Skip to main content

Nephrogenic Diabetes Insipidus in Children

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Congenital nephrogenic diabetes insipidus (NDI) is a disorder associated with mutations in either the AVP2R or AQP2 gene, causing the inability of patients to concentrate their pro-urine, which leads to a high risk of dehydration. In this chapter, the clinical aspects as well as the current knowledge regarding the cell biological aspects of congenital X-linked, autosomal recessive and autosomal dominant NDI will be discussed, specifically addressing the latest developments within the field. Based on deepened mechanistic understanding, new therapeutic strategies are currently being explored, which we also describe here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McIlraith CH. Notes on some cases of diabetes insipidus with marked family and hereditary tendencies. Lancet. 1892;II:767–8.

    Article  Google Scholar 

  2. Forssman H. On hereditary diabetes insipidus with special regard to a sex-linked form. Acta Med Scand. 1945;153:3–196.

    Google Scholar 

  3. Waring AJ, Kajdi L, Tappan V. A congenital defect of water metabolism. Am J Dis Child. 1945;69:323–4.

    Google Scholar 

  4. Williams RH, Henry C. Nephrogenic diabetes insipidus: transmitted by females and appearing during infancy in males. Ann Intern Med. 1947;27:84–95.

    Article  CAS  PubMed  Google Scholar 

  5. Kaplan SA. Nephrogenic diabetes insipidus. In: Holliday MA, Barratt TM, Vernier RL, editors. Pediatric nephrology. Baltimore: Williams & Wilkins; 1987. p. 623–5.

    Google Scholar 

  6. van Lieburg AF, Knoers NVAM, Monnens LAH. Clinical presentation and follow-up of thirty patients with congenital nephrogenic diabetes insipidus. J Am Soc Nephrol. 1999;10:1958–64.

    PubMed  Google Scholar 

  7. Lejarraga H, Caletti MG, Caino S, et al. Long-term growth of children with nephrogenic diabetes insipidus. Pediatr Nephrol 2008;23:2007–12.

    Google Scholar 

  8. Hillman DA, Neyzi O, Porter P, et al. Renal (vasopressin-resistant) diabetes insipidus: definition of the effects of homeostatic limitation in capacity to conserve water on the physical, intellectual, and emotional development of a child. Pediatrics. 1958;21:430–5.

    CAS  PubMed  Google Scholar 

  9. Vest M, Talbot NB, Crawford JD. Hypocaloric dwarfism and hydronephrosis in diabetes insipidus. Am J Dis Child. 1963;105:175–81.

    CAS  PubMed  Google Scholar 

  10. Forssman H. Is hereditary diabetes insipidus of nephrogenic type associated with mental deficiency? Acta Psychiatr Neurol Scand. 1955;30:577–87.

    Article  CAS  PubMed  Google Scholar 

  11. Macaulay D, Watson M. Hypernatremia in infants as a cause of brain damage. Arch Dis Child. 1967;42:485–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Bichet DG. Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28:245–51.

    Article  CAS  PubMed  Google Scholar 

  13. Kanzaki S, Omura T, Miyake M, et al. Intracranial calcification in nephrogenic diabetes insipidus. JAMA. 1985;254:3349–50.

    Article  CAS  PubMed  Google Scholar 

  14. Schofer O, Beetz R, Kruse K, et al. Nephrogenic diabetes insipidus and intracerebral calcification. Arch Dis Child. 1990;65:885–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hoekstra JA, van Lieburg AF, Monnens LAH, et al. Cognitive and psychosocial functioning of patients with nephrogenic diabetes insipidus. Am J Med Genet. 1996;61:81–8.

    Article  CAS  PubMed  Google Scholar 

  16. Uribarri J, Kaskas M. Hereditary nephrogenic diabetes insipidus and bilateral nonobstructive hydronephrosis. Nephron. 1993;65:346–9.

    Article  CAS  PubMed  Google Scholar 

  17. Shalev H, Romanovsky I, Knoers NV, et al. Bladder function impairment in aquaporin-2 defective nephrogenic diabetes insipidus. Nephrol Dial Transplant. 2004;19:608–13.

    Article  CAS  PubMed  Google Scholar 

  18. Yoo TH, Ryu DR, Song YS, et al. Congenital nephrogenic diabetes insipidus presented with bilateral hydronephrosis: genetic analysis of V2R gene mutations. Yonsei Med J. 2006;47:126–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hong CR, Kang HG, Choi HJ, et al. X-linked recessive nephrogenic diabetes insipidus: a clinico-genetic study. J Pediatr Endocrinol Metab. 2014;27:93–9.

    Article  CAS  PubMed  Google Scholar 

  20. Ulinski T, Grapin C, Forin V, et al. Severe bladder dysfunction in a family with ADH receptor gene mutation responsible for X-linked nephrogenic diabetes insipidus. Nephrol Dial Transplant. 2004;19:2928–9.

    Article  CAS  PubMed  Google Scholar 

  21. Monnens L, Smulders Y, van Lier H, et al. DDAVP test for assessment of renal concentrating capacity in infants and children. Nephron. 1991;29:151–4.

    Article  Google Scholar 

  22. Bockenhauer D, Bichet DG. Inherited secondary nephrogenic diabetes insipidus: concentrating on humans. Am J Physiol Renal Physiol. 2013;304:F1037–42.

    Article  CAS  PubMed  Google Scholar 

  23. Wesche D, Deen PM, Knoers NV. Congenital nephrogenic diabetes insipidus: the current state of affairs. Pediatr Nephrol. 2012;27:2183–204.

    Article  PubMed  Google Scholar 

  24. Katsura T, Ausiello DA, Brown D. Direct demonstration of aquaporin-2 water channel recycling in stably transfected LCC-PK1 epithelial cells. Am J Physiol. 1996;39:F548–53.

    Google Scholar 

  25. Noda Y, Sasaki S. Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim Biophys Acta. 2006;1758:1117–25.

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki S, Noda Y. Aquaporin-2 protein dynamics within the cell. Curr Opin Nephrol Hypertens. 2007;16:348–52.

    Article  CAS  PubMed  Google Scholar 

  27. Bouley R, Hasler U, Lu HA, et al. Bypassing vasopressin receptor signalling pathways in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28:266–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Moeller HB, Rittig S, Fenton RA. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev. 2013;34:278–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hendriks G, Koudijs M, van Balkom BW, et al. Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem. 2004;279:2975–83.

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen S, DiGiovanni SR, Christensen EI, et al. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A. 1993;90:11663–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Fushimi K, Sasaki S, Muramo F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem. 1997;272:14800–4.

    Article  CAS  PubMed  Google Scholar 

  32. Katsura T, Gustafson CE, Ausiello DA. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LCC-PK1 cells. Am J Physiol. 1997;272:F816–22.

    CAS  Google Scholar 

  33. Klussmann E, Maric K, Wiesner B, et al. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem. 1999;274:4934–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kamsteeg EJ, Heijnen I, van Os CH, et al. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol. 2000;1:919–30.

    Article  Google Scholar 

  35. Jo I, Harris HW, Amendt Raduege AM, Majewski RR, et al. Rat kidney papilla contains abundant synaptobrevin protein that participates in the fusion of antidiuretic hormone-regulated water channel-containing endosomes in vitro. Proc Natl Acad Sci U S A. 1995;92:1876–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Liebenhoff U, Rosenthal W. Identification of Rab3-, Rab5a-, and synaptobrevin II-like proteins in a preparation of rat kidney vesicles containing the vasopressin-regulated water channel. FEBS Lett. 1995;365:209–13.

    Article  CAS  PubMed  Google Scholar 

  37. Nielsen S, Marples D, Birn H, et al. Expression of VAMP2-like protein in kidney collecting duct intracellular vesicles. Colocalization with aquaporin-2 water channels. J Clin Invest. 1995;96:1834–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mandon B, Chou CL, Nielsen S, Knepper MA. Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J Clin Invest. 1996;98:906–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tajika Y, Masuzaki T, Suzuki T, et al. Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol. 2005;124:1–12.

    Article  CAS  PubMed  Google Scholar 

  40. Klussmann E, Tamma G, Lorenz D, et al. An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem. 2001;276:20451–7.

    Article  CAS  PubMed  Google Scholar 

  41. Simon H, Gao Y, Franki N, Hays RH. Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol. 1993;265:C757–62.

    CAS  PubMed  Google Scholar 

  42. Sun TX, Van Hoek A, Huang Y, et al. Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol Renal Physiol. 2002;282:F998–1011.

    Article  CAS  PubMed  Google Scholar 

  43. Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201–5.

    Article  CAS  PubMed  Google Scholar 

  44. Kamsteeg EJ, Hendriks G, Boone M, et al. Short-chain ubiquitination of the aquaporin-2 water channel. Proc Natl Acad Sci U S A. 2006;28:18344–9.

    Article  CAS  Google Scholar 

  45. Vossenkamper A, Nedvetsky PI, Wiesner B, et al. Microtubules are needed for the perinuclear positioning of aquaporin-2 after its endocytic retrieval in renal principal cells. Am J Physiol Cell Physiol. 2007;293:C1129–38.

    Article  PubMed  CAS  Google Scholar 

  46. Marples D, Schroer TA, Ahrens N, et al. Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am J Physiol. 1998;274:F384–94.

    CAS  PubMed  Google Scholar 

  47. Palamidessi A, Frittoli E, Garre M, et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell. 2008;134:135–47.

    Article  CAS  PubMed  Google Scholar 

  48. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.

    Article  CAS  PubMed  Google Scholar 

  49. Matsumura Y, Uchida S, Rai T, et al. Transcription regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol. 1997;8:861–7.

    CAS  PubMed  Google Scholar 

  50. Carter C, Simpkiss M. The “carrier” state in nephrogenic diabetes insipidus. Lancet. 1956;II:1069–73.

    Article  Google Scholar 

  51. van den Ouweland AMW, Knoop MT, Knoers NVAM, et al. Colocalization of the gene for nephrogenic diabetes insipidus (DIR) and the vasopressin type-2 receptor (AVPR2) in the Xq28 region. Genomics. 1992;13:1350–3.

    Article  PubMed  Google Scholar 

  52. van den Ouweland AMW, Dreesen JCFM, Verdijk M, et al. Mutations in the vasopressin type-2 receptor gene associate with nephrogenic diabetes insipidus. Nat Genet. 1992;2:99–102.

    Article  PubMed  Google Scholar 

  53. Pan Y, Metzenberg A, Das S, et al. Mutations of the V2 receptor are associated with X-linked nephrogenic diabetes insipidus. Nat Genet. 1992;2:103–6.

    Article  CAS  PubMed  Google Scholar 

  54. Rosenthal W, Seibold A, Antamarian A, et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature. 1992;359:233–5.

    Article  CAS  PubMed  Google Scholar 

  55. Schreiner RL, Skafish PR, Anand SK, et al. Congenital nephrogenic diabetes insipidus in a baby girl. Arch Dis Child. 1978;53:906–15.

    Article  CAS  PubMed  Google Scholar 

  56. Langley JM, Balfe JW, Selander T, et al. Autosomal recessive inheritance of vasopressin-resistant diabetes insipidus. Am J Med Genet. 1991;38:90–4.

    Article  CAS  PubMed  Google Scholar 

  57. Brodehl J, Braun L. Familiarer nephrogener diabetes insipidus mit voller auspragung bei einer weiblichen saugling. Klin Wochenschr. 1964;42:563.

    Article  CAS  PubMed  Google Scholar 

  58. Deen PMT, Verdijk MAJ, Knoers NVAM, et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science. 1994;264:92–5.

    Article  CAS  PubMed  Google Scholar 

  59. Mulders SM, Bichet DG, Rijss JPL, et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest. 1998;102:57–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Morello J-P, Bichet DG. Nephrogenic diabetes insipidus. Annu Rev Physiol. 2001;63:607–30.

    Article  CAS  PubMed  Google Scholar 

  61. Spanakis E, Milord E, Gragnoli C. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J Cell Physiol. 2008;217:605–17.

    Article  CAS  PubMed  Google Scholar 

  62. Firsov D, Mandon B, Morel A, et al. Molecular analysis of vasopressin receptors in the rat nephron. Evidence for alternative splicing of the V2 receptor. Pflugers Arch. 1994;429:79–89.

    Article  CAS  PubMed  Google Scholar 

  63. Innamorati G, Sadeghi H, Birnbaumer M. A full active nonglycosylated V2 vasopressin receptor. Mol Pharmacol. 1996;50:467–73.

    CAS  PubMed  Google Scholar 

  64. Innamorati G, Sadeghi H, Eberle AN, et al. Phosphorylation of the V2 vasopressin receptor. J Biol Chem. 1997;271:2486–92.

    Google Scholar 

  65. Innamorati G, Sadeghi HM, Tran NT, et al. A serine cluster prevents recycling of the V2 vasopressin receptor protein. Proc Natl Acad Sci U S A. 1998;95:2222–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Schülein R, Rutz C, Rosenthal W. Membrane targeting and determination of transmembrane topology of the human vasopressin V2 receptor. J Biol Chem. 1996;271:28844–52.

    Article  PubMed  Google Scholar 

  67. Krause G, Hermosilla R, Oksche A, et al. Molecular and conformational features of a transport-relevant domain in the C-terminal tail of the vasopressin V2 receptor. Mol Pharmacol. 2000;57:232–42.

    CAS  PubMed  Google Scholar 

  68. Schülein R, Liebenhoff U, Muller H, et al. Properties of the human arginine vasopressin V2 receptor after site-directed mutagenesis of its putative palmitoylation site. J Biol Chem. 1996;313:611–6.

    Google Scholar 

  69. Sasaki S, Chiga M, Kikuchi E, Rai T, Uchida S. Hereditary nephrogenic diabetes insipidus in Japanese patients: analysis of 78 families and report of 22 new mutations in AVPR2 and AQP2. Clin Exp Nephrol. 2013;17:338–44.

    Article  CAS  PubMed  Google Scholar 

  70. Duzenli D, Saglar E, Deniz F, Azal O, Erdem B, Mergen H. Mutations in the AVPR2, AVP-NPII, and AQP2 genes in Turkish patients with diabetes insipidus. Endocrine. 2012;42:664–9.

    Article  CAS  PubMed  Google Scholar 

  71. Knoers NVAM, Deen PMT. Molecular and cellular defects in nephrogenic diabetes insipidus. Pediatr Nephrol. 2001;16:1146–52.

    Article  CAS  PubMed  Google Scholar 

  72. Wenkert D, Schoneberg T, Merendino Jr JJ, et al. Functional characterization of five V2 vasopressin receptor gene mutations. Mol Cell Endocrinol. 1996;124:43–50.

    Article  CAS  PubMed  Google Scholar 

  73. Deen PMT, Brown D. Trafficking of native and mutant mammalian MIP proteins. In: Hohmann S, Agre P, Nielsen S, editors. Aquaporins. San Diego: Academic Press; 2001. p. 235–76.

    Google Scholar 

  74. Robben JH, Knoers NV, Deen PM. Characterization of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus in a polarized cell model. Am J Physiol Renal Physiol. 2005;289:F265–72.

    Article  CAS  PubMed  Google Scholar 

  75. Ellgaard L, Helenius A. ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol. 2001;13:431–7.

    Article  CAS  PubMed  Google Scholar 

  76. Hermosilla R, Oueslati M, Donalies U, et al. Disease-causing V(2) vasopressin receptors are retained in different compartments of the early secretory pathway. Traffic. 2004;5:993–1005.

    Article  CAS  PubMed  Google Scholar 

  77. Pan Y, Wilson P, Gitschier J. The effect of eight V2 vasopressin receptor mutations on stimulation of adenylyl cyclase and binding to vasopressin. J Biol Chem. 1994;269:31933–7.

    CAS  PubMed  Google Scholar 

  78. Robben JH, Knoers NV, Deen PM. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol. 2006;291:F257–70.

    Article  CAS  PubMed  Google Scholar 

  79. Ala Y, Morin D, Sabatier N, et al. Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild phenotype. J Am Soc Nephrol. 1998;9:1861–72.

    CAS  PubMed  Google Scholar 

  80. Bernier V, Lagace M, Lonergan M, et al. Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. Mol Endocrinol. 2004;18:2074–84.

    Article  CAS  PubMed  Google Scholar 

  81. Barak LS, Oakley RH, Laporte SA, et al. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A. 2001;98:93–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Postina R, Ufer E, Pfeiffer R, et al. Misfolded vasopressin V2 receptors caused by extracellular point mutations entail congenital nephrogenic diabetes insipidus. Mol Cell Endocrinol. 2000;164:31–9.

    Article  CAS  PubMed  Google Scholar 

  83. Faerch M, Christensen JH, Corydon TJ, et al. Partial nephrogenic diabetes insipidus caused by a novel mutation in the AVPR2 gene. Clin Endocrinol (Oxf). 2008;68:395–403.

    Article  CAS  Google Scholar 

  84. Armstrong SP, Seeber RM, Ayoub MA, et al. Characterization of three vasopressin receptor 2 variants: an apparent polymorphism (V266A) and two loss-of-function mutations (R181C and M311V). PLoS One. 2013;8:e65885.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Neocleous V, Skordis N, Shammas C, et al. Identification and characterization of a novel X-linked AVPR2 mutation causing partial nephrogenic diabetes insipidus: a case report and review of the literature. Metabolism. 2012;61:922–30.

    Article  CAS  PubMed  Google Scholar 

  86. Bockenhauer D, Carpentier E, Rochdi D, et al. Vasopressin type 2 receptor V88M mutation: molecular basis of partial and complete nephrogenic diabetes insipidus. Nephron Physiol. 2010;114:1–10.

    Article  CAS  Google Scholar 

  87. Kalenga K, Persu A, Goffin E, et al. Intrafamilial phenotype variability in nephrogenic diabetes insipidus. Am J Kidney Dis. 2002;39:737–43.

    Article  PubMed  Google Scholar 

  88. Fushimi K, Uchida S, Harra Y, et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993;361:549–52.

    Article  CAS  PubMed  Google Scholar 

  89. Jung JS, Preston GM, Smith BL, et al. Molecular structure of the water channel through aquaporin-CHIP. J Biol Chem. 1994;269:14648–54.

    CAS  PubMed  Google Scholar 

  90. Heymann JB, Engel A. Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol Sci. 1999;14:187–93.

    CAS  PubMed  Google Scholar 

  91. Hub JS, Grubmüller H, de Groot BL. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb Exp Pharmacol. 2009;190:57–76.

    Article  CAS  PubMed  Google Scholar 

  92. de Groot BL, Grubmüller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science. 2001;294:2353–7.

    Article  PubMed  Google Scholar 

  93. Frick A, Eriksson UK, de Mattia F, et al. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc Natl Acad Sci U S A. 2014;111:6305–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Park YJ, Baik HW, Cheong HI, et al. Congenital nephrogenic diabetes insipidus with a novel mutation in the aquaporin 2 gene. Biomed Rep. 2014;2:596–8.

    PubMed Central  PubMed  Google Scholar 

  95. Rugpolmuang R, Deeb A, Hassan Y, et al. Novel AQP2 mutation causing congenital nephrogenic diabetes insipidus: challenges in management during infancy. J Pediatr Endocrinol Metab. 2014;27:193–7.

    Article  CAS  PubMed  Google Scholar 

  96. Leduc-Nadeau A, Lussier Y, Arthus MF, et al. New autosomal recessive mutations in aquaporin-2 causing nephrogenic diabetes insipidus through deficient targeting display normal expression in Xenopus oocytes. J Physiol. 2010;588:2205–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Deen PM, van Aubel RA, van Lieburg AF, et al. Urinary content of aquaporin 1 and 2 in nephrogenic diabetes insipidus. J Am Soc Nephrol. 1996;7:836–41.

    CAS  PubMed  Google Scholar 

  98. Marr N, Kamsteeg EJ, van Raak M, et al. Functionality of aquaporin-2 missense mutants in recessive nephrogenic diabetes insipidus. Pflugers Arch. 2001;442:73–7.

    Article  CAS  PubMed  Google Scholar 

  99. Tamarappoo BK, Verkman AS. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest. 1998;101:2257–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. De Mattia F, Savelkoul PJ, Bichet DG, et al. A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L. Hum Mol Genet. 2004;13:3045–56.

    Article  PubMed  CAS  Google Scholar 

  101. Loonen AJM, Knoers NVAM, van Os CH, et al. Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28:252–65.

    Article  CAS  PubMed  Google Scholar 

  102. Kuwahara M, Iwai K, Ooeda T, et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet. 2001;69:738–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Kamsteeg E-J, Wormhoudt TAM, Rijss JPL, et al. An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J. 1999;18:2394–400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Marr N, Bichet DG, Lonergan M, et al. Heteroligomerization of an aquaporin-2 mutant with wild-type aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet. 2002;11:779–89.

    Article  CAS  PubMed  Google Scholar 

  105. de Mattia F, Savelkoul PJ, Kamsteeg EJ, et al. Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J Am Soc Nephrol. 2005;16:2872–80.

    Article  PubMed  CAS  Google Scholar 

  106. Savelkoul PJ, De Mattia F, Li Y, et al. p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum Mutat. 2009;30:E891–903.

    Article  PubMed  Google Scholar 

  107. Kamsteeg EJ, Savelkoul PJ, Hendriks G, et al. Missorting of the aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258. Pflugers Arch. 2008;455:1041–54.

    Article  CAS  PubMed  Google Scholar 

  108. Kamsteeg EJ, Stoffels M, Tamma G, et al. Repulsion between Lys258 and upstream arginines explains the missorting of the AQP2 mutant p.Glu258Lys in nephrogenic diabetes insipidus. Hum Mutat. 2009;30:1387–96.

    Article  CAS  PubMed  Google Scholar 

  109. van Lieburg AF, Knoers NVAM, Mallman R, et al. Normal fibrinolytic responses to 1-desamino-8-d-arginine vasopressin in patients with nephrogenic diabetes insipidus caused by mutations in the aquaporin-2 gene. Nephron. 1996;72:544–6.

    Article  PubMed  Google Scholar 

  110. Moses AM, Sangai G, Miller JL. Proposed cause of marker vasopressin resistance in a female with X-linked recessive V2 receptor abnormality. J Clin Endocrinol Metab. 1995;80:1184–6.

    CAS  PubMed  Google Scholar 

  111. van Lieburg AF, Verdijk MAJ, Schoute F, et al. Clinical phenotype of nephrogenic diabetes insipidus in females heterozygous for a vasopressin type-2 receptor mutation. Hum Genet. 1995;96:70–8.

    Article  PubMed  Google Scholar 

  112. Sato K, Fukuno H, Taniguchi T, et al. A novel mutation in the vasopressin V2 receptor gene in a woman with congenital nephrogenic diabetes insipidus. Intern Med. 1999;38:808–12.

    Article  CAS  PubMed  Google Scholar 

  113. Chan Seem CP, Dossetor JF, Penney MD. Nephrogenic diabetes insipidus due to a new mutation of the arginine vasopressin V2 receptor gene in a girl presenting with non-accidental injury. Ann Clin Biochem. 1999;36:779–82.

    Article  PubMed  Google Scholar 

  114. Faerch M, Corydon TJ, Rittig S, et al. Skewed X-chromosome inactivation causing diagnostic misinterpretation in congenital nephrogenic diabetes insipidus. Scand J Urol Nephrol. 2010;44:324–30.

    Article  CAS  PubMed  Google Scholar 

  115. Nomura Y, Onigata K, Nagashima T, et al. Detection of skewed X-inactivation on two female carriers of vasopressin type 2 receptor gene mutation. J Clin Endocrinol Metab. 1997;82:3434–7.

    Article  CAS  PubMed  Google Scholar 

  116. Migeon BR. X inactivation, female mosaicism, and sex differences in renal diseases. J Am Soc Nephrol. 2008;19:2052–9.

    Article  PubMed  Google Scholar 

  117. Satoh M, Ogikubo S, Yoshizawa-Ogasawara A. Correlation between clinical phenotypes and X-inactivation patterns in six female carriers with heterozygote vasopressin type 2 receptor mutations. Endocr J. 2008;55:277–84.

    Article  CAS  PubMed  Google Scholar 

  118. Marples D, Christensen S, Christensen EI, et al. Lithium-induced down-regulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest. 1995;95:1838–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Kwon T-H, Laursen UH, Marples D, et al. Altered expression of renal AQPs and Na+ transporters in rats with lithium-induced NDI. Am J Physiol. 2000;279:F552–64.

    CAS  Google Scholar 

  120. Marples D, Dorup J, Knepper MA, et al. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Am Soc Nephrol. 1996;6:325.

    Google Scholar 

  121. Frokiaer J, Marples D, Knepper M, et al. Bilateral ureteral obstruction downregulates expression of the vasopressin-sensitive aquaporin-2 water channel in rat kidney medulla. J Am Soc Nephrol. 1995;6:1012.

    Google Scholar 

  122. Teitelbaum I, Strasheim A, McGuinness S. Decreased aquaporin aquaporin-2 content in chronic renal failure. J Am Soc Nephrol. 1996;7:1273.

    Google Scholar 

  123. Sands JM, Naruse M, Jacobs JD, et al. Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low protein diet. J Clin Invest. 1996;97:2807–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Walker RJ, Weggery S, Bedford JJ, et al. Lithium-induced reduction in urinary concentration ability and aquaporin-2(AQP2) excretion in healthy volunteers. Kidney Int. 2005;67:291–4.

    Article  CAS  PubMed  Google Scholar 

  125. Kortenoeven ML, Li Y, Shaw S, et al. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int. 2009;76:44–53.

    Article  CAS  PubMed  Google Scholar 

  126. Kishore BK, Ecelbarger CM. Lithium: a versatile tool for understanding renal physiology. Am J Physiol Renal Physiol. 2013;304:F1139–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Christensen BM, Zuber AM, Loffing J, et al. alphaENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus. J Am Soc Nephrol. 2011;22(2):253–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Kjaersgaard G, Madsen K, Marcussen N, et al. Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase-3β-positive epithelium. Am J Physiol Renal Physiol. 2012;302:F455–65.

    Article  CAS  PubMed  Google Scholar 

  129. Rao R, Zhang MZ, Zhao M, et al. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol. 2005;288:F642–9.

    Article  CAS  PubMed  Google Scholar 

  130. Rao R, Patel S, Hao C, et al. GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol. 2010;2:428–37.

    Article  CAS  Google Scholar 

  131. Christensen BM, Marples D, Kim YH, et al. Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am J Physiol Cell Physiol. 2004;286:C952–64.

    Article  CAS  PubMed  Google Scholar 

  132. Berl T. Impact of solute intake on urine flow and water excretion. J Am Soc Nephrol. 2008;19:1076–8.

    Article  CAS  PubMed  Google Scholar 

  133. Crawford JD, Kennedy GC. Chlorothiazide in diabetes insipidus renalis. Nature. 1959;193:891–2.

    Article  Google Scholar 

  134. Monnens L, Jonkman A, Thomas C. Response to indomethacin and hydrochlorothiazide in nephrogenic diabetes insipidus. Clin Sci. 1984;66:709–15.

    Article  CAS  PubMed  Google Scholar 

  135. Rasher W, Rosendahl W, Henricho IA, et al. Congenital nephrogenic diabetes insipidus: vasopressin and prostaglandins in response to treatment with hydrochlorothiazide and indomethacin. Pediatr Nephrol. 1987;1:485–90.

    Article  Google Scholar 

  136. Jakobsson B, Berg U. Effect of hydrochlorothiazide and indomethacin on renal function in nephrogenic diabetes insipidus. Acta Paediatr. 1994;83:522–5.

    Article  CAS  PubMed  Google Scholar 

  137. Alon U, Chan JCM. Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol. 1985;5:9–13.

    Article  CAS  PubMed  Google Scholar 

  138. Knoers N, Monnens LAH. Amiloride-hydrochlorothiazide in the treatment of congenital nephrogenic diabetes insipidus. J Pediatr. 1990;117:499–502.

    Article  CAS  PubMed  Google Scholar 

  139. Pattaragarn A, Alon US. Treatment of congenital nephrogenic diabetes insipidus by hydrochlorothiazide and cyclooxygenase-2 inhibitor. Pediatr Nephrol. 2003;18:1073–6.

    Article  PubMed  Google Scholar 

  140. Early LE, Orloff J. The mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant diabetes insipidus. J Clin Invest. 1962;52:2418–27.

    Google Scholar 

  141. Shirley DG, Walter SJ, Laycock JF. The antidiuretic effect of chronic hydrochlorothiazide treatment in rats with diabetes insipidus. Clin Sci. 1982;63:533–8.

    Article  CAS  PubMed  Google Scholar 

  142. Cesar KR, Magaldi AJ. Thiazide induces water reabsorption in the inner medullary collecting duct of normal and Brattleboro rats. Am J Physiol. 1999;277:F750–6.

    Google Scholar 

  143. Magaldi AJ. New insights into the paradoxical effect of thiazides in diabetes insipidus therapy. Nephrol Dial Transplant. 2000;15:1903–5.

    Article  CAS  PubMed  Google Scholar 

  144. Kim GH, Lee JW, Oh YK, et al. Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol. 2004;15:2836–43.

    Article  CAS  PubMed  Google Scholar 

  145. Morello J-P, Salahpour A, Laperriere A, et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest. 2000;105:887–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Robben JH, Sze M, Knoers NV, et al. Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus. Am J Physiol Renal Physiol. 2007;292:F253–60.

    Article  CAS  PubMed  Google Scholar 

  147. Bernier V, Morello JP, Zarruk A, et al. Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol. 2006;17:232–43.

    Article  CAS  PubMed  Google Scholar 

  148. Jean-Alphonse F, Perkovska S, Frantz MC, et al. Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J Am Soc Nephrol. 2009;20:2190–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Robben JH, Kortenoeven ML, Sze M, et al. Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc Natl Acad Sci U S A. 2009;106:12195–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Li JH, Chou CL, Li B, et al. A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J Clin Invest. 2009;119:3115–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Olesen ET, Rutzler MR, Moeller HB, et al. Vasopressin-independent targeting of aquaporin-2 E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A. 2011;108:12949–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Bouley R, Breton S, Sun TX, et al. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest. 2000;106:1115–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Boone M, Kortenoeven M, Robben JH, et al. Effect of the cGMP pathway on AQP2 expression and translocation: potential implications for nephrogenic diabetes insipidus. Nephrol Dial Transplant. 2010;25:48–54.

    Article  CAS  PubMed  Google Scholar 

  154. Bouley R, Pastor Soler N, Cohen O, et al. Stimulation of AQP2 insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra). Am J Physiol Renal Physiol. 2005;288:F1103–12.

    Article  CAS  PubMed  Google Scholar 

  155. Bouley R, Lu HA, Nunes P, et al. Calcitonin has a vasopressin-like effect on aquaporin-2 trafficking and urinary concentration. J Am Soc Nephrol. 2011;22:59–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Procino G, Barbieri C, Carmosino M, et al. Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Arch. 2011;462:753–66.

    Article  CAS  PubMed  Google Scholar 

  157. Li W, Zhang Y, Bouley R, et al. Simvastatin enhances aquaporin-2 surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase. Am J Physiol Renal Physiol. 2011;301:F309–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Nomura N, Nunes P, Bouley R, et al. High-throughput chemical screening identifies AG-490 as a stimulator of aquaporin 2 membrane expression and urine concentration. Am J Physiol Cell Physiol. 2014;307:C597–605.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Yang B, Zhao D, Verkman AS. Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock-in mouse model of aquaporin-2 mutation. FASEB J. 2009;23:503–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Taiyab A, Sreedhar AS, Rao C. Hsp90 inhibitors, GA and 17AAG, lead to ER stress-induced apoptosis in rat histiocytoma. Biochem Pharmacol. 2009;78:142–52.

    Article  CAS  PubMed  Google Scholar 

  161. Sohara E, Rai T, Yang SS, et al. Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc Natl Acad Sci U S A. 2006;103:14217–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Bichet DG, Ruel N, Arthus MF, et al. Rolipram, a phosphodiesterase inhibitor, in the treatment of two male patients with congenital nephrogenic diabetes insipidus. Nephron. 1990;56:449–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nine V. A. M. Knoers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Knoers, N.V.A.M., Levtchenko, E.N. (2016). Nephrogenic Diabetes Insipidus in Children. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics