Skip to main content

Renal Tubular Disorders of Electrolyte Regulation in Children

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

In 1962, F. Bartter and coworkers described two African American patients presenting a new entity characterized by hypokalemic metabolic alkalosis, renal K+ wasting, hypertrophy and hyperplasia of the juxtaglomerular apparatus, and normotensive hyperaldosteronism [1]. The disorder also featured increased urinary excretion of prostaglandins, high plasma renin activity, and a resistance to the pressor effects of exogenous angiotensin II [1]. For decades, many similar cases and several phenotypic variants have been progressively identified and included in a group of hypokalemic salt-losing tubulopathies, referred to as Bartter-like syndromes [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartter F, Pronove P, Gill Jr J, MacCardle R. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med. 1962;33:811–28.

    Article  CAS  PubMed  Google Scholar 

  2. Jeck N, Schlingmann KP, Reinalter SC, Kömhoff M, Peters M, Waldegger S, Seyberth HW. Salt handling in the distal nephron: lessons learned from inherited human disorders. Am J Physiol Regul Integr Comp Physiol. 2005;288(4):R782–95.

    Article  CAS  PubMed  Google Scholar 

  3. Greger R. Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol Rev. 1985;65:760–97.

    CAS  PubMed  Google Scholar 

  4. Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology and molecular anatomy. Physiol Rev. 2000;80:277–313.

    CAS  PubMed  Google Scholar 

  5. Hoenderop JG, Bindels RJ. Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol. 2005;16:15–26.

    Article  CAS  PubMed  Google Scholar 

  6. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13:183–8.

    Article  CAS  PubMed  Google Scholar 

  7. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet. 1996;14:152–6.

    Article  CAS  PubMed  Google Scholar 

  8. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, KnoersNV AC, Sudbrak R, Kispert A, Hildebrandt F. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001;29:310–4.

    Article  CAS  PubMed  Google Scholar 

  9. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet. 1997;17:171–8.

    Article  CAS  PubMed  Google Scholar 

  10. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitelman HJ, Lifton RP. Gitelman’s variant of Bartter’s syndrome, inherited hypokalemic alkalosis, is caused by mutations in the thiazide sensitive Na-Cl cotransporter. Nat Genet. 1996;12:24–30.

    Article  CAS  PubMed  Google Scholar 

  11. Konrad M, Vollmer M, Lemmink HH, Van Den Heuvel LP, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, Guay-Woodford L, KnoersNV SHW, Feldmann D, Hildebrandt F. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol. 2000;11:1449–59.

    CAS  PubMed  Google Scholar 

  12. McCredie DA, Rotenberg E, Williams AL. Hypercalciuria in potassium-losing nephropathy: a variant of Bartter’s syndrome. Aust Paediatr J. 1974;10(5):286–95.

    CAS  PubMed  Google Scholar 

  13. Proesmans W. Bartter syndrome and its neonatal variant. Eur J Pediatr. 1997;156(9):669–79.

    Article  CAS  PubMed  Google Scholar 

  14. Vargas-Poussou R, Feldmann D, Vollmer M, Konrad M, Kelly L. Novel molecular variants of the Na-K-2Cl cotransporter gene are responsible for antenatal Bartter syndrome. Am J Hum Genet. 1998;62:1332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seyberth HW, Koniger SJ, Rascher W, Kuhl PG, Schweer H. Role of prostaglandins in hyperprostaglandin E syndrome and in selected renal tubular disorders. Pediatr Nephrol. 1987;1:491–7.

    Article  CAS  PubMed  Google Scholar 

  16. Kockerling A, Reinalter SC, Seyberth HW. Impaired response to furosemide in hyperprostaglandin E syndrome: evidence for a tubular defect in the loop of Henle. J Pediatr. 1996;129:519–28.

    Article  CAS  PubMed  Google Scholar 

  17. International Collaborative Study Group for Bartter-like Syndromes. Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity. Hum Mol Genet. 1997;6(1):17–26.

    Article  Google Scholar 

  18. Bettinelli A, Ciarmatori S, Cesareo L, Tedeschi S, Ruffa G, Appiani AC, Rosinini A, Crumieri G, Mercuri B, Sacco M, Leozappa G, Binda S, Cecconi M, Navone C, Curcio C, Syren ML, Casari G. Phenotypic variability in Bartter syndrome type I. Pediatr Nephrol. 2000;14:940–5.

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen S, Maunsbach AB, Ecelbarger CA, Knepper MA. Ultrastructural localization of Na-K-2Cl cotransporter in thick ascending limb and macula densa of rat kidney. Am J Physiol Renal Physiol. 1998;275:F885–93.

    CAS  Google Scholar 

  20. Shankar SS, Brater DC. Loop diuretics: from the Na-K-2Cl transporter to clinical use. Am J Physiol Renal Physiol. 2003;284:F11–21.

    Article  CAS  PubMed  Google Scholar 

  21. Adachi M, Asakura Y, Sato Y, Tajima T, Nakajima T, Yamamoto T, Fujieda K. Novel SLC12A1 (NKCC2) mutations in two families with Bartter syndrome type 1. Endocr J. 2007;54:1003–7.

    Article  CAS  PubMed  Google Scholar 

  22. Kurtz CL, Karolyi L, Seyberth HW, Koch MC, Vargas R, Feldmann D, Vollmer M, Knoers NV, Madrigal G, Guay-Woodford LM. A common NKCC2 mutation in Costa Rican Bartter’s syndrome patients: evidence for a founder effect. J Am Soc Nephrol. 1997;8(11):1706–11.

    CAS  PubMed  Google Scholar 

  23. Castrop H, Schnermann JB. Isoforms of the renal Na-K-2Cl cotransporter NKCC2: expression and functional significance. Am J Physiol Renal Physiol. 2008;295(4):F859–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang W, Sackin H, Giebisch G. Renal potassium channels and their regulation. Annu Rev Physiol. 1992;54:81–96.

    Article  CAS  PubMed  Google Scholar 

  25. Nichols CG, Lopatin AN. Inward rectifier potassium channels. Annu Rev Physiol. 1997;59:171–91.

    Article  CAS  PubMed  Google Scholar 

  26. Feldmann D, Alessandri JL, Deschênes G. Large deletion of the 5′ end of the ROMK1 gene causes antenatal Bartter syndrome. J Am Soc Nephrol. 1998;9(12):2357–9.

    CAS  PubMed  Google Scholar 

  27. Flagg TP, Tate M, Merot J, Welling PA. A mutation linked with Bartter’s syndrome locks Kir 1.1a (ROMK1) channels in a closed state. J Gen Physiol. 1999;114(5):685–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schulte U, Hahn H, Konrad M, Jeck N, Derst C, Wild K, Weidemann S, Ruppersberg JP, Fakler B, Ludwig J. pH gating of ROMK (K(ir)1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. Proc Natl Acad Sci U S A. 1999;96(26):15298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeck N, Derst C, Wischmeyer E, Ott H, Weber S, Rudin C, Seyberth HW, Daut J, Karschin A, Konrad M. Functional heterogeneity of ROMK mutations linked to hyperprostaglandin E syndrome. Kidney Int. 2001;59:1803–11.

    Article  CAS  PubMed  Google Scholar 

  30. Starremans PG, van der Kemp AW, Knoers NV, van den Heuvel LP, Bindels RJ. Implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome. Pflugers Arch. 2002;443(3):466–72.

    Article  CAS  PubMed  Google Scholar 

  31. Peters M, Jeck N, Reinalter S, Leonhardt A, Tonshoff B, Klaus G, Konrad M, Seyberth HW. Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med. 2002;112:183–90.

    Article  PubMed  Google Scholar 

  32. Madrigal G, Saborio P, Mora F, Rincon G, Guay-Woodford LM. Bartter syndrome in Costa Rica: a description of 20 cases. Pediatr Nephrol. 1997;11(3):296–301.

    Article  CAS  PubMed  Google Scholar 

  33. Vaisbich MH, Fujimura MD, Koch VH. Bartter syndrome: benefits and side effects of long-term treatment. Pediatr Nephrol. 2004;19(8):858–63.

    Article  PubMed  Google Scholar 

  34. Seyberth HW, Rascher W, Schweer H, Kühl PG, Mehls O, Schärer K. Congenital hypokalemia with hypercalciuria in preterm infants: a hyperprostaglandinuric tubular syndrome different from Bartter syndrome. J Pediatr. 1985;107(5):694–701.

    Article  CAS  PubMed  Google Scholar 

  35. Shoemaker L, Welch TR, Bergstrom W, Abrams SA, Yergey AL, Vieira N. Calcium kinetics in the hyperprostaglandin E syndrome. Pediatr Res. 1993;33(1):92–6.

    Article  CAS  PubMed  Google Scholar 

  36. Rodríguez-Soriano J, Vallo A, Aguirre M. Bone mineral density and bone turnover in patients with Bartter syndrome. Pediatr Nephrol. 2005;20(8):1120–5.

    Article  PubMed  Google Scholar 

  37. Pressler CA, Heinzinger J, Jeck N, Waldegger P, Pechmann U, Reinalter S, Konrad M, Beetz R, Seyberth HW, Waldegger S. Late-onset manifestation of antenatal Bartter syndrome as a result of residual function of the mutated renal Na+-K+-2Cl co-transporter. J Am Soc Nephrol. 2006;17(8):2136–42.

    Article  CAS  PubMed  Google Scholar 

  38. Schachter AD, Arbus GS, Alexander RJ, Balfe JW. Non-steroidal antiinflammatory drug-associated nephrotoxicity in Bartter syndrome. Pediatr Nephrol. 1998;12:775–7.

    Article  CAS  PubMed  Google Scholar 

  39. Chaudhuri A, Salvatierra Jr O, Alexander SR, Sarwal MM. Option of pre-emptive nephrectomy and renal transplantation for Bartter’s syndrome. Pediatr Transplant. 2006;10(2):266–70.

    Article  PubMed  Google Scholar 

  40. Rudin A. Bartter’s syndrome: a review of 28 patients followed for 10 years. Acta Med Scand. 1988;224:165–71.

    Article  CAS  PubMed  Google Scholar 

  41. Reinalter SC, Grone HJ, Konrad M, Seyberth HW, Klaus G. Evaluation of long-term treatment with indomethacin in hereditary hypokalemic salt-losing tubulopathies. J Pediatr. 2001;139:398–406.

    Article  CAS  PubMed  Google Scholar 

  42. Taugner R, Waldherr R, Seyberth HW, Erdös EG, Menard J, Schneider D. The juxtaglomerular apparatus in Bartter’s syndrome and related tubulopathies. An immunocytochemical and electron microscopic study. Virchows Arch A Pathol Anat Histopathol. 1988;412(5):459–70.

    Article  CAS  PubMed  Google Scholar 

  43. Okada M, Lertprasertsuke N, Tsutsumi Y. Quantitative estimation of rennin-containing cells in the juxtaglomerular apparatus in Bartter’s and pseudo-Bartter’s syndromes. Pathol Int. 2000;50:166–8.

    Article  CAS  PubMed  Google Scholar 

  44. Finer G, Shalev H, Birk OS, Galron D, Jeck N, Sinai-Treiman L, Landau D. Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome. J Pediatr. 2003;142(3):318–23.

    Article  CAS  PubMed  Google Scholar 

  45. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40(5):592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer TM, Caulfield M, Burton PR, Samani NJ. Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension. 2008;51(6):1658–64.

    Article  CAS  PubMed  Google Scholar 

  47. Devuyst O. Salt wasting and blood pressure. Nat Genet. 2008;40(5):495–6.

    Article  CAS  PubMed  Google Scholar 

  48. Welling PA. Rare mutations in renal sodium and potassium transporter genes exhibit impaired transport function. Curr Opin Nephrol Hypertens. 2014;23(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mourani CC, Sanjad SA, Akatcherian CY. Bartter syndrome in a neonate: early treatment with indomethacin. Pediatr Nephrol. 2000;14(2):143–5.

    Article  CAS  PubMed  Google Scholar 

  50. Starremans PG, Kersten FF, Knoers NV, van den Heuvel LP, Bindels RJ. Mutations in the human Na-K-2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters. J Am Soc Nephrol. 2003;14(6):1419–26.

    Article  PubMed  Google Scholar 

  51. Acuña R, Martínez-de-la-Maza L, Ponce-Coria J, Vázquez N, Ortal-Vite P, Pacheco-Alvarez D, Bobadilla NA, Gamba G. Rare mutations in SLC12A1 and SLC12A3 protect against hypertension by reducing the activity of renal salt cotransporters. J Hypertens. 2011;29(3):475–83.

    Article  PubMed  CAS  Google Scholar 

  52. Monette MY, Rinehart J, Lifton RP, Forbush B. Rare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function. Am J Physiol Renal Physiol. 2011;300(4):F840–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schwalbe RA, Bianchi L, Accili EA, Brown AM. Functional consequences of ROMK mutants linked to antenatal Bartter’s syndrome and implications for treatment. Hum Mol Genet. 1998;7(6):975–80.

    Article  CAS  PubMed  Google Scholar 

  54. Peters M, Ermert S, Jeck N, Derst C, Pechmann U, Weber S, Schlingmann KP, Seyberth HW, Waldegger S, Konrad M. Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int. 2003;64(3):923–32.

    Article  CAS  PubMed  Google Scholar 

  55. Fang L, Li D, Welling PA. Hypertension resistance polymorphisms in ROMK (Kir1.1) alter channel function by different mechanisms. Am J Physiol Renal Physiol. 2010;299(6):F1359–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Massa G, Proesmans W, Devlieger H, Vandenberghe K, Van Assche A, Eggermont E. Electrolyte composition of the amniotic fluid in Bartter syndrome. Eur J Obstet Gynecol Reprod Biol. 1987;24(4):335–40.

    Article  CAS  PubMed  Google Scholar 

  57. Shalev H, Ohaly M, Meizner I, Carmi R. Prenatal diagnosis of Bartter syndrome. Prenat Diagn. 1994;14:996–8.

    Article  CAS  PubMed  Google Scholar 

  58. Yang T, Park JM, Arend L, Huang Y, Topaloglu R, Pasumarthy A, Praetorius H, Spring K, Briggs JP, Schnermann J. Low chloride stimulation of prostaglandin E2 release and cyclooxygenase-2 expression in a mouse macula densa cell line. J Biol Chem. 2000;275(48):37922–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kömhoff M, Jeck ND, Seyberth HW, Gröne HJ, Nüsing RM, Breyer MD. Cyclooxygenase-2 expression is associated with the renal macula densa of patients with Bartter-like syndrome. Kidney Int. 2000;58(6):2420–44.

    Article  PubMed  Google Scholar 

  60. Reinalter SC, Jeck N, Brochhausen C, Watzer B, Nüsing RM, Seyberth HW, Kömhoff M. Role of cyclooxygenase-2 in hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int. 2002;62(1):253–60.

    Article  CAS  PubMed  Google Scholar 

  61. Konrad M, Weber S. Recent advances in molecular genetics of hereditary magnesium-losing disorders. J Am Soc Nephrol. 2003;14(1):249–60.

    Article  PubMed  Google Scholar 

  62. Dai LJ, Bapty B, Ritchie G, Quamme GA. PGE2 stimulates Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol. 1998;275:F833–9.

    CAS  PubMed  Google Scholar 

  63. Leonhardt A, Timmermanns G, Roth B, Seyberth HW. Calcium homeostasis and hypercalciuria in hyperprostaglandin E syndrome. J Pediatr. 1992;120(4 Pt 1):546–54.

    Article  CAS  PubMed  Google Scholar 

  64. Schurman SJ, Bergstrom WH, Shoemaker LR, Welch TR. Angiotensin II reduces calcium uptake into bone. Pediatr Nephrol. 2004;19(1):33–5.

    Article  PubMed  Google Scholar 

  65. Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O. Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci U S A. 2000;97:5434–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lorenz JN, Baird NR, Judd LM, Noonan WT, Andringa A, Doetschman T, Manning PA, Liu LH, Miller ML, Shull GE. Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem. 2002;277:37871–80.

    Article  CAS  PubMed  Google Scholar 

  67. Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J. Mouse model of type II Bartter’s syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol. 2008;294(6):F1373–80.

    Article  CAS  PubMed  Google Scholar 

  68. Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. J Clin Invest. 2006;116(3):797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rodriguez-Soriano J. Bartter’s syndrome comes of age. Pediatrics. 1999;103:663–4.

    Article  CAS  PubMed  Google Scholar 

  70. Kleta R, Basoglu C, Kuwertz-Bröking E. New treatment options for Bartter’s syndrome. N Engl J Med. 2000;343:661–2.

    Article  CAS  PubMed  Google Scholar 

  71. Haas NA, Nossal R, Schneider CH, Lewin MA, Ocker V, Holder M, Uhlemann F. Successful management of an extreme example of neonatal hyperprostaglandin-E syndrome (Bartter’s syndrome) with the new cyclooxygenase-2 inhibitor rofecoxib. Pediatr Crit Care Med. 2003;4(2):249–51.

    Article  PubMed  Google Scholar 

  72. Fletcher JT, Graf N, Scarman A, Saleh H, Alexander SI. Nephrotoxicity with cyclooxygenase 2 inhibitor use in children. Pediatr Nephrol. 2006;21(12):1893–7.

    Article  PubMed  Google Scholar 

  73. Wong W, Hulton SA, Taylor CM, Raafat F, Lote CJ, Lindop G. A case of neonatal Bartter’s syndrome. Pediatr Nephrol. 1996;10(4):414–8.

    Article  CAS  PubMed  Google Scholar 

  74. Puricelli E, Bettinelli A, Borsa N, Sironi F, Mattiello C, Tammaro F, Tedeschi S, Bianchetti MG, Italian Collaborative Group for Bartter Syndrome. Long-term follow-up of patients with Bartter syndrome type I and II. Nephrol Dial Transplant. 2010;25(9):2976–81.

    Article  PubMed  Google Scholar 

  75. Landau D, Shalev H, Ohaly M, Carmi R. Infantile variant of Bartter syndrome and sensorineural deafness: a new autosomal recessive disorder. Am J Med Genet. 1995;59:454–9.

    Article  CAS  PubMed  Google Scholar 

  76. Jeck N, Reinalter SC, Henne T, Marg W, Mallmann R, Pasel K, Vollmer M, Klaus G, Leonhardt A, Seyberth HW, Konrad M. Hypokalemic salt-losing tubulopathy with chronic renal failure and sensorineural deafness. Pediatrics. 2001;108, E5.

    Article  CAS  PubMed  Google Scholar 

  77. Brennan TM, Landau D, Shalev H, Lamb F, Schutte BC, Walder RY, Mark AL, Carmi R, Sheffield VC. Linkage of infantile Bartter syndrome with sensorineural deafness to chromosome 1p. Am J Hum Genet. 1998;62:355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ. Barttin is a Cl- channel beta-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature. 2001;414:558–61.

    Article  CAS  PubMed  Google Scholar 

  79. Shalev H, Ohali M, Kachko L, Landau D. The neonatal variant of Bartter syndrome and deafness: preservation of renal function. Pediatrics. 2003;112(3 Pt 1):628–33.

    Article  PubMed  Google Scholar 

  80. Zaffanello M, Taranta A, Palma A, Bettinelli A, Marseglia GL, Emma F. Type IV Bartter syndrome: report of two new cases. Pediatr Nephrol. 2006;21(6):766–70.

    Article  PubMed  Google Scholar 

  81. Miyamura N, Matsumoto K, Taguchi T, Tokunaga H, Nishikawa T, Nishida K, Toyonaga T, Sakakida M, Araki E. Atypical Bartter syndrome with sensorineural deafness with G47R mutation of the beta-subunit for ClC-Ka and ClC-Kb chloride channels, barttin. J Clin Endocrinol Metab. 2003;88(2):781–6.

    Article  CAS  PubMed  Google Scholar 

  82. García-Nieto V, Flores C, Luis-Yanes MI, Gallego E, Villar J, Claverie-Martín F. Mutation G47R in the BSND gene causes Bartter syndrome with deafness in two Spanish families. Pediatr Nephrol. 2006;21(5):643–8.

    Article  PubMed  Google Scholar 

  83. Kitanaka S, Sato U, Maruyama K, Igarashi T. A compound heterozygous mutation in the BSND gene detected in Bartter syndrome type IV. Pediatr Nephrol. 2006;21(2):190–3.

    Article  PubMed  Google Scholar 

  84. Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW. Barttin increases expression and changes current properties of ClC-K channels. Pflugers Arch. 2002;444:411–8.

    Article  CAS  PubMed  Google Scholar 

  85. Riazuddin S, Anwar S, Fischer M, Ahmed ZM, Khan SY, Janssen AG, Zafar AU, Scholl U, Husnain T, Belyantseva IA, Friedman PL, Riazuddin S, Friedman TB, Fahlke C. Molecular basis of DFNB73: mutations of BSND can cause nonsyndromic deafness or Bartter syndrome. Am J Hum Genet. 2009;85(2):273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Janssen AG, Scholl U, Domeyer C, Nothmann D, Leinenweber A, Fahlke C. Disease-causing dysfunctions of barttin in Bartter syndrome type IV. J Am Soc Nephrol. 2009;20(1):45–53.

    Article  CAS  Google Scholar 

  87. Fischer M, Janssen AG, Fahlke C. Barttin activates ClC-K channel function by modulating gating. J Am Soc Nephrol. 2010;21(8):1281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jentsch TJ, Poet M, Fuhrmann JC, Zdebik AA. Physiological functions of CLC Cl-channels gleaned from human genetic disease and mouse models. Annu Rev Physiol. 2005;67:779–807.

    Article  CAS  PubMed  Google Scholar 

  89. Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med. 2004;350:1314–9.

    Article  CAS  PubMed  Google Scholar 

  90. Nozu K, Inagaki T, Fu XJ, Nozu Y, Kaito H, Kanda K, Sekine T, Igarashi T, Nakanishi K, Yoshikawa N, Iijima K, Matsuo M. Molecular analysis of digenic inheritance in Bartter syndrome with sensorineural deafness. J Med Genet. 2008;45(3):182–6.

    Article  CAS  PubMed  Google Scholar 

  91. Rickheit G, Maier H, Strenzke N, Andreescu CE, De Zeeuw CI, Muenscher A, Zdebik AA, Jentsch TJ. Endocochlear potential depends on Cl channels: mechanism underlying deafness in Bartter syndrome IV. EMBO J. 2008;27:2907–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nomura N, Tajima M, Sugawara N, Morimoto T, Kondo Y, Ohno M, Uchida K, Mti K, Bachmann S, Soleimani M, Ohta E, Ohta A, Sohara E, Okado T, Rai T, Jentsch TJ, Sasaki S, Uchida S. Generation and analysis of R8L barttin knockin mouse. Am J Physiol Renal Physiol. 2011;301:F297–307.

    Article  CAS  PubMed  Google Scholar 

  93. Nomura N, Kamiya K, Ikeda K, Yui N, Chiga M, Sohara E, Rai T, Sakaki S, Uchida S. Treatment with 17-allylamino-17-demethoxygeldanamycin ameliorated symptoms of Bartter syndrome type IV caused by mutated Bsnd in mice. Biochem Biophys Res Commun. 2013;441(3):544–9.

    Article  CAS  PubMed  Google Scholar 

  94. Nozu K, Fu XJ, Nakanishi K, Yoshikawa N, Kaito H, Kanda K, Krol RP, Miyashita R, Kamitsuji H, Kanda S, Hayashi Y, Satomura K, Shimizu N, Iijima K, Matsuo M. Molecular analysis of patients with type III Bartter syndrome: picking up large heterozygous deletions with semiquantitative PCR. Pediatr Res. 2007;62(3):364–9.

    Article  CAS  PubMed  Google Scholar 

  95. Brochard K, Boyer O, Blanchard A, Loirat C, Niaudet P, Macher MA, Deschenes G, Bensman A, Decramer S, Cochat P, Morin D, Broux F, Caillez M, Guyot C, Novo R, Jeunemaître X, Vargas-Poussou R. Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome. Nephrol Dial Transplant. 2009;24(5):1455–64.

    Article  CAS  PubMed  Google Scholar 

  96. Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E, Debaix H, Grisart B, Bridoux F, Unwin R, Moulin B, Haymann JP, Vantygehem MC, Rigothier C, Dussol B, Godin M, Nivet H, Dubourg L, Tack Y, Gimenez-Roqueplo AP, Houiller P, Blanchard A, Devuyst O, Jeunemaître X. Spectrum of mutations in Gitelman Syndrome. J Am Soc Nephrol. 2011;22:693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rodríguez-Soriano J, Vallo A, Pérez de Nanclares G, Bilbao JR, Castaño L. A founder mutation in the CLCNKB gene causes Bartter syndrome type III in Spain. Pediatr Nephrol. 2005;20(7):891–6.

    Article  PubMed  Google Scholar 

  98. Keck M, Andrini O, Lahuna O, Burgos J, Cid LP, Sepulveda FV, L’Hoste S, Blanchard A, Vargas-Poussou R, Lourdel S, Teulon J. Novel CLCNKB mutations causing Bartter syndrome affect channel surface expression. Hum Mut. 2013;34:1269–78.

    Article  CAS  PubMed  Google Scholar 

  99. Zelikovic I, Szargel R, Hawash A, Labay V, Hatib I, Cohen N, Nakhoul F. A novel mutation in the chloride channel gene CLCNKB as a cause of Gitelman and Bartter syndromes. Kidney Int. 2003;63:24–32.

    Article  CAS  PubMed  Google Scholar 

  100. Andrini O, Keck M, L’Hoste S, Briones R, Mansour-Hendili L, Grand T, Sepúlveda FV, Blanchard A, Lourdel S, Vargas-Poussou R, Teulon J. CLCNKB mutations causing mild Bartter syndrome profoundly alter the pH and Ca2+ dependence of ClC-Kb channels. Pflugers Arch. 2014;466(9):1713–23.

    Article  CAS  PubMed  Google Scholar 

  101. Matsumura Y, Uchida S, Kondo Y, Miyazaki H, Ko SB, Hayama A, Morimoto T, Liu W, Arisawa M, Sasaki S, Marumo F. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet. 1991;21(1):95–8.

    Article  CAS  Google Scholar 

  102. Barlassina C, Dal Fiume C, Lanzani C, Manunta P, Guffanti G, Ruello A, Bianchi G, Del Vecchio L, Macciardi F, Cusi D. Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum Mol Genet. 2007;16(13):1630–8.

    Article  CAS  PubMed  Google Scholar 

  103. Cappola TP, Matkovich SJ, Wang W, van Booven D, Li M, Wang X, Qu L, Sweitzer NK, Fang JC, Reilly MP, Hakonarson H, Nerbonne JM, Dorn 2nd GW. Loss-of-function DNA sequence variant in the CLCNKA chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proc Natl Acad Sci U S A. 2011;108(6):2456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Westland R, Hack WW, van der Horst HJ, Uittenbogaard LB, van Hagen JM, van der Valk P, Kamsteeg EJ, van den Heuvel LP, van Wijk JA. Bartter syndrome type III and congenital anomalies of the kidney and urinary tract: an antenatal presentation. Clin Nephrol. 2012;78(6):492–6.

    Article  PubMed  Google Scholar 

  105. Bettinelli A, Borsa N, Bellantuono R, Syrèn ML, Calabrese R, Edefonti A, Komninos J, Santostefano M, Beccaria L, Pela I, Bianchetti MG, Tedeschi S. Patients with biallelic mutations in the chloride channel gene CLCNKB: long-term management and outcome. Am J Kidney Dis. 2007;49(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  106. Schurman SJ, Perlman SA, Sutphen R, Campos A, Garin EH, Cruz DN, Shoemaker LR. Genotype/phenotype observations in African Americans with Bartter syndrome. J Pediatr. 2001;139(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  107. Adachi M, Tajima T, Muroya K, Asakura Y. Classic Bartter syndrome complicated with profound growth hormone deficiency: a case report. J Med Case Rep. 2013;7:283.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jeck N, Konrad M, Peters M, Weber S, Bonzel KE, Seyberth HW. Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr Res. 2000;48:754–8.

    Article  CAS  PubMed  Google Scholar 

  109. Fukuyama S, Hiramatsu M, Akagi M, Higa M, Ohta T. Novel mutations of the chloride channel Kb gene in two Japanese patients clinically diagnosed as Bartter syndrome with hypocalciuria. J Clin Endocrinol Metab. 2004;89(11):5847–50.

    Article  CAS  PubMed  Google Scholar 

  110. Sun H, Demirci H, Shields CL, Shields JA. Sclerochoroidal calcification in a patient with classic Bartter’s syndrome. Am J Ophthalmol. 2005;139:365–6.

    Article  PubMed  Google Scholar 

  111. Robitaille P, Merouani A, He N, Pei Y. Bartter syndrome in two sisters with a novel mutation of the CLCNKB gene, one with deafness. Eur J Pediatr. 2011;170(9):1209–11.

    Article  PubMed  Google Scholar 

  112. Walker SH. Severe Bartter syndrome in blacks. N Engl J Med. 1971;285(20):1150.

    CAS  PubMed  Google Scholar 

  113. Calò LA. Vascular tone control in humans: insights from studies in Bartter’s/Gitelman’s syndromes. Kidney Int. 2006;69(6):963–6.

    Article  PubMed  Google Scholar 

  114. Stoff JS, Stemerman M, Steer M, Salzman E, Brown RS. A defect in platelet aggregation in Bartter’s syndrome. Am J Med. 1980;68(2):171–80.

    Article  CAS  PubMed  Google Scholar 

  115. Clive DM, Stoff JS, Cardi M, MacIntyre DE, Brown RS, Salzman EW. Evidence that circulating 6keto prostaglandin E1 causes the platelet defect of Bartter’s syndrome. Prostaglandins Leukot Essent Fatty Acids. 1990;41(4):251–8.

    Article  CAS  PubMed  Google Scholar 

  116. Sardani Y, Qin K, Haas M, Aronson AJ, Rosenfield RL. Bartter syndrome complicated by immune complex nephropathy. Case report and literature review. Pediatr Nephrol. 2003;18:913–8.

    Article  PubMed  Google Scholar 

  117. Blethen SL, Van Wyck JJ, Lorentz WB, Jennette JC. Reversal of Bartter’s syndrome by renal transplantation in a child with focal, segmental glomerular sclerosis. Am J Med Sci. 1985;289:31–6.

    Article  CAS  PubMed  Google Scholar 

  118. Su IH, Frank R, Gauthier BG, Valderrama E, Simon DB, Lifton RP, Trachtman H. Bartter syndrome and focal segmental glomerulosclerosis: a possible link between two diseases. Pediatr Nephrol. 2000;14:970–2.

    Article  CAS  PubMed  Google Scholar 

  119. Bartter FC. So-called Bartter’s syndrome. N Engl J Med. 1969;281(26):1483–4.

    Article  CAS  PubMed  Google Scholar 

  120. Takahashi M, Yanagida N, Okano M, Ishizaki A, Meguro J, Kukita K, Tamaki T, Yonekawa M, Kawamura A, Yokoyama T. A first report: living related kidney transplantation on a patient with Bartter’s syndrome. Transplant Proc. 1996;28(3):1588.

    CAS  PubMed  Google Scholar 

  121. Watanabe T, Tajima T. Renal cysts and nephrocalcinosis in a patient with Bartter syndrome type III. Pediatr Nephrol. 2005;20(5):676–8.

    Article  PubMed  Google Scholar 

  122. Torres VE, Young Jr WF, Offord KP, Hattery RR. Association of hypokalemia, aldosteronism, and renal cysts. N Engl J Med. 1990;322(6):345–51.

    Article  CAS  PubMed  Google Scholar 

  123. Jeck N, Waldegger P, Doroszewicz J, Seyberth H, Waldegger S. A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity. Kidney Int. 2004;65:190–7.

    Article  CAS  PubMed  Google Scholar 

  124. Jeck N, Waldegger S, Lampert A, Boehmer C, Waldegger P, Lang PA, Wissinger B, Friedrich B, Risler T, Moehle R, Lang UE, Zill P, Bondy B, Schaeffeler E, Asante-Poku S, Seyberth H, Schwab M, Lang F. Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension. Hypertension. 2004;43(6):1175–81.

    Article  CAS  PubMed  Google Scholar 

  125. Geller DS. A genetic predisposition to hypertension? Hypertension. 2004;44:27–8.

    Article  CAS  PubMed  Google Scholar 

  126. Kokubo Y, Iwai N, Tago N, Inamoto N, Okayama A, Yamawaki H, Naraba H, Tomoike H. Association analysis between hypertension and CYBA, CLCNKB, and KCNMB1 functional polymorphisms in the Japanese population-the Suita study. Circ J. 2005;69(2):138–42.

    Article  CAS  PubMed  Google Scholar 

  127. Meyers AM, Feldman C, Sonnekus MI, Ninin DT, Margolius LP, Whalley NA. Chronic laxative abusers with pseudo-idiopathic oedema and autonomous pseudo-Bartter’s syndrome. A spectrum of metabolic madness, or new lights on an old disease? S Afr Med J. 1990;78(11):631–6.

    CAS  PubMed  Google Scholar 

  128. D’Avanzo M, Santinelli R, Tolone C, Bettinelli A, Bianchetti MG. Concealed administration of frusemide simulating Bartter syndrome in a 4.5-year-old boy. Pediatr Nephrol. 1995;9(6):749–50.

    Article  PubMed  Google Scholar 

  129. Ramos E, Hall-Craggs M, Demers LM. Surreptitious habitual vomiting simulating Bartter’s syndrome. JAMA. 1980;243(10):1070–2.

    Article  CAS  PubMed  Google Scholar 

  130. Colussi G, Rombolà G, Airaghi C, De Ferrari ME, Minetti L. Pseudo-Bartter’s syndrome from surreptitious diuretic intake: differential diagnosis with true Bartter’s syndrome. Nephrol Dial Transplant. 1992;7(9):896–901.

    CAS  PubMed  Google Scholar 

  131. Gladziwa U, Schwarz R, Gitter AH, Bijman J, Seyberth H, Beck F, Ritz E, Gross P. Chronic hypokalaemia of adults: Gitelman’s syndrome is frequent but classical Bartter’s syndrome is rare. Nephrol Dial Transplant. 1995;10(9):1607–13.

    CAS  PubMed  Google Scholar 

  132. Whyte MP, Shaheb S, Schnaper HW. Cystinosis presenting with features suggesting Bartter syndrome. Case report and literature review. Clin Pediatr (Phila). 1985;24(8):447–51.

    Article  CAS  Google Scholar 

  133. Emma F, Pizzini C, Tessa A, Di Giandomenico S, Onetti-Muda A, Santorelli FM, Bertini E, Rizzoni G. “Bartter-like” phenotype in Kearns-Sayre syndrome. Pediatr Nephrol. 2006;21(3):355–60.

    Article  PubMed  Google Scholar 

  134. Walker SH, Firminger HI. Familial renal dysplasia with sodium wasting and hypokalemic alkalosis. Am J Dis Child. 1974;127(6):882–7.

    CAS  PubMed  Google Scholar 

  135. Kennedy JD, Dinwiddie R, Daman-Willems C, Dillon MJ, Matthew DJ. Pseudo-Bartter’s syndrome in cystic fibrosis. Arch Dis Child. 1990;65(7):786–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bates CM, Baum M, Quigley R. Cystic fibrosis presenting with hypokalemia and metabolic alkalosis in a previously healthy adolescent. J Am Soc Nephrol. 1997;8(2):352–5.

    CAS  PubMed  Google Scholar 

  137. Koshida R, Sakazume S, Maruyama H, Okuda N, Ohama K, Asano S. A case of pseudo-Bartter’s syndrome due to intestinal malrotation. Acta Paediatr Jpn. 1994;36(1):107–11.

    Article  CAS  PubMed  Google Scholar 

  138. Vanhaesebrouck S, Van Laere D, Fryns JP, Theyskens C. Pseudo-Bartter syndrome due to Hirschsprung disease in a neonate with an extra ring chromosome 8. Am J Med Genet A. 2007;143A(20):2469–72.

    Article  PubMed  Google Scholar 

  139. Langhendries JP, Thiry V, Bodart E, Delfosse G, Whitofs L, Battisti O, Bertrand JM. Exogenous prostaglandin administration and pseudo-Bartter syndrome. Eur J Pediatr. 1989;149(3):208–9.

    Article  CAS  PubMed  Google Scholar 

  140. Landau D, Kher KK. Gentamicin-induced Bartter-like syndrome. Pediatr Nephrol. 1997;11(6):737–40.

    Article  CAS  PubMed  Google Scholar 

  141. Chou CL, Chen YH, Chau T, Lin SH. Acquired Bartter-like syndrome associated with gentamicin administration. Am J Med Sci. 2005;329:144–9.

    Article  PubMed  Google Scholar 

  142. Lieber IH, Stoneburner SD, Floyd M, McGuffin WL. Potassium-wasting nephropathy secondary to chemotherapy simulating Bartter’s syndrome. Cancer. 1984;54(5):808–10.

    Article  CAS  PubMed  Google Scholar 

  143. Pedro-Botet J, Tomas S, Soriano JC, Coll J. Primary Sjögren’s syndrome associated with Bartter’s syndrome. Clin Exp Rheumatol. 1991;9(2):210–2.

    CAS  PubMed  Google Scholar 

  144. Casatta L, Ferraccioli GF, Bartoli E. Hypokalaemic alkalosis, acquired Gitelman’s and Bartter’s syndrome in chronic sialoadenitis. Br J Rheumatol. 1997;36(10):1125–8.

    Article  CAS  PubMed  Google Scholar 

  145. Güllner HG, Bartter FC, Gill Jr JR, Dickman PS, Wilson CB, Tiwari JL. A sibship with hypokalemic alkalosis and renal proximal tubulopathy. Arch Intern Med. 1983;143(8):1534–40.

    Article  PubMed  Google Scholar 

  146. Ertekin V, Selimoglu AM, Orbak Z. Association of Bartter’s syndrome and empty sella. J Pediatr Endocrinol Metab. 2003;16(7):1065–8.

    Article  PubMed  Google Scholar 

  147. Addolorato G, Ancarani F, Leggio L, Abenavoli L, de Lorenzi G, Montalto M, Staffolani E, Zannoni GF, Costanzi S, Gasbarrini G. Hypokalemic nephropathy in an adult patient with partial empty sella: a classic Bartter’s syndrome, a Gitelman’s syndrome or both? Panminerva Med. 2006;48(2):137–42.

    CAS  PubMed  Google Scholar 

  148. Jest P, Pedersen KE, Klitgaard NA, Thomsen N, Kjaer K, Simonsen E. Angiotensin-converting enzyme inhibition as a therapeutic principle in Bartter’s syndrome. Eur J Clin Pharmacol. 1991;41(4):303–5.

    Article  CAS  PubMed  Google Scholar 

  149. Kim JY, Kim GA, Song JH, Lee SW, Han JY, Lee JS, Kim MJ. A case of living-related kidney transplantation in Bartter’s syndrome. Yonsei Med J. 2000;41(5):662–5.

    Article  CAS  PubMed  Google Scholar 

  150. Brimacombe JR, Breen DP. Anesthesia and Bartter’s syndrome: a case report and review. AANA J. 1993;61(2):193–7.

    CAS  PubMed  Google Scholar 

  151. Vetrugno L, Cheli G, Bassi F, Giordano F. Cardiac anesthesia management of a patient with Bartter’s syndrome. J Cardiothorac Vasc Anesth. 2005;19(3):373–6.

    Article  PubMed  Google Scholar 

  152. Gitelman HJ, Graham JB, Welt LG. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians. 1966;79:221–35.

    CAS  PubMed  Google Scholar 

  153. Bettinelli A, Bianchetti MG, Girardin E, Caringella A, Cecconi M, Appiani AC, Pavanello L, Gastaldi R, Isimbaldi C, Lama G, et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndromes. J Pediatr. 1992;120:38–43.

    Article  CAS  PubMed  Google Scholar 

  154. Sutton RA, Mavichak V, Halabe A, Wilkins GE. Bartter’s syndrome: evidence suggesting a distal tubular defect in a hypocalciuric variant of the syndrome. Miner Electrolyte Metab. 1992;18(1):43–51.

    CAS  PubMed  Google Scholar 

  155. Tsukamoto T, Kobayashi T, Kawamoto K, Fukase M, Chihara K. Possible discrimination of Gitelman’s syndrome from Bartter’s syndrome by renal clearance study: report of two cases. Am J Kidney Dis. 1995;25(4):637–41.

    Article  CAS  PubMed  Google Scholar 

  156. Hebert SC, MountDB GG. Molecular physiology of cation-coupled Cl cotransport: the SLC12 family. Pflugeers Arch. 2004;447:580–93.

    Article  CAS  Google Scholar 

  157. Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, Ma H, Brenner BM, Hebert SC. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci U S A. 1993;90:2749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Moreno E, Cristóbal PS, Rivera M, Vázquez N, Bobadilla NA, Gamba G. Affinity-defining domains in the Na-Cl cotransporter: a different location for Cl and thiazide binding. J Biol Chem. 2006;281(25):17266–75.

    Article  CAS  PubMed  Google Scholar 

  159. Takeuchi Y, Mishima E, Shima H, Akiyama Y, Suzuki C, Suzuki T, Kobayashi T, Suzuki Y, Nakayama T, Takeshima Y, VazquezN IS, Gamba G, Abe T. Exonic mutations in the SLC12A3 gene cause exon skipping and premature termination in Gitelman Syndrome. J Am Soc Nephrol. 2014;26:1–9.

    Google Scholar 

  160. Lemmink HH, Knoers NV, Karolyi L, van Dijk H, Niaudet P, Antignac C, Guay-Woodford LM, Goodyer PR, Carel JC, Hermes A, Seyberth HW, Monnens LA, van den Heuvel LP. Novel mutations in the thiazide-sensitive NaCl cotransporter gene in patients with Gitelman syndrome with predominant localization to the C-terminal domain. Kidney Int. 1998;54:720–30.

    Article  CAS  PubMed  Google Scholar 

  161. Reissinger A, Ludwig M, Utsch B, Prömse A, Baulmann J, Weisser B, Vetter H, Kramer HJ, Bokemeyer D. Novel NCCT gene mutations as a cause of Gitelman’s syndrome and a systematic review of mutant and polymorphic NCCT alleles. Kidney Blood Press Res. 2002;25:354–62.

    Article  PubMed  Google Scholar 

  162. Riveira-Munoz E, Chang Q, Godefroid N, Hoenderop JG, Bindels RJ, Dahan K, Devuyst O, Belgian Network for Study of Gitelman Syndrome. Transcriptional and functional analyses of SLC12A3 mutations: new clues for the pathogenesis of Gitelman syndrome. J Am Soc Nephrol. 2007;18(4):1271–83.

    Article  CAS  PubMed  Google Scholar 

  163. Nozu K, Iijima K, Nozu Y, Ikegami E, Imai T, Jun Fu X, Kaito H, Nakanishi K, Yoshikawa N, Matsuo M. A deep intronic mutation in the SLC12A3 gene leads to Gitelman syndrome. Pediatr Res. 2009;66:590–3.

    Article  CAS  PubMed  Google Scholar 

  164. Lo YF, Nozu K, Iijima K, Morishita T, Huang CC, Yang SS, Sytwu HK, Fang YW, Tseng MH, Lin SH. Recurrent deep intronic mutations in the SLC12A3 gene responsible for Gitelman Syndrome. Clin J Am Soc Nephrol. 2011;6:630–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Riveira-Munoz E, Devuyst O, Belge H, Jeck N, Strompf L, Vargas-Poussou R, Jeunemaître X, Blanchard A, Knoers NV, Konrad M, Dahan K. Evaluating PVALB as a candidate gene for SLC12A3-negative cases of Gitelman’s syndrome. Nephrol Dial Transplant. 2008;23:3120–5.

    Article  CAS  PubMed  Google Scholar 

  166. Kunchaparty S, Palcso M, Berkman J, Velazquez H, Desir GV, Bernstein P, Reilly RF, Ellison DH. Defective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman’s syndrome. Am J Physiol. 1999;277:F643–9.

    CAS  PubMed  Google Scholar 

  167. de Jong JC, van der Vliet WA, van den Heuvel L, Willems PHGM, Knoers NVAM, Bindels RJM. Functional expression of mutations in the human NaCl cotransporter: evidence for impaired routing mechanisms in Gitelman’s syndrome. J Am Soc Nephrol. 2002;13:1442–8.

    Article  PubMed  CAS  Google Scholar 

  168. Sabath E, Meade P, Berkman J, De los Heros P, Moreno E, Bobadilla NA, Vazquez N, Ellison DH, Gamba G. Pathophysiology of functional mutations of the thiazide-sensitive Na-Cl cotransporter in Gitelman disease. Am J Physiol Renal Physiol. 2004;287:F195–203.

    Article  CAS  PubMed  Google Scholar 

  169. Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Duffy JJ, Doetschman T, Miller ML, Shull GE. Phenotype resembling Gitelman’s syndrome in mice lacking the apical Na+-Cl cotransporter of the distal convoluted tubule. J Biol Chem. 1998;273:29150–5.

    Article  CAS  PubMed  Google Scholar 

  170. Loffing J, Vallon V, Loffing-Cueni D, Aregger F, Richter K, Pietri L, Bloch-Faure M, Hoenderop JG, Shull GE, Meneton P, Kaissling B. Altered renal distal tubule structure and renal Na+ and Ca2+ handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol. 2004;15:2276–88.

    Article  CAS  PubMed  Google Scholar 

  171. Morris RG, Hoorn EJ, Knepper MA. Hypokalemia in a mouse model of Gitelman’s syndrome. Am J Physiol Renal Physiol. 2006;290:F1416–20.

    Article  CAS  PubMed  Google Scholar 

  172. Belge H, Gailly P, Schwaller B, Loffing J, Debaix H, Riveira-Munoz E, Beauwens R, Devogelaer JP, Hoenderop JG, Bindels RJ, Devuyst O. Renal expression of parvalbumin is critical for NaCl handling and response to diuretics. Proc Natl Acad Sci U S A. 2007;104(37):14849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nijenhuis T, Hoenderop JG, Loffing J, van der Kemp AW, van Os CH, Bindels RJ. Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transport proteins in kidney. Kidney Int. 2003;64(2):555–64.

    Article  CAS  PubMed  Google Scholar 

  174. Hoenderop JG, van der Kemp AW, Hartog A, van Os CH, Willems PH, Bindels RJ. The epithelial calcium channel, ECaC, is activated by hyperpolarization and regulated by cytosolic calcium. Biochem Biophys Res Commun. 1999;261(2):488–92.

    Article  CAS  PubMed  Google Scholar 

  175. Ellison DH. Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am J Physiol Renal Physiol. 2000;279(4):F616–25.

    CAS  PubMed  Google Scholar 

  176. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest. 2005;115:1651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Reilly RF, Huang CL. The mechanism of hypocalciuria with NaCl cotransporter inhibition. Nat Rev Nephrol. 2011;7:669–74.

    Article  CAS  PubMed  Google Scholar 

  178. Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev. 2001;81:51–84.

    CAS  PubMed  Google Scholar 

  179. Schlingmann KP, Weber S, Peters M, Nejsum LN, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002;31:166–70.

    Article  CAS  PubMed  Google Scholar 

  180. Loffing J, Loffing-Cueni D, Hegyi I, Kaplan MR, Hebert SC, Le Hir M, Kaissling B. Thiazide treatment of rats provokes apoptosis in distal tubule cells. Kidney Int. 1996;50:1180–90.

    Article  CAS  PubMed  Google Scholar 

  181. Yang SS, Lo YF, Wu CC, Lin SW, Yeh CJ, Chu P, Sytwu HK, Uchida S, Sasaki S, Lin SH. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol. 2010;21(11):1868–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Godefroid N, Riveira-Munoz E, Saint-Martin C, Nassogne MC, Dahan K, Devuyst O. A novel splicing mutation in SLC12A3 associated with Gitelman syndrome and idiopathic intracranial hypertension. Am J Kidney Dis. 2006;48(5):e73–9.

    Article  PubMed  Google Scholar 

  183. Knoers NV. Gitelman syndrome. Adv Chronic Kidney Dis. 2006;13(2):148–54.

    Article  PubMed  Google Scholar 

  184. Cruz DN, Simon DB, Nelson-Williams C, Farhi A, Finberg K, Burleson L, Gill JR, Lifton RP. Mutations in the Na-Cl cotransporter reduce blood pressure in humans. Hypertension. 2001;37(6):1458–64.

    Article  CAS  PubMed  Google Scholar 

  185. Balavoine AS, Bataille P, Vanhille P, Azar R, Noël C, Asseman P, Soudan B, Wémeau JL, Vantyghem MC. Phenotype-genotype correlation and follow-up in adult patients with hypokalemia of renal origin suggesting Gitelman syndrome. Eur J Endocrinol. 2011;165:665–73.

    Article  CAS  PubMed  Google Scholar 

  186. Berry MR, Robinson C, Karte Frankl FE. Unexpected clinical sequelae of Gitelman syndrome: hypertension in adulthood is common and females have higher potassium requirements. Nephrol Dial Transplant. 2013;28:1533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Punzi L, Calò L, Schiavon F, Pianon M, Rosada M, Todesco S. Chondrocalcinosis is a feature of Gitelman’s variant of Bartter’s syndrome. A new look at the hypomagnesemia associated with calcium pyrophosphate dihydrate crystal deposition disease. Rev Rhum Engl Ed. 1998;65(10):571–4.

    CAS  PubMed  Google Scholar 

  188. Bourcier T, Blain P, Massin P, Grünfeld JP, Gaudric A. Sclerochoroidal calcification associated with Gitelman syndrome. Am J Ophthalmol. 1999;128(6):767–78.

    Article  CAS  PubMed  Google Scholar 

  189. Nicolet-Barousse L, Blanchard A, Roux C, Pietri L, Bloch-Faure M, Kolta S, Chappard C, Geoffroy V, Morieux C, Jeunemaitre X, Shull GE, Meneton P, Paillard M, Houillier P, De Vernejoul MC. Inactivation of the Na-Cl co-transporter (NCC) gene is associated with high BMD through both renal and bone mechanisms: analysis of patients with Gitelman syndrome and Ncc null mice. J Bone Miner Res. 2005;20(5):799–808.

    Article  CAS  PubMed  Google Scholar 

  190. Bettinelli A, Tosetto C, Colussi G, Tommasini G, Edefonti A, Bianchetti MG. Electrocardiogram with prolonged QT interval in Gitelman disease. Kidney Int. 2002;62(2):580–4.

    Article  PubMed  Google Scholar 

  191. Foglia PE, Bettinelli A, Tosetto C, Cortesi C, Crosazzo L, Edefonti A, Bianchetti MG. Cardiac work up in primary renal hypokalaemia-hypomagnesaemia (Gitelman syndrome). Nephrol Dial Transplant. 2004;19(6):1398–402.

    Article  PubMed  Google Scholar 

  192. Pachulski RT, Lopez F, Sharaf R. Gitelman’s not so benign syndrome. N Engl J Med. 2005;353:850–1.

    Article  CAS  PubMed  Google Scholar 

  193. Srinivas SK, Sukhan S, Elovitz MA. Nausea, emesis, and muscle weakness in a pregnant adolescent. Obstet Gynecol. 2006;107(2 Pt 2):481–4.

    Article  PubMed  Google Scholar 

  194. von Vigier RO, Ortisi MT, la Manna A, Bianchetti MG, Bettinelli A. Hypokalemic rhabdomyolysis in congenital tubular disorders: a case series and a systematic review. Pediatr Nephrol. 2010;25:861–6.

    Article  Google Scholar 

  195. Kumagai H, Matsumoto S, Nozu K. Hypokalemic rhabdomyolysis in a child with Gitelman’s syndrome. Pediatr Nephrol. 2010;25:953–5.

    Article  PubMed  Google Scholar 

  196. Cortesi C, Lava SA, Bettinelli A, Tammaro F, Giannini O, Caiata-Zufferey M, Bianchetti MG. Cardiac arrhythmias and rhabdomyolysis in Bartter-Gitelman patients. Pediatr Nephrol. 2010;25(10):2005–8.

    Article  PubMed  Google Scholar 

  197. Ducarme G, Davitian C, Uzan M, Belenfant X, Poncelet C. Pregnancy in a patient with Gitelman syndrome: a case report and review of literature. J Gynecol Obstet Biol Reprod (Paris). 2007;36(3):310–3.

    Article  CAS  Google Scholar 

  198. Bianchetti MG, Edefonti A, Bettinelli A. The biochemical diagnosis of Gitelman disease and the definition of “hypocalciuria”. Pediatr Nephrol. 2003;18(5):409–11.

    PubMed  Google Scholar 

  199. Colussi G, Bettinelli A, Tedeschi S, De Ferrari ME, Syrén ML, Borsa N, Mattiello C, Casari G, Bianchetti MG. A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin J Am Soc Nephrol. 2007;2(3):454–60.

    Article  CAS  PubMed  Google Scholar 

  200. Vigano C, Amoruso C, Barretta F, Minnici G, Albisetti W, Syrèn ML, Bianchetti MG, Bettinelli A. Renal phosphate handling in Gitelman syndrome – the results of a case–control study. Pediatr Nephrol. 2013;28:65–70.

    Article  PubMed  Google Scholar 

  201. Azak A, Huddam B, Koçak G, Ortabozkoyum L, Uzel M, Duranay M. Gitelman syndrome complicated with dysglycemia. Acta Diabetol. 2011;48:249–50.

    Article  PubMed  Google Scholar 

  202. Tseng MH, Yang SS, Hsu YJ, Fang YW, Wu CJ, Tsai JD, Hwang DY, Lin SH. Genotype, phenotype, and follow-up in Taiwanese patients with salt-losing tubulopathy associated with SLC12A3 mutation. J Clin Endocrinol Metab. 2012;97(8):E1478–82.

    Article  CAS  PubMed  Google Scholar 

  203. Ren H, Qin L, WangW MJ, Zhang W, Shen PY, Shi H, Li X, Chen N. Abnormal glucose metabolism and insulin sensitivity in Chinese patients with Gitelman syndrome. Am J Nephrol. 2013;37(2):152–7.

    Article  CAS  PubMed  Google Scholar 

  204. Joo KW, Lee JW, Jang HR, Heo NJ, Jeon US, Oh YK, Lim CS, Na KY, Kim J, Cheong HI, Han JS. Reduced urinary excretion of thiazide-sensitive Na-Cl cotransporter in Gitelman syndrome: preliminary data. Am J Kidney Dis. 2007;50(5):765–73.

    Article  CAS  PubMed  Google Scholar 

  205. Bulucu F, Vural A, Yenicesu M, Caglar K. Association of Gitelman’s syndrome and focal segmental glomerulosclerosis. Nephron. 1998;79:244.

    Article  CAS  PubMed  Google Scholar 

  206. Hanevold C, Mian A, Dalton R. C1q nephropathy in association with Gitelman syndrome: a case report. Pediatr Nephrol. 2006;21(12):1904–8.

    Article  PubMed  Google Scholar 

  207. Ceri M, Unverdi S, Altay M, Unverdi H, Kurultak I, Yilmaz R, Ensari A, Duranay M. Focal segmental glomerulosclerosis in association with Gitelman syndrome. Int Urol Nephrol. 2011;43:905–7.

    Article  PubMed  Google Scholar 

  208. Demoulin N, Aydin S, Cosyns JP, Dahan K, Cornet G, Auberger I, Loffing J, Devuyst O. Gitelman syndrome and glomerular proteinuria: a link between loss of sodium-chloride cotransporter and podocyte dysfunction? Nephrol Dial Transplant. 2014;29:iv117–20.

    Article  PubMed  Google Scholar 

  209. Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB; Yale Gitelman’s and Bartter’s Syndrome Collaborative Study Group. Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int. 2001;59:710–7.

    Google Scholar 

  210. Coto E, Rodriguez J, Jeck N, Alvarez V, Stone R, Loris C, Rodriguez LM, Fischbach M, Seybert HW, Santos F. A new mutation (intron 9 +1 G>T) in the SLC12A3 gene is linked to Gitelman syndrome in Gypsies. Kidney Int. 2004;65:25–9.

    Article  CAS  PubMed  Google Scholar 

  211. Lin SH, Cheng NL, Hsu YJ, Halperin ML. Intrafamilial phenotype variability in patients with Gitelman syndrome having the same mutations in their thiazide-sensitive sodium/chloride cotransporter. Am J Kidney Dis. 2004;43:304–12.

    Article  CAS  PubMed  Google Scholar 

  212. Riveira-Munoz E, Chang Q, Bindels RJ, Devuyst O. Gitelman syndrome: towards genotype-phenotype correlations? Pediatr Nephrol. 2007;22:326–32.

    Article  PubMed  Google Scholar 

  213. Hu DC, Burtner C, Hong A, Lobo PI, Okusa MD. Correction of renal hypertension after kidney transplantation from a donor with Gitelman syndrome. Am J Med Sci. 2006;331(2):105–9.

    Article  PubMed  Google Scholar 

  214. Sassen MC, Jeck N, Klaus G. Can renal tubular hypokalemic disorders be accurately diagnosed on the basis of the diuretic response to thiazide? Nat Clin Pract Nephrol. 2007;3(10):528–9.

    Article  PubMed  Google Scholar 

  215. Panichpisal K, Angulo-Pernett F, Selhi S, Nugent KM. Gitelman-like syndrome after cisplatin therapy: a case report and literature review. BMC Nephrol. 2006;7:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol. 2003;23(5):460–4.

    Article  CAS  PubMed  Google Scholar 

  217. Ren H, Wang WM, Chen XN, Zhang W, Pan XX, Wang XL, Lin Y, Zhang S, Chen N. Renal involvement and followup of 130 patients with primary Sjögren’s syndrome. J Rheumatol. 2008;35(2):278–84.

    CAS  PubMed  Google Scholar 

  218. Persu A, Lafontaine JJ, Devuyst O. Chronic hypokalaemia in young women – it is not always abuse of diuretics. Nephrol Dial Transplant. 1999;14(4):1021–5.

    Article  CAS  PubMed  Google Scholar 

  219. Schwarz C, Barisani T, Bauer E, Druml W. A woman with red eyes and hypokalemia: a case of acquired Gitelman syndrome. Wien Klin Wochenschr. 2006;118(7–8):239–42.

    Article  PubMed  Google Scholar 

  220. Rodríguez-Soriano J. Bartter and related syndromes: the puzzle is almost solved. Pediatr Nephrol. 1998;12(4):315–27.

    Article  PubMed  Google Scholar 

  221. Shaer AJ. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. Am J Med Sci. 2001;322(6):316–32.

    Article  CAS  PubMed  Google Scholar 

  222. Colussi G, Rombolà G, De Ferrari ME, Macaluso M, Minetti L. Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am J Nephrol. 1994;14(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  223. Morton A. Eplerenone in the treatment of Gitelman syndrome. Intern Med J. 2008;38:377.

    Article  CAS  PubMed  Google Scholar 

  224. Morton A, Panitz B, Bush A. Eplerenone for Gitelman syndrome in pregnancy. Nephrology. 2011;16:349–50.

    Article  PubMed  Google Scholar 

  225. Ito Y, Yoshida M, Nakayama M, Tsutaya S, Ogawa K, Maeda H, Miyata M, Oiso Y. Eplerenone improved hypokalemia in a patient with Gitelman’s syndrome. Intern Med. 2012;51(1):83–6.

    Article  CAS  PubMed  Google Scholar 

  226. Blanchard A, Vargas-Poussou R, Valle M, Caumont-Prim A, Allard J, Desport E, Dubourg L, Monge M, Bergerot D, Baron S, Essig M, Bridoux F, Tack I, Azizi M. Indomethacin, amiloride, or eplerenone for treating hypokalemia in Gitelman syndrome. J Am Soc Nephrol. 2014;26:1–8.

    Google Scholar 

  227. Zannad F, McMurray JJ, Krum H, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.

    Article  CAS  PubMed  Google Scholar 

  228. Liaw LC, Banerjee K, Coulthard MG. Dose related growth response to indometacin in Gitelman syndrome. Arch Dis Child. 1999;81(6):508–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Mayan H, Gurevitz O, Farfel Z. Successful treatment by cyclooxyenase-2 inhibitor of refractory hypokalemia in a patient with Gitelman’s syndrome. Clin Nephrol. 2002;58(1):73–6.

    Article  CAS  PubMed  Google Scholar 

  230. Bettinelli A, Metta MG, Perini A, Basilico E, Santeramo C. Long-term follow-up of a patient with Gitelman’s syndrome. Pediatr Nephrol. 1993;7(1):67–8.

    Article  CAS  PubMed  Google Scholar 

  231. Bonfante L, Davis PA, Spinello M, Antonello A, D’Angelo A, Semplicini A, Calò L. Chronic renal failure, end-stage renal disease, and peritoneal dialysis in Gitelman’s syndrome. Am J Kidney Dis. 2001;38(1):165–8.

    Article  CAS  PubMed  Google Scholar 

  232. Calò LA, Marchini F, Davis PA, Rigotti P, Pagnin E, Semplicini A. Kidney transplant in Gitelman’s syndrome. Report of the first case. J Nephrol. 2003;16(1):144–7.

    PubMed  Google Scholar 

  233. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575–80.

    Article  CAS  PubMed  Google Scholar 

  234. Garrett JE, Capuano IV, Hammerland LG, Hung BC, Brown EM, Hebert SC, Nemeth EF, Fuller F. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem. 1995;270(21):12919–25.

    Article  CAS  PubMed  Google Scholar 

  235. Bai M, Trivedi S, Kifor O, Quinn SJ, Brown EM. Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc Natl Acad Sci USA. 1999;96:2834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81:239–97.

    CAS  PubMed  Google Scholar 

  237. Bapty BW, Dai LJ, Ritchie G, Canaff L, Hendy GN, Quamme GA. Mg2+/Ca2+ sensing inhibits hormone-stimulated Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol. 1998;275:F353–60.

    CAS  PubMed  Google Scholar 

  238. Quamme GA. Control of magnesium transport in the thick ascending limb. Am J Physiol. 1989;256(2 Pt 2):197–210.

    Google Scholar 

  239. Hebert SC, Brown EM, Harris HW. Role of the Ca2+-sensing receptor in divalent mineral ion homeostasis. J Exp Biol. 1997;200(Pt 2):295–302.

    CAS  PubMed  Google Scholar 

  240. Thakker RV. Diseases associated with the extracellular calcium-sensing receptor. Cell Calcium. 2004;35(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  241. Chou YH, Brown EM, Levi T, Crowe G, Atkinson AB, Arnqvist HJ, Toss G, Fuleihan GE, Seidman JG, Seidman CE. The gene responsible for familial hypocalciuric hypercalcemia maps to chromosome 3q in four unrelated families. Nat Genet. 1992;1(4):295–300.

    Article  CAS  PubMed  Google Scholar 

  242. Pollak MR, Brown EM, Chou YH, HebertSC MSJ, Steinmann B, Levi T, Seidman CE, Seidman JG. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993;75:1297–303.

    Article  CAS  PubMed  Google Scholar 

  243. Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, Hebert SC, Seidman CE, Seidman JG. Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation. Nat Genet. 1994;8:303–7.

    Article  CAS  PubMed  Google Scholar 

  244. Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, Lewis-Barned N, McCredie D, Powell H, Kendall-Taylor P, Brown EM, Thakker RV. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996;335:1115–22.

    Article  CAS  PubMed  Google Scholar 

  245. Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, Chikatsu N, Fujita T. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet. 2002;360:692–4.

    Article  CAS  PubMed  Google Scholar 

  246. Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, Planelles G, Dechaux M, Miller RT, Antignac C. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartterlike syndrome. J Am Soc Nephrol. 2002;13:2259–66.

    Article  CAS  PubMed  Google Scholar 

  247. Gunn IR, Gaffney D. Clinical and laboratory features of calcium-sensing receptor disorders: a systematic review. Ann Clin Biochem. 2004;41(Pt 6):441–58.

    Article  CAS  PubMed  Google Scholar 

  248. Foley Jr TP, Harrison HC, Arnaud CD, Harrison HE. Familial benign hypercalcemia. J Pediatr. 1972;6:1060–7.

    Article  Google Scholar 

  249. Marx SJ, Attie MF, Levine MA, Spiegel AM, Downs Jr RW, Lasker RD. The hypocalciuric or benign variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine (Baltimore). 1981;60:397–412.

    Article  CAS  Google Scholar 

  250. Heath 3rd H. Familial benign (hypocalciuric) hypercalcemia. A troublesome mimic of mild primary hyperparathyroidism. Endocrinol Metab Clin North Am. 1989;3:723–40.

    Google Scholar 

  251. Bilezikian JP, Potts Jr JT, Fuleihan G-H, Kleerekoper M, Neer R, Peacock M, Rastad J, Silverberg SJ, Udelsman R, Wells SA. Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century. J Clin Endocrinol Metab. 2002;12:5353–61.

    Article  CAS  Google Scholar 

  252. Auwerx J, Demedts M, Bouillon R. Altered parathyroid set point to calcium in familial hypocalciuric hypercalcaemia. Acta Endocrinol (Copenh). 1984;106(2):215–8.

    CAS  Google Scholar 

  253. Pearce SH, Trump D, Wooding C, Besser GM, Chew SL, Grant DB, Heath DA, Hughes IA, Paterson CR, Whyte MP, et al. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest. 1995;96(6):2683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Hendy GN, D’Souza-Li L, Yang B, Canaff L, Cole DE. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat. 2000;16(4):281–96.

    Article  CAS  PubMed  Google Scholar 

  255. Sarli M, Fradinger E, Zanchetta J. Hypocalciuric hypercalcemia due to de novo mutation of the calcium sensing receptor. Medicina (B Aires). 2004;64(4):337–9.

    Google Scholar 

  256. Timmers HJ, Karperien M, Hamdy NA, de Boer H, Hermus AR. Normalization of serum calcium by cinacalcet in a patient with hypercalcaemia due to a de novo inactivating mutation of the calcium-sensing receptor. J Intern Med. 2006;260(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  257. Attie MF, Gill Jr JR, Stock JL, Spiegal AM, Downs Jr RW, Levine MA, Marx SJ. Urinary calcium excretion in familial hypocalciuric hypercalcemia: persistence of relative hypocalciuria after induction of hypoparathyroidism. J Clin Invest. 1983;72:667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Kifor O, Moore Jr FD, Delaney M, Garber J, Hendy GN, Butters R, Gao P, Cantor TL, Kifor I, Brown EM, Wysolmerski J. A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J Clin Endocrinol Metab. 2003;88(1):60–72.

    Article  CAS  PubMed  Google Scholar 

  259. Hillman DA, Scriver CR, Pedvis S, Shragovitch I. Neonatal familial primary hyperparathyroidism. N Engl J Med. 1964;270:483–90.

    Article  CAS  PubMed  Google Scholar 

  260. Waller S, Kurzawinski T, Spitz L, Thakker R, Cranston T, Pearce S, Cheetham T, van’t Hoff WG. Neonatal severe hyperparathyroidism: genotype/phenotype correlation and the use of pamidronate as rescue therapy. Eur J Pediatr. 2004;163(10):589–94.

    Article  CAS  PubMed  Google Scholar 

  261. Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O, Warren HB, Brown EM, Seidman JG, Seidman CE. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet. 1995;11(4):389–94.

    Article  CAS  PubMed  Google Scholar 

  262. Tu Q, Pi M, Karsenty G, Simpson L, Liu S, Quarles LD. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. J Clin Invest. 2003;111(7):1029–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Günther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature. 2000;406(6792):199–203.

    Article  PubMed  Google Scholar 

  264. Carling T, Udelsman R. Parathyroid surgery in familial hyperparathyroid disorders. J Intern Med. 2005;257:27–37.

    Article  CAS  PubMed  Google Scholar 

  265. Brown EM. Familial hypocalciuric hypercalcemia and other disorders with resistance to extracellular calcium. Endocrinol Metab Clin North Am. 2000;29:503–22.

    Article  CAS  PubMed  Google Scholar 

  266. Brown EM. The calcium-sensing receptor: physiology, pathophysiology and CaR-based therapeutics. Subcell Biochem. 2007;45:139–67.

    Article  CAS  PubMed  Google Scholar 

  267. Sato K, Hasegawa Y, Nakae J, Nanao K, Takahashi I, Tajima T, Shinohara N, Fujieda K. Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing receptor gene. J Clin Endocrinol Metab. 2002;87(7):3068–73.

    Article  CAS  PubMed  Google Scholar 

  268. Vezzoli G, Arcidiacono T, Paloschi V, Terranegra A, Biasion R, Weber G, Mora S, Syren ML, Coviello D, Cusi D, Bianchi G, Soldati L. Autosomal dominant hypocalcemia with mild type 5 Bartter syndrome. J Nephrol. 2006;19(4):525–8.

    CAS  PubMed  Google Scholar 

  269. Fine KD, Santa Ana CA, Porter JL, Fordtran JS. Intestinal absorption of magnesium from food and supplements. J Clin Invest. 1991;2:396–402.

    Article  Google Scholar 

  270. Quamme GA. Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol. 2008;2:230–5.

    Article  CAS  Google Scholar 

  271. de Rouffignac C, Quamme G. Renal magnesium handling and its hormonal control. Physiol Rev. 1994;2:305–22.

    Google Scholar 

  272. Quamme GA. Renal magnesium handling: new insights in understanding old problems. Kidney Int. 1997;5:1180–95.

    Article  Google Scholar 

  273. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999;285(5424):103–6.

    Article  CAS  PubMed  Google Scholar 

  274. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006;5:949–57.

    Article  Google Scholar 

  275. Michelis MF, Drash AL, Linarelli LG, De Rubertis FR, Davis BB. Decreased bicarbonate threshold and renal magnesium wasting in a sibship with distal renal tubular acidosis (Evaluation of the pathophysiological role of parathyroid hormone). Metab Clin Exp. 1972;10:905–20.

    Article  Google Scholar 

  276. Manz F, Scharer K, Janka P, Lombeck J. Renal magnesium wasting, incomplete tubular acidosis, hypercalciuria and nephrocalcinosis in siblings. Eur J Pediatr. 1978;2:67–79.

    Article  Google Scholar 

  277. Rodriguez-Soriano J, Vallo A, Garcia-Fuentes M. Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol. 1987;3:465–72.

    Article  Google Scholar 

  278. Rodriguez-Soriano J, Vallo A. Pathophysiology of the renal acidification defect present in the syndrome of familial hypomagnesaemia-hypercalciuria. Pediatr Nephrol. 1994;4:431–5.

    Article  Google Scholar 

  279. Praga M, Vara J, Gonzalez-Parra E, Andres A, Alamo C, Araque A, Ortiz A, Rodicio JL. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int. 1995;5:1419–25.

    Article  Google Scholar 

  280. Benigno V, Canonica CS, Bettinelli A, von Vigier RO, Truttmann AC, Bianchetti MG. Hypomagnesaemia-hypercalciuria-nephrocalcinosis: a report of nine cases and a review. Nephrol Dial Transplant. 2000;5:605–10.

    Article  Google Scholar 

  281. Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, Bonzel KE, Seeman T, Sulakova T, Kuwertz-Broking E, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2001;9:1872–81.

    Google Scholar 

  282. Zimmermann B, Plank C, Konrad M, Stohr W, Gravou-Apostolatou C, Rascher W, Dotsch J. Hydrochlorothiazide in CLDN16 mutation. Nephrol Dial Transplant. 2006;8:2127–32.

    Article  CAS  Google Scholar 

  283. Konrad M, Hou J, Weber S, Dotsch J, Kari JA, Seeman T, Kuwertz-Broking E, Peco-Antic A, Tasic V, Dittrich K, et al. CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2008;1:171–81.

    Article  CAS  Google Scholar 

  284. Godron A, Harambat J, Boccio V, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol. 2012;7(5):801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Claverie-Martin F, Garcia-Nieto V, Loris C, et al. Claudin-19 mutations and clinical phenotype in Spanish patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. PLoS One. 2013;8(1), e53151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Hirano T, Kobayashi N, Itoh T, Takasuga A, Nakamaru T, Hirotsune S, Sugimoto Y. Null mutation of PCLN-1/Claudin-16 results in bovine chronic interstitial nephritis. Genome Res. 2000;5:659–63.

    Article  Google Scholar 

  287. Ohba Y, Kitagawa H, Kitoh K, Sasaki Y, Takami M, Shinkai Y, Kunieda T. A deletion of the paracellin-1 gene is responsible for renal tubular dysplasia in cattle. Genomics. 2000;3:229–36.

    Article  CAS  Google Scholar 

  288. Will C, Breiderhoff T, Thumfart J, et al. Targeted deletion of murine Cldn16 identifies extra- and intrarenal compensatory mechanisms of Ca2+ and Mg2+ wasting. Am J Physiol Renal Physiol. 2010;298(5):F1152–61.

    Article  CAS  PubMed  Google Scholar 

  289. Blanchard A, Jeunemaitre X, Coudol P, Dechaux M, Froissart M, May A, Demontis R, Fournier A, Paillard M, Houillier P. Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int. 2001;6:2206–15.

    Article  Google Scholar 

  290. Muller D, Kausalya PJ, Claverie-Martin F, Meij IC, Eggert P, Garcia-Nieto V, Hunziker W. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet. 2003;6:1293–301.

    Article  Google Scholar 

  291. Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest. 2008;2:619–28.

    Google Scholar 

  292. Bockenhauer D, Feather S, Stanescu HC, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med. 2009;360(19):1960–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A. 2009;106(14):5842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Scholl UI, Dave HB, Lu M, Farhi A, Nelson-Williams C, Listman JA, Lifton RP. SeSAME/EAST syndrome – phenotypic variability and delayed activity of the distal convoluted tubule. Pediatr Nephrol. 2012;27(11):2081–90.

    Article  PubMed  Google Scholar 

  295. Zhang C, Wang L, Zhang J, Su XT, Lin DH, Scholl UI, Giebisch G, Lifton RP, Wang WH. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci U S A. 2014;111(32):11864–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Neusch C, Rozengurt N, Jacobs RE, et al. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci. 2001;21(15):5429–38.

    CAS  PubMed  Google Scholar 

  297. Meij IC, Koenderink JB, van Bokhoven H, Assink KF, Groenestege WT, de Pont JJ, Bindels RJ, Monnens LA, van den Heuvel LP, Knoers NV. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+), K(+)-ATPase gamma-subunit. Nat Genet. 2000;3:265–6.

    Google Scholar 

  298. Geven WB, Monnens LA, Willems HL, Buijs WC, ter Haar BG. Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int. 1987;5:1140–4.

    Article  Google Scholar 

  299. Meij IC, Van Den Heuvel LP, Hemmes S, Van Der Vliet WA, Willems JL, Monnens LA, Knoers NV. Exclusion of mutations in FXYD2, CLDN16 and SLC12A3 in two families with primary renal Mg(2+) loss. Nephrol Dial Transplant. 2003;3:512–56.

    Article  Google Scholar 

  300. Sweadner KJ, Arystarkhova E, Donnet C, Wetzel RK. FXYD proteins as regulators of the Na, K-ATPase in the kidney. Ann N Y Acad Sci. 2003;382–387.

    Google Scholar 

  301. Arystarkhova E, Wetzel RK, Sweadner KJ. Distribution and oligomeric association of splice forms of Na(+)-K(+)-ATPase regulatory gamma-subunit in rat kidney. Am J Physiol Renal Physiol. 2002;3:F393–407.

    Article  Google Scholar 

  302. Arystarkhova E, Donnet C, Asinovski NK, Sweadner KJ. Differential regulation of renal Na, K-ATPase by splice variants of the gamma subunit. J Biol Chem. 2002;12:10162–72.

    Article  CAS  Google Scholar 

  303. Jones DH, Li TY, Arystarkhova E, Barr KJ, Wetzel RK, Peng J, Markham K, Sweadner KJ, Fong GH, Kidder GM. Na, K-ATPase from mice lacking the gamma subunit (FXYD2) exhibits altered Na+ affinity and decreased thermal stability. J Biol Chem. 2005;19:19003–11.

    Article  CAS  Google Scholar 

  304. Glaudemans B, van der Wijst J, Scola RH, et al. A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest. 2009;119(4):936–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. van der Wijst J, Glaudemans B, Venselaar H, et al. Functional analysis of the Kv1.1 N255D mutation associated with autosomal dominant hypomagnesemia. J Biol Chem. 2010;285(1):171–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  306. Geven WB, Monnens LA, Willems JL, Buijs W, Hamel CJ. Isolated autosomal recessive renal magnesium loss in two sisters. Clin Genet. 1987;6:398–402.

    Google Scholar 

  307. Groenestege WM, Thebault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S, van den Heuvel LP, van Cutsem E, Hoenderop JG, Knoers NV, et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest. 2007;8:2260–7.

    Article  CAS  Google Scholar 

  308. Paunier L, Radde IC, Kooh SW, Conen PE, Fraser D. Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics. 1968;2:385–402.

    Google Scholar 

  309. Anast CS, Mohs JM, Kaplan SL, Burns TW. Evidence for parathyroid failure in magnesium deficiency. Science. 1972;49:606–68.

    Article  Google Scholar 

  310. Shalev H, Phillip M, Galil A, Carmi R, Landau D. Clinical presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child. 1998;2:127–30.

    Article  Google Scholar 

  311. Milla PJ, Aggett PJ, Wolff OH, Harries JT. Studies in primary hypomagnesaemia: evidence for defective carrier-mediated small intestinal transport of magnesium. Gut. 1979;11:1028–133.

    Article  Google Scholar 

  312. Matzkin H, Lotan D, Boichis H. Primary hypomagnesemia with a probable double magnesium transport defect. Nephron. 1989;1:83–6.

    Article  Google Scholar 

  313. Walder RY, Shalev H, Brennan TM, Carmi R, Elbedour K, Scott DA, Hanauer A, Mark AL, Patil S, Stone EM, et al. Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum Mol Genet. 1997;9:1491–7.

    Article  Google Scholar 

  314. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet. 2002;2:171–4.

    Article  CAS  Google Scholar 

  315. Schlingmann KP, Sassen MC, Weber S, Pechmann U, Kusch K, Pelken L, Lotan D, Syrrou M, Prebble JJ, Cole DE, et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol. 2005;10:3061–9.

    Article  Google Scholar 

  316. Jalkanen R, Pronicka E, Tyynismaa H, Hanauer A, Walder R, Alitalo T. Genetic background of HSH in three Polish families and a patient with an X;9 translocation. Eur J Hum Genet. 2006;1:55–62.

    Google Scholar 

  317. Guran T, Akcay T, Bereket A, et al. Clinical and molecular characterization of Turkish patients with familial hypomagnesaemia: novel mutations in TRPM6 and CLDN16 genes. Nephrol Dial Transplant. 2012;27(2):667–73.

    Article  CAS  PubMed  Google Scholar 

  318. Lainez S, Schlingmann KP, van der Wijst J, et al. New TRPM6 missense mutations linked to hypomagnesemia with secondary hypocalcemia. Eur J Hum Genet. 2013;2013.

    Google Scholar 

  319. Chubanov V, Schlingmann KP, Wäring J, et al. Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J Biol Chem. 2007;282(10):7656–67.

    Article  CAS  PubMed  Google Scholar 

  320. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature. 2001;6837:590–5.

    Article  CAS  Google Scholar 

  321. Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem. 2004;279(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  322. Cole DE, Quamme GA. Inherited disorders of renal magnesium handling. J Am Soc Nephrol. 2000;10:1937–47.

    Google Scholar 

  323. Chubanov V, Waldegger S, Mederos y Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A. 2004;9:2894–9.

    Article  CAS  Google Scholar 

  324. Schmitz C, Dorovkov MV, Zhao X, Davenport BJ, Ryazanov AG, Perraud AL. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem. 2005;45:37763–71.

    Article  CAS  Google Scholar 

  325. Groenestege WM, Hoenderup JG, van den Heuvel L, Knoers N, Bindels RJ. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ contents and estrogens. J Am Soc Nephrol. 2006;17:1035–43.

    Article  CAS  PubMed  Google Scholar 

  326. Nijenhuis T, Hoenderup JG, Bindels RJ. Downregulation of Ca2+ and Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol. 2004;15:549–57.

    Article  CAS  PubMed  Google Scholar 

  327. Ikari A, Okude C, Sawada H, Takahashi T, Sugatani J, Miwa M. Downregulation of TRPM6-mediated magnesium influx by cyclosporine A. Naunyn Schmiedebergs Arch Pharmacol. 2008;377:333–43.

    Article  CAS  PubMed  Google Scholar 

  328. Stuiver M, Lainez S, Will C, et al. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am J Hum Genet. 2011;88(3):333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Goytain A, Quamme GA. Functional characterization of ACDP2 (ancient conserved domain protein), a divalent metal transporter. Physiol Genomics. 2005;22(3):382–9.

    Article  CAS  PubMed  Google Scholar 

  330. Meyer TE, Verwoert GC, Hwang SJ, et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels. PLoS Genet. 2010;6(8).

    Google Scholar 

  331. Arjona FJ, de Baaij JH, Schlingmann KP, et al. CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia. PLoS Genet. 2014;10(4), e1004267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  332. Wang CY, Shi JD, Yang P, et al. Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene. 2003;306:37–44.

    Article  CAS  PubMed  Google Scholar 

  333. de Baaij JH, Stuiver M, Meij IC, et al. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J Biol Chem. 2012;287(17):13644–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Horikawa Y, Iwasaki N, Hara M, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997;17(4):384–5.

    Article  CAS  PubMed  Google Scholar 

  335. Lindner TH, Njolstad PR, Horikawa Y, et al. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet. 1999;8(11):2001–8.

    Article  CAS  PubMed  Google Scholar 

  336. Faguer S, Decramer S, Chassaing N, et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int. 2011;80(7):768–76.

    Article  CAS  PubMed  Google Scholar 

  337. Heidet L, Decramer S, Pawtowski A, et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol. 2010;5(6):1079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Adalat S, Woolf AS, Johnstone KA, et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol. 2009;20(5):1123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Ferre S, de Baaij JH, Ferreira P, et al. Mutations in PCBD1 cause hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol. 2014;25(3):574–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR, Nelson-Williams C, Raja KM, Kashgarian M, Shulman GI, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;5699:1190–4.

    Article  CAS  Google Scholar 

  341. Agus ZS. Hypomagnesemia. J Am Soc Nephrol. 1999;10:1616–22.

    CAS  PubMed  Google Scholar 

  342. Schlingmann KP, Konrad M, Seyberth HW. Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol. 2004;19:13–25.

    Article  PubMed  Google Scholar 

  343. Gal P, Reed MD. Medications. In: Behrman RE, Kliegman R, Jenson HB, editors. Textbook of pediatrics. Philadelphia: Saunders; 2000. p. 2270.

    Google Scholar 

  344. Ranade VV, Somberg JC. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to human. Am J Ther. 2001;8:345–57.

    Article  CAS  PubMed  Google Scholar 

  345. Ryan MP. Magnesium and potassium-sparing diuretics. Magnesium. 1986;5:282–92.

    CAS  PubMed  Google Scholar 

  346. Netzer T, Knauf H, Mutschler E. Modulation of electrolyte excretion by potassium retaining diuretics. Eur Heart J. 1992;13(Suppl G):22–7.

    Article  PubMed  Google Scholar 

  347. Bundy JT, Connito D, Mahoney MD, Pontier PJ. Treatment of idiopathic renal magnesium wasting with amiloride. Am J Nephrol. 1995;15:75–7.

    Article  CAS  PubMed  Google Scholar 

  348. Newton-Cheh C, Guo CY, Gona P, Larson MG, Benjamin EJ, Wang TJ, Kathiresan S, O’Donnell CJ, Musone SL, Camargo AL, Drake JA, Levy D, Hirschhorn JN, Vasan RS. Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertension. 2007;49:846–56.

    Article  CAS  PubMed  Google Scholar 

  349. Vasan RS, Evans JC, Larson MG, Wilson PW, Meigs JB, Rifai N, Benjamin EJ, Levy D. Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N Engl J Med. 2004;351:33–41.

    Article  CAS  PubMed  Google Scholar 

  350. Meneton P, Galan P, Bertrais S, Heudes D, Hercberg S, Menard J. High plasma aldosterone and low renin predict blood pressure increase and hypertension in middle-aged Caucasian populations. J Hum Hypertens. 2008;22:550–8.

    Article  CAS  PubMed  Google Scholar 

  351. Hannemann A, Wallaschofski H. Prevalence of primary aldosteronism in patient’s cohorts and in population-based studies--a review of the current literature. Horm Metab Res. 2012;44:157–62.

    Article  CAS  PubMed  Google Scholar 

  352. Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension. 2002;40:892–6.

    Article  CAS  PubMed  Google Scholar 

  353. Sutherland DJ, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J. 1966;95:1109–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  354. Stowasser M, Gunasekera TG, Gordon RD. Familial varieties of primary aldosteronism. Clin Exp Pharmacol Physiol. 2001;28:1087–90.

    Article  CAS  PubMed  Google Scholar 

  355. Mulatero P, di Cella SM, Williams TA, Milan A, Mengozzi G, Chiandussi L, Gomez-Sanchez CE, Veglio F. Glucocorticoid remediable aldosteronism: low morbidity and mortality in a four-generation italian pedigree. J Clin Endocrinol Metab. 2002;87:3187–91.

    Article  CAS  PubMed  Google Scholar 

  356. Aglony M, Martinez-Aguayo A, Carvajal CA, Campino C, Garcia H, Bancalari R, Bolte L, Avalos C, Loureiro C, Trejo P, Brinkmann K, Giadrosich V, Mericq V, Rocha A, Avila A, Perez V, Inostroza A, Fardella CE. Frequency of familial hyperaldosteronism type 1 in a hypertensive pediatric population: clinical and biochemical presentation. Hypertension. 2011;57:1117–21.

    Article  CAS  PubMed  Google Scholar 

  357. Pizzolo F, Trabetti E, Guarini P, Mulatero P, Ciacciarelli A, Blengio GS, Corrocher R, Olivieri O. Glucocorticoid remediable aldosteronism (GRA) screening in hypertensive patients from a primary care setting. J Hum Hypertens. 2005;19:325–7.

    Article  CAS  PubMed  Google Scholar 

  358. Mulatero P, Tizzani D, Viola A, Bertello C, Monticone S, Mengozzi G, Schiavone D, Williams TA, Einaudi S, La Grotta A, Rabbia F, Veglio F. Prevalence and characteristics of familial hyperaldosteronism: the PATOGEN study (Primary Aldosteronism in TOrino-GENetic forms). Hypertension. 2011;58:797–803.

    Article  CAS  PubMed  Google Scholar 

  359. Litchfield WR, Anderson BF, Weiss RJ, Lifton RP, Dluhy RG. Intracranial aneurysm and hemorrhagic stroke in glucocorticoid-remediable aldosteronism. Hypertension. 1998;31:445–50.

    Article  CAS  PubMed  Google Scholar 

  360. Mantero F, Armanini D, Biason A, Boscaro M, Carpene G, Fallo F, Opocher G, Rocco S, Scaroni C, Sonino N. New aspects of mineralocorticoid hypertension. Horm Res. 1990;34:175–80.

    Article  CAS  PubMed  Google Scholar 

  361. Mulatero P, Veglio F, Pilon C, Rabbia F, Zocchi C, Limone P, Boscaro M, Sonino N, Fallo F. Diagnosis of glucocorticoid-remediable aldosteronism in primary aldosteronism: aldosterone response to dexamethasone and long polymerase chain reaction for chimeric gene. J Clin Endocrinol Metab. 1998;83:2573–5.

    Article  CAS  PubMed  Google Scholar 

  362. Litchfield WR, New MI, Coolidge C, Lifton RP, Dluhy RG. Evaluation of the dexamethasone suppression test for the diagnosis of glucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 1997;82:3570–3.

    CAS  PubMed  Google Scholar 

  363. Stowasser M, Bachmann AW, Tunny TJ, Gordon RD. Production of 18-oxo-cortisol in subtypes of primary aldosteronism. Clin Exp Pharmacol Physiol. 1996;23:591–3.

    Article  CAS  PubMed  Google Scholar 

  364. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355:262–5.

    Article  CAS  PubMed  Google Scholar 

  365. Curnow KM, Mulatero P, Emeric-Blanchouin N, Aupetit-Faisant B, Corvol P, Pascoe L. The amino acid substitutions Ser288Gly and Val320Ala convert the cortisol producing enzyme, CYP11B1, into an aldosterone producing enzyme. Nat Struct Biol. 1997;4:32–5.

    Article  CAS  PubMed  Google Scholar 

  366. Pascoe L, Curnow KM, Slutsker L, Connell JM, Speiser PW, New MI, White PC. Glucocorticoid-suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2. Proc Natl Acad Sci U S A. 1992;89:8327–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Jonsson JR, Klemm SA, Tunny TJ, Stowasser M, Gordon RD. A new genetic test for familial hyperaldosteronism type I aids in the detection of curable hypertension. Biochem Biophys Res Commun. 1995;207:565–71.

    Article  CAS  PubMed  Google Scholar 

  368. Funder JW, Carey RM, Fardella C, Gomez-Sanchez CE, Mantero F, Stowasser M, Young Jr WF, Montori VM. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93:3266–81.

    Article  CAS  PubMed  Google Scholar 

  369. Stowasser M, Bachmann AW, Huggard PR, Rossetti TR, Gordon RD. Treatment of familial hyperaldosteronism type I: only partial suppression of adrenocorticotropin required to correct hypertension. J Clin Endocrinol Metab. 2000;85:3313–8.

    Article  CAS  PubMed  Google Scholar 

  370. Gordon RD, Stowasser M, Tunny TJ, Klemm SA, Finn WL, Krek AL. Clinical and pathological diversity of primary aldosteronism, including a new familial variety. Clin Exp Pharmacol Physiol. 1991;18:283–6.

    Article  CAS  PubMed  Google Scholar 

  371. Stowasser M, Gordon RD, Tunny TJ, Klemm SA, Finn WL, Krek AL. Familial hyperaldosteronism type II: five families with a new variety of primary aldosteronism. Clin Exp Pharmacol Physiol. 1992;19:319–22.

    Article  CAS  PubMed  Google Scholar 

  372. Stowasser M, Gordon RD. Primary aldosteronism: learning from the study of familial varieties. J Hypertens. 2000;18:1165–76.

    Article  CAS  PubMed  Google Scholar 

  373. Stowasser M, Gunasekera TG, Gordon RD. Familial varieties of primary aldosteronism. Clin Exp Pharmacol Physiol. 2001;28:1087–90.

    Article  CAS  PubMed  Google Scholar 

  374. Medeau V, Assie G, Zennaro MC, Clauser E, Plouin PF, Jeunemaitre X. Familial aspect of primary hyperaldosteronism: analysis of families compatible with primary hyperaldosteronism type 2. Ann Endocrinol (Paris). 2005;66:240–6.

    Article  CAS  Google Scholar 

  375. Lafferty AR, Torpy DJ, Stowasser M, Taymans SE, Lin JP, Huggard P, Gordon RD, Stratakis CA. A novel genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22). J Med Genet. 2000;37:831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Sukor N, Mulatero P, Gordon RD, So A, Duffy D, Bertello C, Kelemen L, Jeske Y, Veglio F, Stowasser M. Further evidence for linkage of familial hyperaldosteronism type II at chromosome 7p22 in Italian as well as Australian and South American families. J Hypertens. 2008;26:1577–82.

    Article  CAS  PubMed  Google Scholar 

  377. So A, Jeske YW, Gordon RD, Duffy D, Kelemen L, Stowasser M. No evidence for coding region mutations in the retinoblastoma-associated Kruppel-associated box protein gene (RBaK) causing familial hyperaldosteronism type II. Clin Endocrinol (Oxf). 2006;65:829–31.

    Article  CAS  Google Scholar 

  378. Jeske YW, So A, Kelemen L, Sukor N, Willys C, Bulmer B, Gordon RD, Duffy D, Stowasser M. Examination of chromosome 7p22 candidate genes RBaK, PMS2 and GNA12 in familial hyperaldosteronism type II. Clin Exp Pharmacol Physiol. 2008;35:380–5.

    Article  CAS  PubMed  Google Scholar 

  379. Pallauf A, Schirpenbach C, Zwermann O, Fischer E, Morak M, Holinski-Feder E, Hofbauer L, Beuschlein F, Reincke M. The prevalence of familial hyperaldosteronism in apparently sporadic primary aldosteronism in Germany: a single center experience. Horm Metab Res. 2012;44:215–20.

    Article  CAS  PubMed  Google Scholar 

  380. Geller DS, Zhang JJ, Wisgerhof MV, Shackleton C, Kashgarian M, Lifton RP. A novel form of human Mendelian hypertension featuring non-glucocorticoid remediable aldosteronism. J Clin Endocrinol Metab. 2008;93:3117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C, Ji W, Cho Y, Patel A, Men CJ, Lolis E, Wisgerhof MV, Geller DS, Mane S, Hellman P, Westin G, Akerstrom G, Wang W, Carling T, Lifton RP. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331:768–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Oki K, Plonczynski MW, Luis Lam M, Gomez-Sanchez EP, Gomez-Sanchez CE. Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis. Endocrinology. 2012;153:1774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Scholl UI, Nelson-Williams C, Yue P, Grekin R, Wyatt RJ, Dillon MJ, Couch R, Hammer LK, Harley FL, Farhi A, Wang WH, Lifton RP. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci U S A. 2012;109:2533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Charmandari E, Sertedaki A, Kino T, Merakou C, Hoffman DA, Hatch MM, Hurt DE, Lin L, Xekouki P, Stratakis CA, Chrousos GP. A novel point mutation in the KCNJ5 gene causing primary hyperaldosteronism and early-onset autosomal dominant hypertension. J Clin Endocrinol Metab. 2012;97:E1532–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Mulatero P, Tauber P, Zennaro MC, Monticone S, Lang K, Beuschlein F, Fischer E, Tizzani D, Pallauf A, Viola A, Amar L, Williams TA, Strom TM, Graf E, Bandulik S, Penton D, Plouin PF, Warth R, Allolio B, Jeunemaitre X, Veglio F, Reincke M. KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension. 2012;59:235–40.

    Article  CAS  PubMed  Google Scholar 

  386. Monticone S, Hattangady NG, Penton D, Isales CM, Edwards MA, Williams TA, Sterner C, Warth R, Mulatero P, Rainey WE. A novel Y152C KCNJ5 mutation responsible for familial hyperaldosteronism type III. J Clin Endocrinol Metab. 2013;98:E1861–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Adachi M, Muroya K, Asakura Y, Sugiyama K, Homma K, Hasegawa T. Discordant genotype-phenotype correlation in familial hyperaldosteronism type III with KCNJ5 gene mutation: a patient report and review of the literature. Horm Res Pediatry. 2014;82:138–42.

    Article  CAS  Google Scholar 

  388. Liddle G, Bledsoe T, Coppage WS. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians. 1963;76:199–213.

    CAS  Google Scholar 

  389. Botero-Velez M, Curtis JJ, Warnock DG. Brief report: Liddle’s syndrome revisited – a disorder of sodium reabsorption in the distal tubule. N Engl J Med. 1994;330:178–81.

    Article  CAS  PubMed  Google Scholar 

  390. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR, Ulick S, Milora RV, Findling JW, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79:407–14.

    Article  CAS  PubMed  Google Scholar 

  391. Jeunemaitre X, Bassilana F, Persu A, Dumont C, Champigny G, Lazdunski M, Corvol P, Barbry P. Genotype-phenotype analysis of a newly discovered family with Liddle’s syndrome. J Hypertens. 1997;15:1091–100.

    Article  CAS  PubMed  Google Scholar 

  392. Baker E, Jeunemaitre X, Portal AJ, Grimbert P, Markandu N, Persu A, Corvol P, MacGregor G. Abnormalities of nasal potential difference measurement in Liddle’s syndrome. J Clin Invest. 1998;102:10–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11:76–82.

    Article  CAS  PubMed  Google Scholar 

  394. Yang KQ, Lu CX, Xiao Y, Liu YX, Jiang XJ, Zhang X, Zhou XL. Molecular genetics of Liddle’s syndrome. Clin Endocrinol (Oxf). 2014;82(4):611–4.

    Article  CAS  Google Scholar 

  395. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994;367:463–7.

    Article  CAS  PubMed  Google Scholar 

  396. Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature. 2007;449:316–23.

    Article  CAS  PubMed  Google Scholar 

  397. Rossier BC. Epithelial sodium channel (ENaC) and the control of blood pressure. Curr Opin Pharmacol. 2014;15:33–46.

    Article  CAS  PubMed  Google Scholar 

  398. Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ. Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell. 1995;83:969–78.

    Article  CAS  PubMed  Google Scholar 

  399. Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J. 1996;15:2381–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  400. Rotin D, Staub O, Haguenauer-Tsapis R. Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol. 2000;176:1–17.

    Article  CAS  PubMed  Google Scholar 

  401. Staub O, Verrey F. Impact of Nedd4 proteins and serum and glucocorticoid-induced kinases on epithelial Na+ transport in the distal nephron. J Am Soc Nephrol. 2005;16:3167–74.

    Article  CAS  PubMed  Google Scholar 

  402. Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A. 1996;93:15370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Warnock DG. Liddle syndrome: an autosomal dominant form of human hypertension. Kidney Int. 1998;53(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  404. Teiwes J, Toto RD. Epithelial sodium channel inhibition in cardiovascular disease. A potential role for amiloride. Am J Hypertens. 2007;20:109–17.

    Article  CAS  PubMed  Google Scholar 

  405. Swift PA, MacGregor GA. The epithelial sodium channel in hypertension: genetic heterogeneity and implications for treatment with amiloride. Am J Pharmacogenomics. 2004;4:161–8.

    Article  CAS  PubMed  Google Scholar 

  406. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289:119–23.

    Article  CAS  PubMed  Google Scholar 

  407. Rafestin-Oblin ME, Souque A, Bocchi B, Pinon G, Fagart J, Vandewalle A. The severe form of hypertension caused by the activating S810L mutation in the mineralocorticoid receptor is cortisone related. Endocrinology. 2003;144:528–33.

    Article  CAS  PubMed  Google Scholar 

  408. New MI, Levine LS, Biglieri EG, Pareira J, Ulick S. Evidence for an unidentified steroid in a child with apparent mineralocorticoid hypertension. J Clin Endocrinol Metab. 1977;44:924–33.

    Article  CAS  PubMed  Google Scholar 

  409. Ulick S, Ramirez LC, New MI. An abnormality in steroid reductive metabolism in a hypertensive syndrome. J Clin Endocrinol Metab. 1977;44:799–802.

    Article  CAS  PubMed  Google Scholar 

  410. Stewart PM. Mineralocorticoid hypertension. Lancet. 1999;353:1341–7.

    Article  CAS  PubMed  Google Scholar 

  411. Ulick S, Tedde R, Mantero F. Pathogenesis of the type 2 variant of the syndrome of apparent mineralocorticoid excess. J Clin Endocrinol Metab. 1990;70:200–6.

    Article  CAS  PubMed  Google Scholar 

  412. Li A, Tedde R, Krozowski ZS, Pala A, Li KX, Shackleton CH, Mantero F, Palermo M, Stewart PM. Molecular basis for hypertension in the “type II variant” of apparent mineralocorticoid excess. Am J Hum Genet. 1998;63:370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Edwards CR, Stewart PM, Burt D, Brett L, McIntyre MA, Sutanto WS, de Kloet ER, Monder C. Localisation of 11 beta-hydroxysteroid dehydrogenase – tissue specific protector of the mineralocorticoid receptor. Lancet. 1988;2:986–9.

    Article  CAS  PubMed  Google Scholar 

  414. Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet. 1995;10:394–9.

    Article  CAS  PubMed  Google Scholar 

  415. Stewart PM, Krozowski ZS, Gupta A, Milford DV, Howie AJ, Sheppard MC, Whorwood CB. Hypertension in the syndrome of apparent mineralocorticoid excess due to mutation of the 11 beta-hydroxysteroid dehydrogenase type 2 gene. Lancet. 1996;347:88–91.

    Article  CAS  PubMed  Google Scholar 

  416. Morineau G, Marc JM, Boudi A, Galons H, Gourmelen M, Corvol P, Pascoe L, Fiet J. Genetic, biochemical, and clinical studies of patients with A328V or R213C mutations in 11betaHSD2 causing apparent mineralocorticoid excess. Hypertension. 1999;34:435–41.

    Article  CAS  PubMed  Google Scholar 

  417. New MI, Geller DS, Fallo F, Wilson RC. Monogenic low renin hypertension. Trends Endocrinol Metab. 2005;16:92–7.

    Article  CAS  PubMed  Google Scholar 

  418. Kotelevtsev Y, Brown RW, Fleming S, Kenyon C, Edwards CR, Seckl JR, Mullins JJ. Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2. J Clin Invest. 1999;103:683–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Gourmelen M, Saint-Jacques I, Morineau G, Soliman H, Julien R, Fiet J. 11 beta-Hydroxysteroid dehydrogenase deficit: a rare cause of arterial hypertension. Diagnosis and therapeutic approach in two young brothers. Eur J Endocrinol. 1996;135:238–44.

    Article  CAS  PubMed  Google Scholar 

  420. Palermo M, Delitala G, Sorba G, Cossu M, Satta R, Tedde R, Pala A, Shackleton CH. Does kidney transplantation normalise cortisol metabolism in apparent mineralocorticoid excess syndrome? J Endocrinol Invest. 2000;23:457–62.

    Article  CAS  PubMed  Google Scholar 

  421. Wilson RC, Nimkarn S, New MI. Apparent mineralocorticoid excess. Trends Endocrinol Metab. 2001;12:104–11.

    Article  CAS  PubMed  Google Scholar 

  422. Gordon RD, Klemm SA, Tunny TJ, Stowasser M. Chapter 125: Gordon syndrome: a sodium-volume-dependent form of hypertension with a genetic basis. In: Laragh JH, Brenner BM, editors. Hypertension: pathophysiology, diagnosis and management. 2nd ed. New York: Raven; 1995.

    Google Scholar 

  423. Achard JM, Disse-Nicodeme S, Fiquet-Kempf B, Jeunemaitre X. Phenotypic and genetic heterogeneity of familial hyperkalaemic hypertension (Gordon syndrome). Clin Exp Pharmacol Physiol. 2001;28:1048–52.

    Article  CAS  PubMed  Google Scholar 

  424. Disse-Nicodeme S, Achard JM, Desitter I, Houot AM, Fournier A, Corvol P, Jeunemaitre X. A new locus on chromosome 12p13.3 for pseudohypoaldosteronism type II, an autosomal dominant form of hypertension. Am J Hum Genet. 2000;67:302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–12.

    Article  CAS  PubMed  Google Scholar 

  426. Xu BE, Lee BH, Min X, Lenertz L, Heise CJ, Stippec S, Goldsmith EJ, Cobb MH. WNK1: analysis of protein kinase structure, downstream targets, and potential roles in hypertension. Cell Res. 2005;15:6–10.

    Article  PubMed  Google Scholar 

  427. Vidal-Petiot E, Elvira-Matelot E, Mutig K, Soukaseum C, Baudrie V, Wu S, Cheval L, Huc E, Cambillau M, Bachmann S, Doucet A, Jeunemaitre X, Hadchouel J. WNK1-related familial hyperkalemic hypertension results from an increased expression of L-WNK1 specifically in the distal nephron. Proc Natl Acad Sci U S A. 2013;110(35):14366–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Valimaki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TR, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482:98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, Beaurain G, Bonnefond A, Sand O, Simian C, Vidal-Petiot E, Soukaseum C, Mandet C, Broux F, Chabre O, Delahousse M, Esnault V, Fiquet B, Houillier P, Bagnis CI, Koenig J, Konrad M, Landais P, Mourani C, Niaudet P, Probst V, Thauvin C, Unwin RJ, Soroka SD, Ehret G, Ossowski S, Caulfield M, International Consortium for Blood P, Bruneval P, Estivill X, Froguel P, Hadchouel J, Schott JJ, Jeunemaitre X. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet. 2012;44(456–460):S451–3.

    Google Scholar 

  430. Schumacher FR, Sorrell FJ, Alessi DR, Bullock AN, Kurz T. Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation. Biochem J. 2014;460:237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet. 2003;35:372–6.

    Article  CAS  PubMed  Google Scholar 

  432. Hadchouel J, Delaloy C, Faure S, Achard JM, Jeunemaitre X. Familial hyperkalemic hypertension. J Am Soc Nephrol. 2006;17:208–17.

    Article  CAS  PubMed  Google Scholar 

  433. Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol. 2011;22:605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Uchida S. Regulation of blood pressure and renal electrolyte balance by Cullin-RING ligases. Curr Opin Nephrol Hypertens. 2014;23:487–93.

    Article  CAS  PubMed  Google Scholar 

  435. Chaves-Canales M, Zhang C, Soukaseum C, Moreno E, Pacheco-Alvarez D, Vidal-Petiot E, Castañeda-Bueno M, Vazquez N, Rojas-Vega L, Meermeier NP, Rogers S, Jeunemaitre X, Yang CL, Ellison DH, Gamba G, Hadchouel J. The WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the NaCl cotransporter via SPAK, an effect antagonized by WNK4. Hypertension. 2014;64:1047–53.

    Article  CAS  Google Scholar 

  436. Lalioti MD, Zhang J, Volkman HM, Kahle KT, Hoffmann KE, Toka HR, Nelson-Williams C, Ellison DH, Flavell R, Booth CJ, Lu Y, Geller DS, Lifton RP. Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet. 2006;38:1124–32.

    Article  CAS  PubMed  Google Scholar 

  437. San-Cristobal P, Pacheco-Alvarez D, Richardson C, Ring AM, Vazquez N, Rafiqi FH, Chari D, Kahle KT, Leng Q, Bobadilla NA, Hebert SC, Alessi DR, Lifton RP, Gamba G. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci U S A. 2009;106:4384–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Ohta A, Schumacher FR, Mehellou Y, Johnson C, Knebel A, Macartney TJ, Wood NT, Alessi DR, Kurz T. The CUL3-KLHL3 E3 ligase complex mutated in Gordon’s hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J. 2013;451:111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K, Araki Y, Chiga M, Kikuchi E, Nomura N, Mori Y, Matsuo H, Murata T, Nomura S, Asano T, Kawaguchi H, Nonoyama S, Rai T, Sasaki S, Uchida S. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep. 2013;3:858–68.

    Article  CAS  PubMed  Google Scholar 

  440. Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM, Corvol P, Jeunemaitre X. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol. 2003;23:9208–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Xu BE, Min X, Stippec S, Lee BH, Goldsmith EJ, Cobb MH. Regulation of WNK1 by an autoinhibitory domain and autophosphorylation. J Biol Chem. 2002;277:48456–62.

    Article  CAS  PubMed  Google Scholar 

  442. Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal. 2014;7:ra41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  443. Bazúa-Valenti S, Chávez-Canales M, Rojas-Vega L, González-Rodríguez X, Vázquez N, Rodríguez-Gama A, Argaiz ER, Melo Z, Plata C, Ellison DH, García-Valdés J, Hadchouel J, Gamba G. The effect of WNK4 on the Na+-Cl cotransporter is modulated by intracellular chloride. J Am Soc Nephrol. 2015;26(8):1781–6.

    Google Scholar 

  444. Achard JM, Warnock DG, Disse-Nicodeme S, Fiquet-Kempf B, Corvol P, Fournier A, Jeunemaitre X. Familial hyperkalemic hypertension: phenotypic analysis in a large family with the WNK1 deletion mutation. Am J Med. 2003;114:495–8.

    Article  PubMed  Google Scholar 

  445. Mayan H, Gurevitz O, Farfel Z. Successful treatment by cyclooxyenase-2 inhibitor of refractory hypokalemia in a patient with Gitelman’s syndrome. Clin Nephrol. 2002;58:73–6.

    Article  CAS  PubMed  Google Scholar 

  446. Sanjad S, Mansour F, Hernandez R, Hill L. Severe hypertension, hyperkalemia, and renal tubular acidosis responding to dietary sodium restriction. Pediatrics. 1982;69:317–24.

    CAS  PubMed  Google Scholar 

  447. Glover M, O’Shaughnessy KM. SPAK and WNK kinases: a new target for blood pressure treatment? Curr Opin Nephrol Hypertens. 2011;20:16–22.

    Article  CAS  PubMed  Google Scholar 

  448. Zennaro MC, Hubert EL, Fernandes-Rosa FL. Aldosterone resistance: structural and functional considerations and new perspectives. Mol Cell Endocrinol. 2012;350:206–15.

    Article  CAS  PubMed  Google Scholar 

  449. Cheek DB, Perry JW. A salt wasting syndrome in infancy. Arch Dis Child. 1958;33:252–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Hanukoglu A. Type I pseudohypoaldosteronism includes two clinically and genetically distinct entities with either renal or multiple target organ defects. J Clin Endocrinol Metab. 1991;73:936–44.

    Article  CAS  PubMed  Google Scholar 

  451. Geller DS. Mineralocorticoid resistance. Clin Endocrinol (Oxf). 2005;62:513–20.

    Article  CAS  Google Scholar 

  452. Zettle RM, West ML, Josse RG, Richardson RM, Marsden PA, Halperin ML. Renal potassium handling during states of low aldosterone bio-activity: a method to differentiate renal and non-renal causes. Am J Nephrol. 1987;7:360–6.

    Article  CAS  PubMed  Google Scholar 

  453. Rodriguez-Soriano J, Ubetagoyena M, Vallo A. Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol. 1990;4:105–10.

    Article  CAS  PubMed  Google Scholar 

  454. Escoubet B, Couffignal C, Laisy JP, Mangin L, Chillon S, Laouenan C, Serfaty JM, Jeunemaitre X, Mentre F, Zennaro MC. Cardiovascular effects of aldosterone: insight from adult carriers of mineralocorticoid receptor mutations. Circ Cardiovasc Genet. 2013;6:381–90.

    Article  CAS  PubMed  Google Scholar 

  455. Oberfield SE, Levine LS, Carey RM, Bejar R, New MI. Pseudohypoaldosteronism: multiple target organ unresponsiveness to mineralocorticoid hormones. J Clin Endocrinol Metab. 1979;48:228–34.

    Article  CAS  PubMed  Google Scholar 

  456. Wong GP, Levine D. Congenital pseudohypoaldosteronism presenting in utero with acute polyhydramnios. J Matern Fetal Med. 1998;7:76–8.

    CAS  PubMed  Google Scholar 

  457. Speiser PW, Stoner E, New MI. Pseudohypoaldosteronism: a review and report of two new cases. Adv Exp Med Biol. 1986;196:173–95.

    Article  CAS  PubMed  Google Scholar 

  458. Kerem E, Bistritzer T, Hanukoglu A, Hofmann T, Zhou Z, Bennett W, MacLaughlin E, Barker P, Nash M, Quittell L, Boucher R, Knowles MR. Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med. 1999;341:156–62.

    Article  CAS  PubMed  Google Scholar 

  459. Martin JM, Calduch L, Monteagudo C, Alonso V, Garcia L, Jorda E. Clinico-pathological analysis of the cutaneous lesions of a patient with type I pseudohypoaldosteronism. J Eur Acad Dermatol Venereol. 2005;19:377–9.

    Article  CAS  PubMed  Google Scholar 

  460. Belot A, Ranchin B, Fichtner C, Pujo L, Rossier BC, Liutkus A, Morlat C, Nicolino M, Zennaro MC, Cochat P. Pseudohypoaldosteronisms, report on a 10-patient series. Nephrol Dial Transplant. 2008;23:1636–41.

    Article  PubMed  Google Scholar 

  461. Rodriguez-Soriano J, Vallo A, Oliveros R, Castillo G. Transient pseudohypoaldosteronism secondary to obstructive uropathy in infancy. J Pediatr. 1983;103:375–80.

    Article  CAS  PubMed  Google Scholar 

  462. Bulchmann G, Schuster T, Heger A, Kuhnle U, Joppich I, Schmidt H. Transient pseudohypoaldosteronism secondary to posterior urethral valves – a case report and review of the literature. Eur J Pediatr Surg. 2001;11:277–9.

    Article  CAS  PubMed  Google Scholar 

  463. Watanabe T, Nitta K. Transient hyporeninemic hypoaldosteronism in acute glomerulonephritis. Pediatr Nephrol. 2002;17:959–63.

    Article  PubMed  Google Scholar 

  464. Vantyghem MC, Hober C, Evrard A, Ghulam A, Lescut D, Racadot A, Triboulet JP, Armanini D, Lefebvre J. Transient pseudo-hypoaldosteronism following resection of the ileum: normal level of lymphocytic aldosterone receptors outside the acute phase. J Endocrinol Invest. 1999;22:122–7.

    Article  CAS  PubMed  Google Scholar 

  465. Deppe CE, Heering PJ, Viengchareun S, Grabensee B, Farman N, Lombes M. Cyclosporine a and FK506 inhibit transcriptional activity of the human mineralocorticoid receptor: a cell-based model to investigate partial aldosterone resistance in kidney transplantation. Endocrinology. 2002;143:1932–41.

    Article  CAS  PubMed  Google Scholar 

  466. Verrey F, Pearce D, Pfeiffer R, Spindler B, Mastroberardino L, Summa V, Zecevic M. Pleiotropic action of aldosterone in epithelia mediated by transcription and post-transcription mechanisms. Kidney Int. 2000;57:1277–82.

    Article  CAS  PubMed  Google Scholar 

  467. Pascual-Le Tallec L, Lombes M. The mineralocorticoid receptor: a journey exploring its diversity and specificity of action. Mol Endocrinol. 2005;19:2211–21; Stockand JD (2002) New ideas about aldosterone signaling in epithelia. Am J Physiol Renal Physiol 282:F559–576.

    Article  CAS  PubMed  Google Scholar 

  468. Armanini D, Kuhnle U, Strasser T, Dorr H, Butenandt I, Weber P, Stockigt JR, Pearce P, Funder JW. Aldosterone receptor deficiency in pseudohypoaldosteronism. N Engl J Med. 1985;313:1178–81.

    Article  CAS  PubMed  Google Scholar 

  469. Kuhnle U, Nielsen MD, Tietze HU, Schroeter CH, Schlamp D, Bosson D, Knorr D, Armanini D. Pseudohypoaldosteronism in eight families: different forms of inheritance are evidence for various genetic defects. J Clin Endocrinol Metab. 1990;70:638–41.

    Article  CAS  PubMed  Google Scholar 

  470. Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, Lifton RP. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet. 1998;19:279–81.

    Article  CAS  PubMed  Google Scholar 

  471. Riepe FG, Finkeldei J, de Sanctis L, Einaudi S, Testa A, Karges B, Peter M, Viemann M, Grotzinger J, Sippell WG, Fejes-Toth G, Krone N. Elucidating the underlying molecular pathogenesis of NR3C2 mutants causing autosomal dominant pseudohypoaldosteronism type 1. J Clin Endocrinol Metab. 2006;91:4552–61.

    Article  CAS  PubMed  Google Scholar 

  472. Pujo L, Fagart J, Gary F, Papadimitriou DT, Claes A, Jeunemaitre X, Zennaro MC. Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism. Hum Mutat. 2007;28:33–40.

    Article  CAS  PubMed  Google Scholar 

  473. Zennaro MC, Keightley MC, Kotelevtsev Y, Conway GS, Soubrier F, Fuller PJ. Human mineralocorticoid receptor genomic structure and identification of expressed isoforms. J Biol Chem. 1995;270:21016–20.

    Article  CAS  PubMed  Google Scholar 

  474. Sartorato P, Lapeyraque AL, Armanini D, Kuhnle U, Khaldi Y, Salomon R, Abadie V, Di Battista E, Naselli A, Racine A, Bosio M, Caprio M, Poulet-Young V, Chabrolle JP, Niaudet P, De Gennes C, Lecornec MH, Poisson E, Fusco AM, Loli P, Lombes M, Zennaro MC. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism. J Clin Endocrinol Metab. 2003;88:2508–17.

    Article  CAS  PubMed  Google Scholar 

  475. Geller DS, Zhang J, Zennaro MC, Vallo-Boado A, Rodriguez-Soriano J, Furu L, Haws R, Metzger D, Botelho B, Karaviti L, Haqq AM, Corey H, Janssens S, Corvol P, Lifton RP. Autosomal dominant pseudohypoaldosteronism type 1: mechanisms, evidence for neonatal lethality, and phenotypic expression in adults. J Am Soc Nephrol. 2006;17:1429–36.

    Article  CAS  PubMed  Google Scholar 

  476. Sartorato P, Khaldi Y, Lapeyraque AL, Armanini D, Kuhnle U, Salomon R, Caprio M, Viengchareun S, Lombes M, Zennaro MC. Inactivating mutations of the mineralocorticoid receptor in type I pseudohypoaldosteronism. Mol Cell Endocrinol. 2004;217:119–25.

    Article  CAS  PubMed  Google Scholar 

  477. Fernandes-Rosa FL, Hubert EL, Fagart J, Tchitchek N, Gomes D, Jouanno E, Benecke A, Rafestin-Oblin ME, Jeunemaitre X, Antonini SR, Zennaro MC. Mineralocorticoid receptor mutations differentially affect individual gene expression profiles in pseudohypoaldosteronism type 1. J Clin Endocrinol Metab. 2011;96:E519–27.

    Article  CAS  PubMed  Google Scholar 

  478. Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev. 2015;95:297–340.

    Article  PubMed  CAS  Google Scholar 

  479. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996;12:248–53.

    Article  CAS  PubMed  Google Scholar 

  480. Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet. 1996;13:248–50.

    Article  CAS  PubMed  Google Scholar 

  481. Rossier BC, Pradervand S, Schild L, Hummler E. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol. 2002;64:877–97.

    Article  CAS  PubMed  Google Scholar 

  482. Hanukoglu A, Edelheit O, Shriki Y, Gizewska M, Dascal N, Hanukoglu I. Renin-aldosterone response, urinary Na/K ratio and growth in pseudohypoaldosteronism patients with mutations in epithelial sodium channel (ENaC) subunit genes. J Steroid Biochem Mol Biol. 2008;111:268–74.

    Article  CAS  PubMed  Google Scholar 

  483. Edelheit O, Hanukoglu I, Shriki Y, Tfilin M, Dascal N, Gillis D, Hanukoglu A. Truncated beta epithelial sodium channel (ENaC) subunits responsible for multi-system pseudohypoaldosteronism support partial activity of ENaC. J Steroid Biochem Mol Biol. 2010;119:84–8.

    Article  CAS  PubMed  Google Scholar 

  484. Riepe FG, van Bemmelen MX, Cachat F, Plendl H, Gautschi I, Krone N, Holterhus PM, Theintz G, Schild L. Revealing a subclinical salt-losing phenotype in heterozygous carriers of the novel S562P mutation in the alpha subunit of the epithelial sodium channel. Clin Endocrinol. 2009;70:252–8.

    Article  CAS  Google Scholar 

  485. Dirlewanger M, Huser D, Zennaro MC, Girardin E, Schild L, Schwitzgebel VM. A homozygous missense mutation in SCNN1A is responsible for a transient neonatal form of pseudohypoaldosteronism type 1. Am J Physiol Endocrinol Metab. 2011;301:E467–73.

    Article  CAS  PubMed  Google Scholar 

  486. Hubert EL, Teissier R, Fernandes-Rosa FL, Fay M, Rafestin-Oblin ME, Jeunemaitre X, Metz C, Escoubet B, Zennaro MC. Mineralocorticoid receptor mutations and a severe recessive pseudohypoaldosteronism type 1. J Am Soc Nephrol. 2011;22:1997–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  487. New MI. Inborn errors of adrenal steroidogenesis. Mol Cell Endocrinol. 2003;211:75–83.

    Article  CAS  PubMed  Google Scholar 

  488. Finer G, Shalev H, Birk OS, Galron D, Jeck N, Sinai-Treiman L, Landau D. Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome. J Pediatr. 2003;142:318–23.

    Article  CAS  PubMed  Google Scholar 

  489. Loomba-Albrecht LA, Nagel M, Bremer AA. Pseudohypoaldosteronism type 1 due to a novel mutation in the mineralocorticoid receptor gene. Horm Res Paediatr. 2010;73:482–6.

    Article  CAS  PubMed  Google Scholar 

  490. Mathew PM, Manasra KB, Hamdan JA. Indomethacin and cation-exchange resin in the management of pseudohypoaldosteronism. Clin Pediatr. 1993;32:58–60.

    Article  CAS  Google Scholar 

  491. Hanukoglu A, Hanukoglu I. Clinical improvement in patients with autosomal recessive pseudohypoaldosteronism and the necessity for salt supplementation. Clin Exp Nephrol. 2010;14:518–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Devuyst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Devuyst, O., Belge, H., Konrad, M., Jeunemaitre, X., Zennaro, MC. (2016). Renal Tubular Disorders of Electrolyte Regulation in Children. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics