Skip to main content

Renal Dysplasia/Hypoplasia

  • Reference work entry
  • First Online:
Pediatric Nephrology
  • 7317 Accesses

Abstract

Congenital renal hypoplasia/dysplasia refers to the end result of a variety of pathogenic mechanisms that disturb the primary induction of metanephric progenitor cells (renal agenesis), dysregulation of nephron number (disorders of progenitor pool size or ureteric bud branching), aberrant progenitor cell differentiation (dysplastic tissue elements), disturbance of the renal vasculature (causing tubular dysgenesis), organ structure (multicystic/dysplastic kidney), and tissue migration (horseshoe kidney, ectopic kidney). Many of these disturbances are linked to mutation of genes in molecular cascades involved in the development of other organs; thus, renal hypoplasia/dysplasia can be seen with a variety of non-renal malformations. It has been useful to assemble large heterogeneous pediatric cohorts under the umbrella term of congenital anomalies of the kidney and urinary tract (CAKUT) as a way to study classification and identification of underlying genes without bias [1]. In this chapter we consider forms of CAKUT associated with reduced functional renal mass at birth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pope JCT, Brock 3rd JW, Adams MC, Stephens FD, Ichikawa I. How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol. 1999;10:2018–28.

    PubMed  Google Scholar 

  2. van Vuuren SH, Damen-Elias HA, Stigter RH, van der Doef R, Goldschmeding R, de Jong TP, Westers P, Visser GH, Pistorius LR. Size and volume charts of fetal kidney, renal pelvis and adrenal gland. Ultrasound Obstet Gynecol. 2012;40:659–64.

    Article  PubMed  Google Scholar 

  3. Brace RA, Wolf EJ. Normal amniotic fluid volume changes throughout pregnancy. Am J Obstet Gynecol. 1989;161:382–8.

    Article  CAS  PubMed  Google Scholar 

  4. Phelan JP, Ahn MO, Smith CV, Rutherford SE, Anderson E. Amniotic fluid index measurements during pregnancy. J Reprod Med. 1987;32:601–4.

    CAS  PubMed  Google Scholar 

  5. Moore TR, Cayle JE. The amniotic fluid index in normal human pregnancy. Am J Obstet Gynecol. 1990;162:1168–73.

    Article  CAS  PubMed  Google Scholar 

  6. Potter EL. Oligohydramnios: further comment. J Pediatr. 1974;84:931–2.

    Article  CAS  PubMed  Google Scholar 

  7. Potter EL. Bilateral absence of ureters and kidneys: a report of 50 cases. Obstet Gynecol. 1965;25:3–12.

    CAS  PubMed  Google Scholar 

  8. Bertram JF, Cullen-McEwen LA, Egan GF, Gretz N, Baldelomar E, Beeman SC, Bennett KM. Why and how we determine nephron number. Pediatr Nephrol. 2014;29:575–80.

    Article  PubMed  Google Scholar 

  9. Neuringer JR, Brenner BM. Glomerular hypertension: cause and consequence of renal injury. J Hypertens Suppl. 1992;10:S91–7.

    Article  CAS  PubMed  Google Scholar 

  10. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens. 1988;1:335–47.

    Article  CAS  PubMed  Google Scholar 

  11. Anderson S, Brenner BM. The role of intraglomerular pressure in the initiation and progression of renal disease. J Hypertens Suppl. 1986;4:S236–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bates CM. Role of fibroblast growth factor receptor signaling in kidney development. Pediatr Nephrol. 2011;26:1373–9.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Westland R, Schreuder MF, Ket JC, van Wijk JA. Unilateral renal agenesis: a systematic review on associated anomalies and renal injury. Nephrol Dial Transplant. 2013;28:1844–55.

    Article  PubMed  Google Scholar 

  14. Dogan CS, Torun Bayram M. Renal outcome of children with unilateral renal agenesis. Turk J Pediatr. 2013;55:612–5.

    PubMed  Google Scholar 

  15. Schreuder MF, Langemeijer ME, Bokenkamp A, Delemarre-Van de Waal HA, Van Wijk JA. Hypertension and microalbuminuria in children with congenital solitary kidneys. J Paediatr Child Health. 2008;44:363–8.

    Article  PubMed  Google Scholar 

  16. Cho JY, Moon MH, Lee YH, Kim KW, Kim SH. Measurement of compensatory hyperplasia of the contralateral kidney: usefulness for differential diagnosis of fetal unilateral empty renal fossa. Ultrasound Obstet Gynecol. 2009;34:515–20.

    Article  CAS  PubMed  Google Scholar 

  17. Spira EM, Jacobi C, Frankenschmidt A, Pohl M, von Schnakenburg C. Sonographic long-term study: paediatric growth charts for single kidneys. Arch Dis Child. 2009;94:693–8.

    Article  CAS  PubMed  Google Scholar 

  18. Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, Innocenti ML, Somenzi D, Trivelli A, Caridi G, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 2009;76:528–33.

    Article  PubMed  Google Scholar 

  19. Saleh M, Badawy SZ. Unilateral non-communicating cervical atresia in a patient with uterus didelphys and unilateral renal agenesis. J Pediatr Adolesc Gynecol. 2010;23:e137–40.

    Article  PubMed  Google Scholar 

  20. Zhou Y, Fu X, Qian H, Lin K, Wang J, Zhou S, Hu X, Jin H. A Herlyn-Werner-Wunderlich syndrome variant with ipsilateral renal absence and a contralateral duplex collecting system in a 26-year-old female. Gynecol Obstet Invest. 2014;77:137–40.

    Article  PubMed  Google Scholar 

  21. Heinonen PK. Pregnancies in women with uterine malformation, treated obstruction of hemivagina and ipsilateral renal agenesis. Arch Gynecol Obstet. 2013;287:975–8.

    Article  PubMed  Google Scholar 

  22. Han BH, Park SB, Lee YJ, Lee KS, Lee YK. Uterus didelphys with blind hemivagina and ipsilateral renal agenesis (Herlyn-Werner-Wunderlich syndrome) suspected on the presence of hydrocolpos on prenatal sonography. J Clin Ultrasound. 2013;41:380–2.

    Article  PubMed  Google Scholar 

  23. Herlin M, Hojland AT, Petersen MB. Familial occurrence of Mayer-Rokitansky-Kuster-Hauser syndrome: a case report and review of the literature. Am J Med Genet A. 2014;164A:2276–86.

    Article  PubMed  CAS  Google Scholar 

  24. Sahin C, Kalkan M, Yalcinkaya S. Findings concerning testis, vas deference, and epididymis in adult cases with nonpalpable testes. Int Braz J Urol. 2011;37:727–32.

    Article  PubMed  Google Scholar 

  25. Cunningham BK, Khromykh A, Martinez AF, Carney T, Hadley DW, Solomon BD. Analysis of renal anomalies in VACTERL association. Birth Defects Res A Clin Mol Teratol. 2014;100:801–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Saisawat P, Kohl S, Hilger AC, Hwang DY, Yung Gee H, Dworschak GC, Tasic V, Pennimpede T, Natarajan S, Sperry E, et al. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int. 2014;85:1310–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sau T, Chatterjee A, Ghosh K, Dey S. Seizure, deafness and renal agenesis: a rare case of Barakat syndrome. Ann Indian Acad Neurol. 2013;16:91–3.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Barisic I, Odak L, Loane M, Garne E, Wellesley D, Calzolari E, Dolk H, Addor MC, Arriola L, Bergman J, et al. Fraser syndrome: epidemiological study in a European population. Am J Med Genet A. 2013;161A:1012–8.

    Article  PubMed  Google Scholar 

  29. Rosti RO, Kayserili H. Kabuki make-up syndrome with unilateral renal agenesis. Turk J Pediatr. 2009;51:298–300.

    PubMed  Google Scholar 

  30. Nathanson J, Swarr DT, Singer A, Liu M, Chinn A, Jones W, Hurst J, Khalek N, Zackai E, Slavotinek A. Novel FREM1 mutations expand the phenotypic spectrum associated with Manitoba-oculo-tricho-anal (MOTA) syndrome and bifid nose renal agenesis anorectal malformations (BNAR) syndrome. Am J Med Genet A. 2013;161A:473–8.

    Article  PubMed  CAS  Google Scholar 

  31. Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, Reutter HM, Soliman NA, Bogdanovic R, Kehinde EO, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85:1429–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ. Renal aplasia in humans is associated with RET mutations. Am J Hum Genet. 2008;82:344–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kohl S, Hwang DY, Dworschak GC, Hilger AC, Saisawat P, Vivante A, Stajic N, Bogdanovic R, Reutter HM, Kehinde EO, et al. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol. 2014;25:1917–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Boyd PA, Tonks AM, Rankin J, Rounding C, Wellesley D, Draper ES. Monitoring the prenatal detection of structural fetal congenital anomalies in England and Wales: register-based study. J Med Screen. 2011;18:2–7.

    Article  PubMed  Google Scholar 

  35. Bienstock JL, Birsner ML, Coleman F, Hueppchen NA. Successful in utero intervention for bilateral renal agenesis. Obstet Gynecol. 2014;124:413–5.

    Article  PubMed  Google Scholar 

  36. Roodhooft AM, Birnholz JC, Holmes LB. Familial nature of congenital absence and severe dysgenesis of both kidneys. N Engl J Med. 1984;310:1341–5.

    Article  CAS  PubMed  Google Scholar 

  37. Bankier A, de Campo M, Newell R, Rogers JG, Danks DM. A pedigree study of perinatally lethal renal disease. J Med Genet. 1985;22:104–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Humbert C, Silbermann F, Morar B, Parisot M, Zarhrate M, Masson C, Tores F, Blanchet P, Perez MJ, Petrov Y, et al. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am J Hum Genet. 2014;94:288–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschke P, Salomon R, Antignac C, et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell. 2012;22:1191–207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Colquhoun-Kerr JS, Gu WX, Jameson JL, Withers S, Bode HH. X-linked Kallmann syndrome and renal agenesis occurring together and independently in a large Australian family. Am J Med Genet. 1999;83:23–7.

    Article  CAS  PubMed  Google Scholar 

  41. Jeanpierre C, Mace G, Parisot M, Moriniere V, Pawtowsky A, Benabou M, Martinovic J, Amiel J, Attie-Bitach T, Delezoide AL, et al. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J Med Genet. 2011;48:497–504.

    Article  CAS  PubMed  Google Scholar 

  42. Hiraoka M, Tsukahara H, Ohshima Y, Kasuga K, Ishihara Y, Mayumi M. Renal aplasia is the predominant cause of congenital solitary kidneys. Kidney Int. 2002;61:1840–4.

    Article  PubMed  Google Scholar 

  43. Lokmane L, Heliot C, Garcia-Villalba P, Fabre M, Cereghini S. vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis. Development. 2010;137:347–57.

    Article  CAS  PubMed  Google Scholar 

  44. Goncalves A, Zeller R. Genetic analysis reveals an unexpected role of BMP7 in initiation of ureteric bud outgrowth in mouse embryos. PLoS One. 2011;6:e19370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Dziarmaga A, Quinlan J, Goodyer P. Renal hypoplasia: lessons from Pax2. Pediatr Nephrol. 2006;21:26–31.

    Article  PubMed  Google Scholar 

  46. Sanyanusin P, Schimmenti LA, McNoe TA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB, Eccles MR. Mutation of the gene in a family with optic nerve colobomas, renal anomolies and vesicoureteral reflux. Nat Genet. 1996;13:129.

    CAS  PubMed  Google Scholar 

  47. Salomon R, Tellier AL, Attie-Bitach T, Amiel J, Vekemans M, Lyonnet S, Dureau P, Niaudet P, Gubler MC, Broyer M. PAX2 mutations in oligomeganephronia. Kidney Int. 2001;59:457–62.

    Article  CAS  PubMed  Google Scholar 

  48. Laimutis K, Jackson C, Xu X, Warman B, Sarunas R, Andriuskeviciute I, Birute P, Schimmenti LA, Raca G. Typical renal-coloboma syndrome phenotype in a patient with a submicroscopic deletion of the PAX2 gene. Am J Med Genet A. 2012;158A:1437–41.

    Article  PubMed  CAS  Google Scholar 

  49. Dziarmaga A, Clark P, Stayner C, Julien JP, Torban E, Goodyer P, Eccles M. Ureteric bud apoptosis and renal hypoplasia in transgenic PAX2-Bax fetal mice mimics the renal-coloboma syndrome. J Am Soc Nephrol. 2003;14:2767–74.

    Article  CAS  PubMed  Google Scholar 

  50. Dziarmaga A, Eccles M, Goodyer P. Suppression of ureteric bud apoptosis rescues nephron endowment and adult renal function in Pax2 mutant mice. J Am Soc Nephrol. 2006;17:1568–75.

    Article  CAS  PubMed  Google Scholar 

  51. Dziarmaga A, Hueber PA, Iglesias D, Hache N, Jeffs A, Gendron N, Mackenzie A, Eccles M, Goodyer P. Neuronal apoptosis inhibitory protein is expressed in developing kidney and is regulated by PAX2. Am J Physiol Renal Physiol. 2006;291:F913–20.

    Article  CAS  PubMed  Google Scholar 

  52. Barua M, Shieh E, Schlondorff J, Genovese G, Kaplan BS, Pollak MR. Exome sequencing and in vitro studies identified podocalyxin as a candidate gene for focal and segmental glomerulosclerosis. Kidney Int. 2014;85:124–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Alur RP, Vijayasarathy C, Brown JD, Mehtani M, Onojafe IF, Sergeev YV, Boobalan E, Jones M, Tang K, Liu H, et al. Papillorenal syndrome-causing missense mutations in PAX2/Pax2 result in hypomorphic alleles in mouse and human. PLoS Genet. 2010;6:e1000870.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Melnick M, Hodes ME, Nance WE, Yune H, Sweeney A. Branchio-oto-renal dysplasia and branchio-oto dysplasia: two distinct autosomal dominant disorders. Clin Genet. 1978;13:425–42.

    Article  CAS  PubMed  Google Scholar 

  55. Chitayat D, Hodgkinson KA, Chen MF, Haber GD, Nakishima S, Sando I. Branchio-oto-renal syndrome: further delineation of an underdiagnosed syndrome. Am J Med Genet. 1992;43:970–5.

    Article  CAS  PubMed  Google Scholar 

  56. Orten DJ, Fischer SM, Sorensen JL, Radhakrishna U, Cremers CW, Marres HA, Van Camp G, Welch KO, Smith RJ, Kimberling WJ. Branchio-oto-renal syndrome (BOR): novel mutations in the EYA1 gene, and a review of the mutational genetics of BOR. Hum Mutat. 2008;29:537–44.

    Article  CAS  PubMed  Google Scholar 

  57. Chang EH, Menezes M, Meyer NC, Cucci RA, Vervoort VS, Schwartz CE, Smith RJ. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum Mutat. 2004;23:582–9.

    Article  CAS  PubMed  Google Scholar 

  58. Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, Levi-Acobas F, Cruaud C, Le Merrer M, Mathieu M, et al. Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum Mol Genet. 1997;6:2247–55.

    Article  CAS  PubMed  Google Scholar 

  59. Kalatzis V, Sahly I, El-Amraoui A, Petit C. Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn. 1998;213:486–99.

    Article  CAS  PubMed  Google Scholar 

  60. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, Kumar S, Neuhaus TJ, Kemper MJ, Raymond Jr RM, et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A. 2004;101:8090–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hoskins BE, Cramer CH, Silvius D, Zou D, Raymond RM, Orten DJ, Kimberling WJ, Smith RJ, Weil D, Petit C, et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am J Hum Genet. 2007;80:800–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Townes PL, Brocks ER. Hereditary syndrome of imperforate anus with hand, foot, and ear anomalies. J Pediatr. 1972;81:321–6.

    Article  CAS  PubMed  Google Scholar 

  63. Sudo Y, Numakura C, Abe A, Aiba S, Matsunaga A, Hayasaka K. Phenotypic variability in a family with Townes-Brocks syndrome. J Hum Genet. 2010;55:550–1.

    Article  PubMed  Google Scholar 

  64. Faguer S, Pillet A, Chassaing N, Merhenberger M, Bernadet-Monrozies P, Guitard J, Chauveau D. Nephropathy in Townes-Brocks syndrome (SALL1 mutation): imaging and pathological findings in adulthood. Nephrol Dial Transplant. 2009;24:1341–5.

    Article  PubMed  Google Scholar 

  65. Nishinakamura R, Osafune K. Essential roles of Sall family genes in kidney development. J Physiol Sci. 2006;56:131–6.

    Article  PubMed  Google Scholar 

  66. Basta JM, Robbins L, Kiefer SM, Dorsett D, Rauchman M. Sall1 balances self-renewal and differentiation of renal progenitor cells. Development. 2014;141:1047–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Ben Amar H, et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet. 2005;37:964–8.

    Article  CAS  PubMed  Google Scholar 

  68. Allanson JE, Hunter AG, Mettler GS, Jimenez C. Renal tubular dysgenesis: a not uncommon autosomal recessive syndrome: a review. Am J Med Genet. 1992;43:811–4.

    Article  CAS  PubMed  Google Scholar 

  69. Gribouval O, Moriniere V, Pawtowski A, Arrondel C, Sallinen SL, Saloranta C, Clericuzio C, Viot G, Tantau J, Blesson S, et al. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum Mutat. 2012;33:316–26.

    Article  CAS  PubMed  Google Scholar 

  70. Mackie GG, Stephens FD. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol. 1975;114:274–80.

    CAS  PubMed  Google Scholar 

  71. Murawski IJ, Maina RW, Malo D, Guay-Woodford LM, Gros P, Fujiwara M, Morgan K, Gupta IR. The C3H/HeJ inbred mouse is a model of vesico-ureteric reflux with a susceptibility locus on chromosome 12. Kidney Int. 2010;78:269–78.

    Article  CAS  PubMed  Google Scholar 

  72. Murawski IJ, Myburgh DB, Favor J, Gupta IR. Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/- mouse. Am J Physiol Renal Physiol. 2007;293:F1736–45.

    Article  CAS  PubMed  Google Scholar 

  73. Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM. Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res. 2008;64:592–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Snodgrass WT, Shah A, Yang M, Kwon J, Villanueva C, Traylor J, Pritzker K, Nakonezny PA, Haley RW, Bush NC. Prevalence and risk factors for renal scars in children with febrile UTI and/or VUR: a cross-sectional observational study of 565 consecutive patients. J Pediatr Urol. 2013;9:856–63.

    Article  PubMed  Google Scholar 

  75. Hunziker M, Colhoun E, Puri P. Prevalence and predictors of renal functional abnormalities of high grade vesicoureteral reflux. J Urol. 2013;190:1490–4.

    Article  PubMed  Google Scholar 

  76. Chen MJ, Cheng HL, Chiou YY. Risk factors for renal scarring and deterioration of renal function in primary vesico-ureteral reflux children: a long-term follow-up retrospective cohort study. PLoS One. 2013;8:e57954.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Wilson JG, Roth CB, Warkany J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am J Anat. 1953;92:189–217.

    Article  CAS  PubMed  Google Scholar 

  78. Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, Merlet-Benichou C. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 1998;54:1455–62.

    Article  CAS  PubMed  Google Scholar 

  79. Ross SA, McCaffery PJ, Drager UC, De Luca LM. Retinoids in embryonal development. Physiol Rev. 2000;80:1021–54.

    CAS  PubMed  Google Scholar 

  80. Vilar J, Gilbert T, Moreau E, Merlet-Benichou C. Metanephros organogenesis is highly stimulated by vitamin A derivatives in organ culture. Kidney Int. 1996;49:1478–87.

    Article  CAS  PubMed  Google Scholar 

  81. Gilbert T, Merlet-Benichou C. Retinoids and nephron mass control. Pediatr Nephrol. 2000;14:1137–44.

    Article  CAS  PubMed  Google Scholar 

  82. Goodyer P, Kurpad A, Rekha S, Muthayya S, Dwarkanath P, Iyengar A, Philip B, Mhaskar A, Benjamin A, Maharaj S, et al. Effects of maternal vitamin A status on kidney development: a pilot study. Pediatr Nephrol. 2007;22:209–14.

    Article  PubMed  Google Scholar 

  83. Tran S, Chen YW, Chenier I, Chan JS, Quaggin S, Hebert MJ, Ingelfinger JR, Zhang SL. Maternal diabetes modulates renal morphogenesis in offspring. J Am Soc Nephrol. 2008;19:943–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Hokke SN, Armitage JA, Puelles VG, Short KM, Jones L, Smyth IM, Bertram JF, Cullen-McEwen LA. Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy. PLoS One. 2013;8:e58243.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Abi Khalil C, Travert F, Fetita S, Rouzet F, Porcher R, Riveline JP, Hadjadj S, Larger E, Roussel R, Vexiau P, et al. Fetal exposure to maternal type 1 diabetes is associated with renal dysfunction at adult age. Diabetes. 2010;59:2631–6.

    Article  CAS  PubMed  Google Scholar 

  86. Cappuccini B, Torlone E, Ferri C, Arnone S, Troiani S, Bini V, Bellomo G, Barboni G, Di Renzo G. Renal echo-3D and microalbuminuria in children of diabetic mothers: a preliminary study. J Dev Origins Health Dis. 2013;4:285–9.

    Article  CAS  Google Scholar 

  87. Zhang Z, Quinlan J, Hoy W, Hughson MD, Lemire M, Hudson T, Hueber PA, Benjamin A, Roy A, Pascuet E, et al. A common RET variant is associated with reduced newborn kidney size and function. J Am Soc Nephrol. 2008;19:2027–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Quinlan J, Lemire M, Hudson T, Qu H, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Zhang Z, et al. A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol. 2007;18:1915–21.

    Article  CAS  PubMed  Google Scholar 

  89. Kaczmarczyk M, Goracy I, Loniewska B, Kuprjanowicz A, Binczak-Kuleta A, Clark JS, Ciechanowicz A. Association of BMPR1A polymorphism, but not BMP4, with kidney size in full-term newborns. Pediatr Nephrol. 2012.

    Google Scholar 

  90. El Kares R, Manolescu DC, Lakhal-Chaieb L, Montpetit A, Zhang Z, Bhat PV, Goodyer P. A human ALDH1A2 gene variant is associated with increased newborn kidney size and serum retinoic acid. Kidney Int. 2010;78:96–102.

    Article  PubMed  CAS  Google Scholar 

  91. Mugford JW, Sipila P, McMahon JA, McMahon AP. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol. 2008;324:88–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Zhang Z, Iglesias D, Eliopoulos N, El Kares R, Chu L, Romagnani P, Goodyer P. A variant OSR1 allele which disturbs OSR1 mRNA expression in renal progenitor cells is associated with reduction of newborn kidney size and function. Hum Mol Genet. 2011;20:4167–74.

    Article  CAS  PubMed  Google Scholar 

  93. Lozic B, Krzelj V, Kuzmic-Prusac I, Kuzmanic-Samija R, Capkun V, Lasan R, Zemunik T. The OSR1 rs12329305 polymorphism contributes to the development of congenital malformations in cases of stillborn/neonatal death. Med Sci Monit. 2014;20:1531–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Goodyer PCM, Wang L, Engert J. The PAX2-related SNP rs11190739 is associated with accelerated loss of GFR in Type I diabetes. ISN Forefronts Boston, Genetic basis of Renal Disease. 2014;68.

    Google Scholar 

  95. Eickmeyer AB, Casanova NF, He C, Smith EA, Wan J, Bloom DA, Dillman JR. The natural history of the multicystic dysplastic kidney – Is limited follow-up warranted? J Pediatr Urol. 2014;10:655–61.

    Article  CAS  PubMed  Google Scholar 

  96. Dogan CS, Torun-Bayram M, Aybar MD. Unilateral multicystic dysplastic kidney in children. Turk J Pediatr. 2014;56:75–9.

    PubMed  Google Scholar 

  97. Hayes WN, Watson AR. Unilateral multicystic dysplastic kidney: does initial size matter? Pediatr Nephrol. 2012;27:1335–40.

    Article  PubMed  Google Scholar 

  98. Schreuder MF, Westland R, van Wijk JA. Unilateral multicystic dysplastic kidney: a meta-analysis of observational studies on the incidence, associated urinary tract malformations and the contralateral kidney. Nephrol Dial Transplant. 2009;24:1810–8.

    Article  PubMed  Google Scholar 

  99. Sharada S, Vijayakumar M, Nageswaran P, Ekambaram S, Udani A. Multicystic dysplastic kidney: a retrospective study. Indian Pediatr. 2014;51:641–3.

    Article  PubMed  Google Scholar 

  100. Hains DS, Bates CM, Ingraham S, Schwaderer AL. Management and etiology of the unilateral multicystic dysplastic kidney: a review. Pediatr Nephrol. 2009;24:233–41.

    Article  PubMed  Google Scholar 

  101. Moralioglu S, Celayir AC, Bosnali O, Pektas OZ, Bulut IK. Single center experience in patients with unilateral multicystic dysplastic kidney. J Pediatr Urol. 2014;10:763–8.

    Article  PubMed  Google Scholar 

  102. Caruana G, Wong MN, Walker A, Heloury Y, Webb N, Johnstone L, James PA, Burgess T, Bertram JF. Copy-number variation associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol. 2014.

    Google Scholar 

  103. Hasui M, Kaneko K, Tsuji S, Isozaki Y, Kimata T, Nozu Y, Nozu K, Iijima K. Different phenotypes of HNF1ss deletion mutants in familial multicystic dysplastic kidneys. Clin Nephrol. 2013;79:484–7.

    Article  CAS  PubMed  Google Scholar 

  104. Decramer S, Parant O, Beaufils S, Clauin S, Guillou C, Kessler S, Aziza J, Bandin F, Schanstra JP, Bellanne-Chantelot C. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol. 2007;18:923–33.

    Article  CAS  PubMed  Google Scholar 

  105. Body-Bechou D, Loget P, D’Herve D, Le Fiblec B, Grebille AG, Le Guern H, Labarthe C, Redpath M, Cabaret-Dufour AS, Sylvie O, et al. TCF2/HNF-1beta mutations: 3 cases of fetal severe pancreatic agenesis or hypoplasia and multicystic renal dysplasia. Prenat Diagn. 2014;34:90–3.

    Article  CAS  PubMed  Google Scholar 

  106. Shapiro E. Upper urinary tract anomalies and perinatal renal tumors. Clin Perinatol. 2014;41:679–94.

    Article  PubMed  Google Scholar 

  107. Stein JP, Kurzrock EA, Freeman JA, Esrig D, Ginsberg DA, Grossfeld GD, Hardy BE. Right intrathoracic renal ectopia: a case report and review of the literature. Tech Urol. 1999;5:166–8.

    CAS  PubMed  Google Scholar 

  108. Glenn JF. Analysis of 51 patients with horseshoe kidney. N Engl J Med. 1959;261:684–7.

    Article  CAS  PubMed  Google Scholar 

  109. Cascio S, Sweeney B, Granata C, Piaggio G, Jasonni V, Puri P. Vesicoureteral reflux and ureteropelvic junction obstruction in children with horseshoe kidney: treatment and outcome. J Urol. 2002;167:2566–8.

    Article  CAS  PubMed  Google Scholar 

  110. Raj GV, Auge BK, Assimos D, Preminger GM. Metabolic abnormalities associated with renal calculi in patients with horseshoe kidneys. J Endourol. 2004;18:157–61.

    Article  PubMed  Google Scholar 

  111. Boatman DL, Kolln CP, Flocks RH. Congenital anomalies associated with horseshoe kidney. J Urol. 1972;107:205–7.

    CAS  PubMed  Google Scholar 

  112. Neville HL, Ritchey ML. Wilms’ tumor. Overview of National Wilms’ Tumor Study Group results. Urol Clin North Am. 2000;27:435–42.

    Article  CAS  PubMed  Google Scholar 

  113. Flynn MT, Ekstrom L, De Arce M, Costigan C, Hoey HM. Prevalence of renal malformation in Turner syndrome. Pediatr Nephrol. 1996;10:498–500.

    Article  CAS  PubMed  Google Scholar 

  114. Bilge I, Kayserili H, Emre S, Nayir A, Sirin A, Tukel T, Bas F, Kilic G, Basaran S, Gunoz H, et al. Frequency of renal malformations in Turner syndrome: analysis of 82 Turkish children. Pediatr Nephrol. 2000;14:1111–4.

    Article  CAS  PubMed  Google Scholar 

  115. Bhojwani N, Hartman JB, Ahmed M, Morgan R, Davidson JC. Management of ureteral obstruction in crossed fused renal ectopia: a case report. Can Urol Assoc J. 2014;8:E752–4.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Goodyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Goodyer, P., Gupta, I.R. (2016). Renal Dysplasia/Hypoplasia. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics