study. Kidney Int. 2005;68(4):1740–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Rudberg S, Persson B, Dahlquist G. Increased glomerular filtration rate as a predictor of diabetic nephropathy – an 8-year prospective study. Kidney Int. 1992;41(4):822–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia. 2009;52(4):691–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Norgaard K, Storm B, Graae M, Feldt-Rasmussen B. Elevated albumin excretion and retinal changes in children with type 1 diabetes are related to long-term poor blood glucose control. Diabet Med. 1989;6(4):325–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Olsen BS, Sjolie A, Hougaard P, Johannesen J, Borch-Johnsen K, Marinelli K, et al. A 6-year nationwide cohort study of glycaemic control in young people with type 1 diabetes. Risk markers for the development of retinopathy, nephropathy and neuropathy. Danish Study Group of Diabetes in Childhood. J Diabetes Complications. 2000;14(6):295–300.PubMedCrossRefGoogle Scholar
  37. 37.
    Jones CA, Leese GP, Kerr S, Bestwick K, Isherwood DI, Vora JP, et al. Development and progression of microalbuminuria in a clinic sample of patients with insulin dependent diabetes mellitus. Arch Dis Child. 1998;78(6):518–23.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Rudberg S, Ullman E, Dahlquist G. Relationship between early metabolic control and the development of microalbuminuria – a longitudinal study in children with type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1993;36(12):1309–14.PubMedCrossRefGoogle Scholar
  39. 39.
    Janner M, Knill SE, Diem P, Zuppinger KA, Mullis PE. Persistent microalbuminuria in adolescents with type I (insulin-dependent) diabetes mellitus is associated to early rather than late puberty. Results of a prospective longitudinal study. Eur J Pediatr. 1994;153(6):403–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Gallego PH, Bulsara MK, Frazer F, Lafferty AR, Davis EA, Jones TW. Prevalence and risk factors for microalbuminuria in a population-based sample of children and adolescents with T1DM in Western Australia. Pediatr Diabetes. 2006;7(3):165–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Schultz CJ, Konopelska-Bahu T, Dalton RN, Carroll TA, Stratton I, Gale EA, et al. Microalbuminuria prevalence varies with age, sex, and puberty in children with type 1 diabetes followed from diagnosis in a longitudinal study. Oxford Regional Prospective Study Group. Diabetes Care. 1999;22(3):495–502.PubMedCrossRefGoogle Scholar
  42. 42.
    Barkai L, Vamosi I, Lukacs K. Enhanced progression of urinary albumin excretion in IDDM during puberty. Diabetes Care. 1998;21(6):1019–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H, et al. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation. 2004;110(1):32–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Marcovecchio ML, Woodside J, Jones T, Daneman D, Neil A, Prevost T, et al. Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT): urinary screening and baseline biochemical and cardiovascular assessments. Diabetes Care. 2014;37(3):805–13.PubMedCrossRefGoogle Scholar
  45. 45.
    American Diabetes Association. Standards of medical care in diabetes – 2014. Diabetes Care. 2014;37 Suppl 1:S14–80.CrossRefGoogle Scholar
  46. 46.
    Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia. 2001;44(11):1957–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Osterby R. Glomerular structural changes in type 1 (insulin-dependent) diabetes mellitus: causes, consequences, and prevention. Diabetologia. 1992;35(9):803–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol. 2007;27(2):195–207.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Mauer M, Najafian B. The structure of human diabetic nephropathy. In: Cortes P, Mogensen CE, editors. The diabetic kidney. Totowa: Humana Press; 2006. p. 361–74.CrossRefGoogle Scholar
  50. 50.
    Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest. 2004;34(12):785–96.PubMedCrossRefGoogle Scholar
  51. 51.
    Kriz W, Gretz N, Lemley KV. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int. 1998;54(3):687–97.PubMedCrossRefGoogle Scholar
  52. 52.
    Mauer SM, Steffes MW, Michael AF, Brown DM. Studies of diabetic nephropathy in animals and man. Diabetes. 1976;25(2 suppl):850–7.PubMedGoogle Scholar
  53. 53.
    Paulsen EP, Burke BA, Vernier RL, Mallare MJ, Innes Jr DJ, Sturgill BC. Juxtaglomerular body abnormalities in youth-onset diabetic subjects. Kidney Int. 1994;45(4):1132–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Ruggenenti P, Schieppati A, Remuzzi G. Progression, remission, regression of chronic renal diseases. Lancet. 2001;357(9268):1601–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Carmines PK, Bast JP, Ishii N. Altered renal microvascular function in early diabetes. In: Cortes P, Mogensen CE, editors. The diabetic kidney. Totowa: Humana Press; 2006. p. 23–36.CrossRefGoogle Scholar
  56. 56.
    Singh R, Alavi N, Singh AK, Leehey DJ. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes. 1999;48(10):2066–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest. 1994;93(6):2431–7.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Wolf G. Growth factors and the development of diabetic nephropathy. Curr Diab Rep. 2003;3(6):485–90.PubMedCrossRefGoogle Scholar
  59. 59.
    Cooper ME, Thomas MC. Interactions between growth factors in the kidney: implications for progressive renal injury. Kidney Int. 2003;63(4):1584–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Chiarelli F, Santilli F, Mohn A. Role of growth factors in the development of diabetic complications. Horm Res. 2000;53(2):53–67.PubMedCrossRefGoogle Scholar
  61. 61.
    Dunger DB, Cheetham TD. Growth hormone insulin-like growth factor I axis in insulin-dependent diabetes mellitus. Horm Res. 1996;46(1):2–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Dunger DB, Acerini CL. IGF-I and diabetes in adolescence. Diabetes Metab. 1998;24(2):101–7.PubMedGoogle Scholar
  63. 63.
    Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 2004;65(6):2003–17.PubMedCrossRefGoogle Scholar
  64. 64.
    Santilli F, Spagnoli A, Mohn A, Tumini S, Verrotti A, Cipollone F, et al. Increased vascular endothelial growth factor serum concentrations may help to identify patients with onset of type 1 diabetes during childhood at risk for developing persistent microalbuminuria. J Clin Endocrinol Metab. 2001;86(8):3871–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, et al. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 1998;53(4):853–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Riser BL, Denichilo M, Cortes P, Baker C, Grondin JM, Yee J, et al. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol. 2000;11(1):25–38.PubMedGoogle Scholar
  67. 67.
    Wahab NA, Yevdokimova N, Weston BS, Roberts T, Li XJ, Brinkman H, et al. Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy. Biochem J. 2001;359(Pt 1):77–87.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Gilbert RE, Akdeniz A, Weitz S, Usinger WR, Molineaux C, Jones SE, et al. Urinary connective tissue growth factor excretion in patients with type 1 diabetes and nephropathy. Diabetes Care. 2003;26(9):2632–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Roestenberg P, van Nieuwenhoven FA, Wieten L, Boer P, Diekman T, Tiller AM, et al. Connective tissue growth factor is increased in plasma of type 1 diabetic patients with nephropathy. Diabetes Care. 2004;27(5):1164–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Nguyen TQ, Tarnow L, Jorsal A, Oliver N, Roestenberg P, Ito Y, et al. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care. 2008;31(6):1177–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Hishikawa K, Oemar BS, Nakaki T. Static pressure regulates connective tissue growth factor expression in human mesangial cells. J Biol Chem. 2001;276(20):16797–803.PubMedCrossRefGoogle Scholar
  72. 72.
    Twigg SM, Chen MM, Joly AH, Chakrapani SD, Tsubaki J, Kim HS, et al. Advanced glycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor-binding protein-related protein 2) in human fibroblasts: a potential mechanism for expansion of extracellular matrix in diabetes mellitus. Endocrinology. 2001;142(5):1760–9.PubMedGoogle Scholar
  73. 73.
    Navarro-Gonzalez JF, Mora-Fernandez C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008;19(3):433–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Ruster C, Wolf G. The role of chemokines and chemokine receptors in diabetic nephropathy. Front Biosci. 2008;13:944–55.PubMedCrossRefGoogle Scholar
  75. 75.
    Sassy-Prigent C, Heudes D, Mandet C, Belair MF, Michel O, Perdereau B, et al. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes. 2000;49(3):466–75.PubMedCrossRefGoogle Scholar
  76. 76.
    Giunti S, Tesch GH, Pinach S, Burt DJ, Cooper ME, Cavallo-Perin P, et al. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia. 2008;51(1):198–207.PubMedCrossRefGoogle Scholar
  77. 77.
    Kanamori H, Matsubara T, Mima A, Sumi E, Nagai K, Takahashi T, et al. Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem Biophys Res Commun. 2007;360(4):772–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Chiarelli F, Cipollone F, Mohn A, Marini M, Iezzi A, Fazia M, et al. Circulating monocyte chemoattractant protein-1 and early development of nephropathy in type 1 diabetes. Diabetes Care. 2002;25(10):1829–34.PubMedCrossRefGoogle Scholar
  79. 79.
    Chiarelli F, Mansour M, Verrotti A. Advanced glycation end-products in diabetes mellitus, with particular reference to angiopathy. Diabetes Nutr Metab. 2000;13(4):192–9.PubMedGoogle Scholar
  80. 80.
    Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–46.PubMedCrossRefGoogle Scholar
  81. 81.
    Forbes JM, Cooper ME, Oldfield MD, Thomas MC. Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol. 2003;14(8 Suppl 3):S254–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol. 2007;27(2):130–43.PubMedCrossRefGoogle Scholar
  83. 83.
    Chiarelli F, Catino M, Tumini S, Cipollone F, Mezzetti A, Vanelli M, et al. Advanced glycation end products in adolescents and young adults with diabetic angiopathy. Pediatr Nephrol. 2000;14(8–9):841–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Williams ME. New potential agents in treating diabetic kidney disease: the fourth act. Drugs. 2006;66(18):2287–98.PubMedCrossRefGoogle Scholar
  85. 85.
    Humpert PM, Kopf S, Djuric Z, Wendt T, Morcos M, Nawroth PP, et al. Plasma sRAGE is independently associated with urinary albumin excretion in type 2 diabetes. Diabetes Care. 2006;29(5):1111–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Nakamura K, Yamagishi S, Adachi H, Kurita-Nakamura Y, Matsui T, Yoshida T, et al. Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in diabetic subjects with coronary artery disease. Diabetes Metab Res Rev. 2007;23(5):368–71.PubMedCrossRefGoogle Scholar
  87. 87.
    Katakami N, Matsuhisa M, Kaneto H, Matsuoka TA, Sakamoto K, Nakatani Y, et al. Decreased endogenous secretory advanced glycation end product receptor in type 1 diabetic patients: its possible association with diabetic vascular complications. Diabetes Care. 2005;28(11):2716–21.PubMedCrossRefGoogle Scholar
  88. 88.
    Marcovecchio ML, Giannini C, Dalton RN, Widmer B, Chiarelli F, Dunger DB. Reduced endogenous secretory receptor for advanced glycation end products (esRAGE) in young people with type 1 diabetes developing microalbuminuria. Diabet Med. 2009;26(8):815–9.PubMedCrossRefGoogle Scholar
  89. 89.
    DeRubertis FR, Craven PA. Oxidative and glycooxidative stress in diabetic nephropathy. In: Cortes P, Mogensen CE, editors. The diabetic kidney. Totowa: Humana Press; 2006. p. 151–72.CrossRefGoogle Scholar
  90. 90.
    Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A. 2000;97(22):12222–6.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.PubMedCrossRefGoogle Scholar
  92. 92.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.PubMedCrossRefGoogle Scholar
  93. 93.
    Schleicher ED, Weigert C. Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int Suppl. 2000;77:S13–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Noh H, King GL. The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl. 2007;(106):S49–53.Google Scholar
  95. 95.
    Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007;55(6):498–510.PubMedCrossRefGoogle Scholar
  96. 96.
    Wei Q, Mi QS, Dong Z. The regulation and function of microRNAs in kidney diseases. IUBMB Life. 2013;65(7):602–14.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Kantharidis P, Wang B, Carew RM, Lan HY. Diabetes complications: the microRNA perspective. Diabetes. 2011;60(7):1832–7.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Fioretto P, Bruseghin M, Berto I, Gallina P, Manzato E, Mussap M. Renal protection in diabetes: role of glycemic control. J Am Soc Nephrol. 2006;17(4 Suppl 2):S86–9.PubMedCrossRefGoogle Scholar
  99. 99.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.Google Scholar
  100. 100.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.Google Scholar
  101. 101.
    The Diabetes Control and Complications Trial Research Group. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. J Pediatr. 1994;125(2):177–88.Google Scholar
  102. 102.
    Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA. 2003;290(16):2159–67.Google Scholar
  103. 103.
    Krolewski AS, Laffel LM, Krolewski M, Quinn M, Warram JH. Glycosylated hemoglobin and the risk of microalbuminuria in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1995;332(19):1251–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311(2):89–93.PubMedCrossRefGoogle Scholar
  105. 105.
    ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Intern Med. 2001;134(5):370–9.CrossRefGoogle Scholar
  106. 106.
    O’Hare P, Bilbous R, Mitchell T, O’Callaghan CJ, Viberti GC. Low-dose ramipril reduces microalbuminuria in type 1 diabetic patients without hypertension: results of a randomized controlled trial. Diabetes Care. 2000;23(12):1823–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Poulsen PL, Hansen KW, Mogensen CE. Ambulatory blood pressure in the transition from normo- to microalbuminuria. A longitudinal study in IDDM patients. Diabetes. 1994;43(10):1248–53.PubMedCrossRefGoogle Scholar
  108. 108.
    Moore WV, Donaldson DL, Chonko AM, Ideus P, Wiegmann TB. Ambulatory blood pressure in type I diabetes mellitus. Comparison to presence of incipient nephropathy in adolescents and young adults. Diabetes. 1992;41(9):1035–41.PubMedCrossRefGoogle Scholar
  109. 109.
    Mathiesen ER, Ronn B, Jensen T, Storm B, Deckert T. Relationship between blood pressure and urinary albumin excretion in development of microalbuminuria. Diabetes. 1990;39(2):245–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Microalbuminuria Collaborative Study Group, United Kingdom. Risk factors for development of microalbuminuria in insulin dependent diabetic patients: a cohort study. BMJ. 1993;306(6887):1235–9.Google Scholar
  111. 111.
    Schultz CJ, Neil HA, Dalton RN, Konopelska Bahu T, Dunger DB. Blood pressure does not rise before the onset of microalbuminuria in children followed from diagnosis of type 1 diabetes. Oxford Regional Prospective Study Group. Diabetes Care. 2001;24(3):555–60.PubMedCrossRefGoogle Scholar
  112. 112.
    Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347(11):797–805.PubMedCrossRefGoogle Scholar
  113. 113.
    Marcovecchio ML, Dalton RN, Schwarze CP, Prevost AT, Neil HA, Acerini CL, et al. Ambulatory blood pressure measurements are related to albumin excretion and are predictive for risk of microalbuminuria in young people with type 1 diabetes. Diabetologia. 2009;52(6):1173–81.PubMedCrossRefGoogle Scholar
  114. 114.
    Hovind P, Tarnow L, Rossing P, Jensen BR, Graae M, Torp I, et al. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ. 2004;328(7448):1105.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Giorgino F, Laviola L, Cavallo Perin P, Solnica B, Fuller J, Chaturvedi N. Factors associated with progression to macroalbuminuria in microalbuminuric type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia. 2004;47(6):1020–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Ellis D, Lloyd C, Becker DJ, Forrest KY, Orchard TJ. The changing course of diabetic nephropathy: low-density lipoprotein cholesterol and blood pressure correlate with regression of proteinuria. Am J Kidney Dis. 1996;27(6):809–18.PubMedCrossRefGoogle Scholar
  117. 117.
    Marcovecchio ML, Dalton RN, Prevost AT, Acerini CL, Barrett TG, Cooper JD, et al. Prevalence of abnormal lipid profiles and the relationship with the development of microalbuminuria in adolescents with type 1 diabetes. Diabetes Care. 2009;32(4):658–63.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Raile K, Galler A, Hofer S, Herbst A, Dunstheimer D, Busch P, et al. Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care. 2007;30(10):2523–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Kordonouri O, Danne T, Hopfenmuller W, Enders I, Hovener G, Weber B. Lipid profiles and blood pressure: are they risk factors for the development of early background retinopathy and incipient nephropathy in children with insulin-dependent diabetes mellitus? Acta Paediatr. 1996;85(1):43–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Abraha A, Schultz C, Konopelska-Bahu T, James T, Watts A, Stratton IM, et al. Glycaemic control and familial factors determine hyperlipidaemia in early childhood diabetes. Oxford Regional Prospective Study of Childhood Diabetes. Diabet Med. 1999;16(7):598–604.PubMedCrossRefGoogle Scholar
  121. 121.
    Schultz CJ, Amin R, Dunger DB. Markers of microvascular complications in insulin dependent diabetes. Arch Dis Child. 2002;87(1):10–2.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Dunger DB. Diabetes in puberty. Arch Dis Child. 1992;67(5):569–70.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Amin R, Schultz C, Ong K, Frystyk J, Dalton RN, Perry L, et al. Low IGF-I and elevated testosterone during puberty in subjects with type 1 diabetes developing microalbuminuria in comparison to normoalbuminuric control subjects: the Oxford Regional Prospective Study. Diabetes Care. 2003;26(5):1456–61.PubMedCrossRefGoogle Scholar
  124. 124.
    Bloch CA, Clemons P, Sperling MA. Puberty decreases insulin sensitivity. J Pediatr. 1987;110(3):481–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Caprio S, Plewe G, Diamond MP, Simonson DC, Boulware SD, Sherwin RS, et al. Increased insulin secretion in puberty: a compensatory response to reductions in insulin sensitivity. J Pediatr. 1989;114(6):963–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Cummings EA, Sochett EB, Dekker MG, Lawson ML, Daneman D. Contribution of growth hormone and IGF-I to early diabetic nephropathy in type 1 diabetes. Diabetes. 1998;47(8):1341–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Orchard TJ, Dorman JS, Maser RE, Becker DJ, Drash AL, Ellis D, et al. Prevalence of complications in IDDM by sex and duration. Pittsburgh Epidemiology of Diabetes Complications Study II. Diabetes. 1990;39(9):1116–24.PubMedCrossRefGoogle Scholar
  128. 128.
    Dahlquist G, Rudberg S. The prevalence of microalbuminuria in diabetic children and adolescents and its relation to puberty. Acta Paediatr Scand. 1987;76(5):795–800.PubMedCrossRefGoogle Scholar
  129. 129.
    Rogers DG, White NH, Shalwitz RA, Palmberg P, Smith ME, Santiago JV. The effect of puberty on the development of early diabetic microvascular disease in insulin-dependent diabetes. Diabetes Res Clin Pract. 1987;3(1):39–44.PubMedCrossRefGoogle Scholar
  130. 130.
    Kordonouri O, Danne T, Enders I, Weber B. Does the long-term clinical course of type I diabetes mellitus differ in patients with prepubertal and pubertal onset? Results of the Berlin Retinopathy Study. Eur J Pediatr. 1998;157(3):202–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Holl RW, Grabert M, Heinze E, Sorgo W, Debatin KM. Age at onset and long-term metabolic control affect height in type-1 diabetes mellitus. Eur J Pediatr. 1998;157(12):972–7.PubMedCrossRefGoogle Scholar
  132. 132.
    McNally PG, Raymond NT, Swift PG, Hearnshaw JR, Burden AC. Does the prepubertal duration of diabetes influence the onset of microvascular complications? Diabet Med. 1993;10(10):906–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Donaghue KC, Fung AT, Hing S, Fairchild J, King J, Chan A, et al. The effect of prepubertal diabetes duration on diabetes. Microvascular complications in early and late adolescence. Diabetes Care. 1997;20(1):77–80.PubMedCrossRefGoogle Scholar
  134. 134.
    Donaghue KC, Fairchild JM, Craig ME, Chan AK, Hing S, Cutler LR, et al. Do all prepubertal years of diabetes duration contribute equally to diabetes complications? Diabetes Care. 2003;26(4):1224–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR. The changing natural history of nephropathy in type I diabetes. Am J Med. 1985;78(5):785–94.PubMedCrossRefGoogle Scholar
  136. 136.
    Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 1989;320(18):1161–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Rudberg S, Stattin EL, Dahlquist G. Familial and perinatal risk factors for micro- and macroalbuminuria in young IDDM patients. Diabetes. 1998;47(7):1121–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Viberti GC, Keen H, Wiseman MJ. Raised arterial pressure in parents of proteinuric insulin dependent diabetics. Br Med J (Clin Res Ed). 1987;295(6597):515–7.CrossRefGoogle Scholar
  139. 139.
    Krolewski AS, Canessa M, Warram JH, Laffel LM, Christlieb AR, Knowler WC, et al. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med. 1988;318(3):140–5.PubMedCrossRefGoogle Scholar
  140. 140.
    Marcovecchio ML, Tossavainen PH, Acerini CL, Barrett TG, Edge J, Neil A, et al. Maternal but not paternal association of ambulatory blood pressure with albumin excretion in young offspring with type 1 diabetes. Diabetes Care. 2010;33(2):366–71.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Roglic G, Colhoun HM, Stevens LK, Lemkes HH, Manes C, Fuller JH. Parental history of hypertension and parental history of diabetes and microvascular complications in insulin-dependent diabetes mellitus: the EURODIAB IDDM Complications Study. Diabet Med. 1998;15(5):418–26.PubMedCrossRefGoogle Scholar
  142. 142.
    De Cosmo S, Bacci S, Piras GP, Cignarelli M, Placentino G, Margaglione M, et al. High prevalence of risk factors for cardiovascular disease in parents of IDDM patients with albuminuria. Diabetologia. 1997;40(10):1191–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Sale MM, Freedman BI. Genetic determinants of albuminuria and renal disease in diabetes mellitus. Nephrol Dial Transplant. 2006;21(1):13–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Conway BR, Savage DA, Maxwell AP. Identifying genes for diabetic nephropathy – current difficulties and future directions. Nephrol Dial Transplant. 2006;21(11):3012–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Tarnow L, Gluud C, Parving HH. Diabetic nephropathy and the insertion/deletion polymorphism of the angiotensin-converting enzyme gene. Nephrol Dial Transplant. 1998;13(5):1125–30.PubMedCrossRefGoogle Scholar
  146. 146.
    Penno G, Chaturvedi N, Talmud PJ, Cotroneo P, Manto A, Nannipieri M, et al. Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients: findings from the EUCLID Randomized Controlled Trial. EURODIAB Controlled Trial of Lisinopril in IDDM. Diabetes. 1998;47(9):1507–11.PubMedCrossRefGoogle Scholar
  147. 147.
    Rippin JD, Patel A, Bain SC. Genetics of diabetic nephropathy. Best Pract Res Clin Endocrinol Metab. 2001;15(3):345–58.PubMedCrossRefGoogle Scholar
  148. 148.
    Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes. 2009;58(6):1403–10.PubMedCentralPubMedCrossRefGoogle Scholar
  149. 149.
    Sandholm N, Forsblom C, Makinen VP, McKnight AJ, Osterholm AM, He B, et al. Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes. Diabetologia. 2014;57(6):1143–53.PubMedCrossRefGoogle Scholar
  150. 150.
    Sawicki PT, Didjurgeit U, Muhlhauser I, Bender R, Heinemann L, Berger M. Smoking is associated with progression of diabetic nephropathy. Diabetes Care. 1994;17(2):126–31.PubMedCrossRefGoogle Scholar
  151. 151.
    Biesenbach G, Janko O, Zazgornik J. Similar rate of progression in the predialysis phase in type I and type II diabetes mellitus. Nephrol Dial Transplant. 1994;9(8):1097–102.PubMedGoogle Scholar
  152. 152.
    Chase HP, Garg SK, Marshall G, Berg CL, Harris S, Jackson WE, et al. Cigarette smoking increases the risk of albuminuria among subjects with type I diabetes. JAMA. 1991;265(5):614–7.PubMedCrossRefGoogle Scholar
  153. 153.
    Smith CJ, Steichen TJ. The atherogenic potential of carbon monoxide. Atherosclerosis. 1993;99(2):137–49.PubMedCrossRefGoogle Scholar
  154. 154.
    Poulsen PL, Ebbehoj E, Hansen KW, Mogensen CE. Effects of smoking on 24-h ambulatory blood pressure and autonomic function in normoalbuminuric insulin-dependent diabetes mellitus patients. Am J Hypertens. 1998;11(9):1093–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Pecis M, de Azevedo MJ, Gross JL. Chicken and fish diet reduces glomerular hyperfiltration in IDDM patients. Diabetes Care. 1994;17(7):665–72.PubMedCrossRefGoogle Scholar
  156. 156.
    Toeller M, Buyken A, Heitkamp G, Bramswig S, Mann J, Milne R, et al. Protein intake and urinary albumin excretion rates in the EURODIAB IDDM Complications Study. Diabetologia. 1997;40(10):1219–26.PubMedCrossRefGoogle Scholar
  157. 157.
    Kontessis PA, Bossinakou I, Sarika L, Iliopoulou E, Papantoniou A, Trevisan R, et al. Renal, metabolic, and hormonal responses to proteins of different origin in normotensive, nonproteinuric type I diabetic patients. Diabetes Care. 1995;18(9):1233.PubMedCrossRefGoogle Scholar
  158. 158.
    Mollsten AV, Dahlquist GG, Stattin EL, Rudberg S. Higher intakes of fish protein are related to a lower risk of microalbuminuria in young Swedish type 1 diabetic patients. Diabetes Care. 2001;24(5):805–10.PubMedCrossRefGoogle Scholar
  159. 159.
    Rosenberg ME, Swanson JE, Thomas BL, Hostetter TH. Glomerular and hormonal responses to dietary protein intake in human renal disease. Am J Physiol. 1987;253(6 Pt 2):F1083–90.PubMedGoogle Scholar
  160. 160.
    Schmidt AM, Stern DM. RAGE: a new target for the prevention and treatment of the vascular and inflammatory complications of diabetes. Trends Endocrinol Metab. 2000;11(9):368–75.PubMedCrossRefGoogle Scholar
  161. 161.
    Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997;94(12):6474–9.PubMedCentralPubMedCrossRefGoogle Scholar
  162. 162.
    Kunisaki M, Fumio U, Nawata H, King GL. Vitamin E normalizes diacylglycerol-protein kinase C activation induced by hyperglycemia in rat vascular tissues. Diabetes. 1996;45 Suppl 3:S117–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Toeller M, Buyken AE, Heitkamp G, de Pergola G, Giorgino F, Fuller JH. Fiber intake, serum cholesterol levels, and cardiovascular disease in European individuals with type 1 diabetes. EURODIAB IDDM Complications Study Group. Diabetes Care. 1999;22 Suppl 2:B21–8.PubMedGoogle Scholar
  164. 164.
    Jensen T, Stender S, Goldstein K, Holmer G, Deckert T. Partial normalization by dietary cod-liver oil of increased microvascular albumin leakage in patients with insulin-dependent diabetes and albuminuria. N Engl J Med. 1989;321(23):1572–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Chiarelli F, Santilli F, Sabatino G, Blasetti A, Tumini S, Cipollone F, et al. Effects of vitamin E supplementation on intracellular antioxidant enzyme production in adolescents with type 1 diabetes and early microangiopathy. Pediatr Res. 2004;56(5):720–5.PubMedCrossRefGoogle Scholar
  166. 166.
    Zitouni K, Harry DD, Nourooz-Zadeh J, Betteridge DJ, Earle KA. Circulating vitamin E, transforming growth factor beta1, and the association with renal disease susceptibility in two racial groups with type 2 diabetes. Kidney Int. 2005;67(5):1993–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Farvid MS, Jalali M, Siassi F, Hosseini M. Comparison of the effects of vitamins and/or mineral supplementation on glomerular and tubular dysfunction in type 2 diabetes. Diabetes Care. 2005;28(10):2458–64.PubMedCrossRefGoogle Scholar
  168. 168.
    Stone ML, Craig ME, Chan AK, Lee JW, Verge CF, Donaghue KC. Natural history and risk factors for microalbuminuria in adolescents with type 1 diabetes: a longitudinal study. Diabetes Care. 2006;29(9):2072–7.PubMedCrossRefGoogle Scholar
  169. 169.
    Rossing P. The changing epidemiology of diabetic microangiopathy in type 1 diabetes. Diabetologia. 2005;48(8):1439–44.PubMedCrossRefGoogle Scholar
  170. 170.
    Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis. 1994;23(2):171–5.PubMedCrossRefGoogle Scholar
  171. 171.
    Marcovecchio ML, Heywood JJ, Dalton RN, Dunger DB. The contribution of glycemic control to impaired growth during puberty in young people with type 1 diabetes and microalbuminuria. Pediatr Diabetes. 2014;15(4):303–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Caramori ML, Fioretto P, Mauer M. Enhancing the predictive value of urinary albumin for diabetic nephropathy. J Am Soc Nephrol. 2006;17(2):339–52.PubMedCrossRefGoogle Scholar
  173. 173.
    Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia. 1989;32(4):219–26.PubMedCrossRefGoogle Scholar
  174. 174.
    Donaghue KC, Chiarelli F, Trotta D, Allgrove J, Dahl-Jorgensen K. ISPAD clinical practice consensus guidelines 2006–2007. Microvascular and macrovascular complications. Pediatr Diabetes. 2007;8(3):163–70.PubMedCrossRefGoogle Scholar
  175. 175.
    Donaghue KC, Wadwa RP, Dimeglio LA, Wong TY, Chiarelli F, Marcovecchio ML, Salem M, Raza J, Hofman P, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2014. Microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes 2014;15(Suppl 20):257–69.PubMedCrossRefGoogle Scholar
  176. 176.
    Holl RW, Swift PG, Mortensen HB, Lynggaard H, Hougaard P, Aanstoot HJ, et al. Insulin injection regimens and metabolic control in an international survey of adolescents with type 1 diabetes over 3 years: results from the Hvidore study group. Eur J Pediatr. 2003;162(1):22–9.PubMedCrossRefGoogle Scholar
  177. 177.
    Bryden KS, Neil A, Mayou RA, Peveler RC, Fairburn CG, Dunger DB. Eating habits, body weight, and insulin misuse. A longitudinal study of teenagers and young adults with type 1 diabetes. Diabetes Care. 1999;22(12):1956–60.PubMedCrossRefGoogle Scholar
  178. 178.
    Lovell HG. Angiotensin converting enzyme inhibitors in normotensive diabetic patients with microalbuminuria. Cochrane Database Syst Rev. 2001;(1):CD002183.Google Scholar
  179. 179.
    Strippoli GF, Craig M, Craig JC. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev. 2005;(4):CD004136.Google Scholar
  180. 180.
    Wu HY, Huang JW, Lin HJ, Liao WC, Peng YS, Hung KY, et al. Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systematic review and bayesian network meta-analysis. BMJ. 2013;347:f6008.PubMedCentralPubMedCrossRefGoogle Scholar
  181. 181.
    Strippoli GF, Bonifati C, Craig M, Navaneethan SD, Craig JC. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev. 2006;(4):CD006257.Google Scholar
  182. 182.
    Cook J, Daneman D, Spino M, Sochett E, Perlman K, Balfe JW. Angiotensin converting enzyme inhibitor therapy to decrease microalbuminuria in normotensive children with insulin-dependent diabetes mellitus. J Pediatr. 1990;117(1 Pt 1):39–45.PubMedCrossRefGoogle Scholar
  183. 183.
    Rudberg S, Aperia A, Freyschuss U, Persson B. Enalapril reduces microalbuminuria in young normotensive type 1 (insulin-dependent) diabetic patients irrespective of its hypotensive effect. Diabetologia. 1990;33(8):470–6.PubMedCrossRefGoogle Scholar
  184. 184.
    Rudberg S, Osterby R, Bangstad HJ, Dahlquist G, Persson B. Effect of angiotensin converting enzyme inhibitor or beta blocker on glomerular structural changes in young microalbuminuric patients with Type I (insulin-dependent) diabetes mellitus. Diabetologia. 1999;42(5):589–95.PubMedCrossRefGoogle Scholar
  185. 185.
    Yuksel H, Darcan S, Kabasakal C, Cura A, Mir S, Mavi E. Effect of enalapril on proteinuria, phosphaturia, and calciuria in insulin-dependent diabetes. Pediatr Nephrol. 1998;12(8):648–50.PubMedCrossRefGoogle Scholar
  186. 186.
    Bullo M, Tschumi S, Bucher BS, Bianchetti MG, Simonetti GD. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists: a systematic review. Hypertension. 2012;60(2):444–50.PubMedCrossRefGoogle Scholar
  187. 187.
    Adolescent type 1 Diabetes cardio-renal Intervention Trial Research Group. Adolescent type 1 Diabetes Cardio-renal Intervention Trial (AdDIT). BMC Pediatr. 2009;9:79.Google Scholar
  188. 188.
    Silverstein J, Klingensmith G, Copeland K, Plotnick L, Kaufman F, Laffel L, et al. Care of children and adolescents with type 1 diabetes: a statement of the American Diabetes Association. Diabetes Care. 2005;28(1):186–212.PubMedCrossRefGoogle Scholar
  189. 189.
    Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.CrossRefGoogle Scholar
  190. 190.
    Keane WF, Kasiske BL, O’Donnell MP, Kim Y. The role of altered lipid metabolism in the progression of renal disease: experimental evidence. Am J Kidney Dis. 1991;17(5 Suppl 1):38–42.PubMedGoogle Scholar
  191. 191.
    Edge JA, James T, Shine B. Longitudinal screening of serum lipids in children and adolescents with type 1 diabetes in a UK clinic population. Diabet Med. 2008;25(8):942–8.PubMedCrossRefGoogle Scholar
  192. 192.
    Maahs DM, Wadwa RP, McFann K, Nadeau K, Williams MR, Eckel RH, et al. Longitudinal lipid screening and use of lipid-lowering medications in pediatric type 1 diabetes. J Pediatr. 2007;150(2):146–50, 50 e1–2.PubMedCrossRefGoogle Scholar
  193. 193.
    Bonnet F, Cooper ME. Potential influence of lipids in diabetic nephropathy: insights from experimental data and clinical studies. Diabetes Metab. 2000;26(4):254–64.PubMedGoogle Scholar
  194. 194.
    Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78.PubMedCrossRefGoogle Scholar
  195. 195.
    Arambepola C, Farmer AJ, Perera R, Neil HA. Statin treatment for children and adolescents with heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis. Atherosclerosis. 2007;195(2):339–47.PubMedCrossRefGoogle Scholar
  196. 196.
    Avis HJ, Vissers MN, Stein EA, Wijburg FA, Trip MD, Kastelein JJ, et al. A systematic review and meta-analysis of statin therapy in children with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2007;27(8):1803–10.PubMedCrossRefGoogle Scholar
  197. 197.
    Vuorio A, Kuoppala J, Kovanen PT, Humphries SE, Strandberg T, Tonstad S, et al. Statins for children with familial hypercholesterolemia. Cochrane Database Syst Rev (Online). 2010;(7):CD006401.Google Scholar
  198. 198.
    Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med. 1996;124(7):627–32.PubMedCrossRefGoogle Scholar
  199. 199.
    Chiarelli F, Casani A, Verrotti A, Morgese G, Pinelli L. Diabetic nephropathy in children and adolescents: a critical review with particular reference to angiotensin-converting enzyme inhibitors. Acta Paediatr Suppl. 1998;425:42–5.PubMedCrossRefGoogle Scholar
  200. 200.
    Masson EA, MacFarlane IA, Priestley CJ, Wallymahmed ME, Flavell HJ. Failure to prevent nicotine addiction in young people with diabetes. Arch Dis Child. 1992;67(1):100–2.PubMedCentralPubMedCrossRefGoogle Scholar
  201. 201.
    Fukami K, Yamagishi S, Ueda S, Okuda S. Novel therapeutic targets for diabetic nephropathy. Endocr Metab Immune Disord Drug Targets. 2007;7(2):83–92.PubMedCrossRefGoogle Scholar
  202. 202.
    Soro-Paavonen A, Forbes JM. Novel therapeutics for diabetic micro- and macrovascular complications. Curr Med Chem. 2006;13(15):1777–88.PubMedCrossRefGoogle Scholar
  203. 203.
    Pinhas-Hamiel O, Zeitler P. Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet. 2007;369(9575):1823–31.PubMedCrossRefGoogle Scholar
  204. 204.
    Dean HJ, Sellers EA. Comorbidities and microvascular complications of type 2 diabetes in children and adolescents. Pediatr Diabetes. 2007;8 Suppl 9:35–41.PubMedCrossRefGoogle Scholar
  205. 205.
    Rodriguez BL, Dabelea D, Liese AD, Fujimoto W, Waitzfelder B, Liu L, et al. Prevalence and correlates of elevated blood pressure in youth with diabetes mellitus: the SEARCH for diabetes in youth study. J Pediatr. 2010;157(2):245–51.PubMedCrossRefGoogle Scholar
  206. 206.
    Kershnar AK, Daniels SR, Imperatore G, Palla SL, Petitti DB, Pettitt DJ, et al. Lipid abnormalities are prevalent in youth with type 1 and type 2 diabetes: the SEARCH for Diabetes in Youth Study. J Pediatr. 2006;149(3):314–9.PubMedCrossRefGoogle Scholar
  207. 207.
    Yokoyama H, Okudaira M, Otani T, Sato A, Miura J, Takaike H, et al. Higher incidence of diabetic nephropathy in type 2 than in type 1 diabetes in early-onset diabetes in Japan. Kidney Int. 2000;58(1):302–11.PubMedCrossRefGoogle Scholar
  208. 208.
    Ettinger LM, Freeman K, DiMartino-Nardi JR, Flynn JT. Microalbuminuria and abnormal ambulatory blood pressure in adolescents with type 2 diabetes mellitus. J Pediatr. 2005;147(1):67–73.PubMedCrossRefGoogle Scholar
  209. 209.
    Eppens MC, Craig ME, Cusumano J, Hing S, Chan AK, Howard NJ, et al. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care. 2006;29(6):1300–6.PubMedCrossRefGoogle Scholar
  210. 210.
    Pavkov ME, Bennett PH, Knowler WC, Krakoff J, Sievers ML, Nelson RG. Effect of youth-onset type 2 diabetes mellitus on incidence of end-stage renal disease and mortality in young and middle-aged Pima Indians. JAMA. 2006;296(4):421–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Loredana Marcovecchio
    • 1
  • Francesco Chiarelli
    • 1
  1. 1.University of ChietiChietiItaly

Personalised recommendations