Skip to main content

Membranoproliferative and C3-Mediated GN in Children

  • Reference work entry
  • First Online:
Book cover Pediatric Nephrology

Abstract

Membranoproliferative glomerulonephritis (MPGN) describes a histopathological pattern characterized by mesangial and endocapillary proliferation and capillary wall remodeling with formation of double contours. This injury pattern is a result of deposition of immunoglobulins (Ig)/immune complexes (IC) and/or complement proteins in the mesangium and/or along the capillary wall of the glomerulus [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aHUS:

Atypical hemolytic uremic syndrome

AMD:

Age-related macular degeneration

AP:

Alternative pathway (of complement)

aPL:

Acquired partial lipodystrophy

C:

Complement

C3G:

C3 glomerulopathy

C3GN:

C3 glomerulonephritis

C3NeF:

C3 nephritic factor

CFB:

Complement factor B

CFH:

Complement factor H

CFHR1-5:

Complement factor H-related protein 1–5

CFI:

Complement factor I

CFP:

Properdin

CP:

Classical pathway (of complement)

DDD:

Dense deposit disease

DEAP-HUS:

Deficiency of CFHR plasma proteins and CFH autoantibody positive HUS

ESRD:

End-stage renal disease

FFP:

Fresh frozen plasma

GN:

Glomerulonephritis

IC:

Immune complexes

Ig:

Immunoglobulins

IVCP:

Intravenous cyclophosphamide

LP:

Lectin pathway (of complement)

MCP:

Membrane cofactor protein

MPGN:

Membranoproliferative glomerulonephritis

NeF:

Nephritic factor

PE:

Plasma exchange

PI:

Plasma infusion

PIGN:

Postinfectious glomerulonephritis

SCR:

Short consensus repeat

TMA:

Thrombotic microangiopathy

References

  1. Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis–a new look at an old entity. N Engl J Med. 2012;366:1119–31.

    Article  CAS  PubMed  Google Scholar 

  2. Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis: pathogenetic heterogeneity and proposal for a new classification. Semin Nephrol. 2011;31:341–8.

    Article  CAS  PubMed  Google Scholar 

  3. Pickering MC, D’Agati VD, Nester CM, et al. C3 glomerulopathy: consensus report. Kidney Int. 2013;84:1079–89.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Zand L, Fervenza FC, Nasr SH, Sethi S. Membranoproliferative glomerulonephritis associated with autoimmune diseases. J Nephrol. 2014;27:165–71.

    Article  CAS  PubMed  Google Scholar 

  5. Zand L, Kattah A, Fervenza FC, et al. C3 glomerulonephritis associated with monoclonal gammopathy: a case series. Am J Kidney Dis. 2013;62:506–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rennke HG. Secondary membranoproliferative glomerulonephritis. Kidney Int. 1995;47:643–56.

    Article  CAS  PubMed  Google Scholar 

  7. Sethi S, Gamez JD, Vrana JA, et al. Glomeruli of Dense Deposit Disease contain components of the alternative and terminal complement pathway. Kidney Int. 2009;75:952–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sethi S, Vrana JA, Theis JD, Dogan A. Mass spectrometry based proteomics in the diagnosis of kidney disease. Curr Opin Nephrol Hypertens. 2013;22:273–80.

    Article  CAS  PubMed  Google Scholar 

  9. Fervenza FC, Smith RJH, Sethi S. Association of a novel complement factor H mutation with severe crescentic and necrotizing glomerulonephritis. Am J Kidney Dis. 2012;60:126–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Walker PD. Dense deposit disease: new insights. Curr Opin Nephrol Hypertens. 2007;16:204–12.

    Article  PubMed  Google Scholar 

  11. Cook HT, Pickering MC. Histopathology of MPGN and C3 glomerulopathies. Nat Rev Nephrol. 2015;11:14–22.

    Article  CAS  PubMed  Google Scholar 

  12. Sethi S, Fervenza FC, Zhang Y, et al. Atypical postinfectious glomerulonephritis is associated with abnormalities in the alternative pathway of complement. Kidney Int. 2013;83:293–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Walport MJ. Complement. Second of two parts. N Engl J Med. 2001;344:1140–4.

    Article  CAS  PubMed  Google Scholar 

  14. Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344:1058–66.

    Article  CAS  PubMed  Google Scholar 

  15. Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9:729–40.

    CAS  PubMed  Google Scholar 

  16. Riedl M, Fakhouri F, Lequintrec M. The spectrum of complement-mediated thrombotic microangiopathies – pathogenetic insights identifying novel treatment approaches. Semin Thromb Hemost. 2014;40(4):444–64.

    Article  PubMed  CAS  Google Scholar 

  17. Noone D, Al-Matrafi J, Tinckam K, et al. Antibody mediated rejection associated with complement factor H-related protein 3/1 deficiency successfully treated with Eculizumab. Am J Transplant. 2012;12:2546–53.

    Article  CAS  PubMed  Google Scholar 

  18. Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33:479–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Servais A, Noel L-H, Roumenina LT, et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 2012;82:454–64.

    Article  CAS  PubMed  Google Scholar 

  20. Heinen S, Hartmann A, Lauer N, et al. Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood. 2009;114:2439–47.

    Article  CAS  PubMed  Google Scholar 

  21. Goicoechea de Jorge E, Caesar JJ, Malik TH, et al. Dimerization of complement factor H-related proteins modulates complement activation in vivo. Proc Natl Acad Sci U S A. 2013;110:4685–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tortajada A, Yebenes H, Abarrategui-Garrido C, et al. C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest. 2013;123:2434–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hebecker M, Jozsi M. Factor H-related protein 4 activates complement by serving as a platform for the assembly of alternative pathway C3 convertase via its interaction with C3b protein. J Biol Chem. 2012;287:19528–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Holers VM. Complement and its receptors: new insights into human disease. Annu Rev Immunol. 2014;32:433–59.

    Article  CAS  PubMed  Google Scholar 

  25. Pickering MC, Cook HT, Warren J, et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet. 2002;31:424–8.

    CAS  PubMed  Google Scholar 

  26. Jansen JH, Hogasen K, Harboe M, Hovig T. In situ complement activation in porcine membranoproliferative glomerulonephritis type II. Kidney Int. 1998;53:331–49.

    Article  CAS  PubMed  Google Scholar 

  27. Hegasy GA, Manuelian T, Hogasen K, Jansen JH, Zipfel PF. The molecular basis for hereditary porcine membranoproliferative glomerulonephritis type II: point mutations in the factor H coding sequence block protein secretion. Am J Pathol. 2002;161:2027–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rose KL, Paixao-Cavalcante D, Fish J, et al. Factor I is required for the development of membranoproliferative glomerulonephritis in factor H-deficient mice. J Clin Invest. 2008;118:608–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. de Jorge EG, Macor P, Paixao-Cavalcante D, et al. The development of atypical hemolytic uremic syndrome depends on complement C5. J Am Soc Nephrol. 2011;22:137–45.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Pickering MC, de Jorge EG, Martinez-Barricarte R, et al. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J Exp Med. 2007;204:1249–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Spitzer RE, Stitzel AE. On the origin and control of C3NeF. In Vivo. 1988;2:79–81.

    CAS  PubMed  Google Scholar 

  32. Berthoux FC, Carpenter CB, Traeger J, Merrill JP. [C3 nephritic factor and heat labile complement inactivator in chronic hypocomplementemic mesangioproliferative glomerulonephritis, French]. Le Facteur Nephritique (C3 Nephritic Factor) Et L’inactivateur Thermolabile Du Complement (Heat Labile Complement Inactivator) Dans Les Glomerulonephrites Mesangioproliferatives Hypocomplementaires Chroniques. Actualites Nephrologiques de l’Hopital Necker. 1974;1974:141–56.

    Google Scholar 

  33. Nicolas C, Vuiblet V, Baudouin V, et al. C3 nephritic factor associated with C3 glomerulopathy in children. Pediatr Nephrol. 2014;29:85–94.

    Article  PubMed  Google Scholar 

  34. Fremeaux-Bacchi V, Weiss L, Brun P, Kazatchkine MD. Selective disappearance of C3NeF IgG autoantibody in the plasma of a patient with membranoproliferative glomerulonephritis following renal transplantation. Nephrol Dial Transplant. 1994;9:811–4.

    CAS  PubMed  Google Scholar 

  35. Paixao-Cavalcante D, Lopez-Trascasa M, Skattum L, et al. Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation. Kidney Int. 2012;82:1084–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zhang Y, Meyer NC, Wang K, et al. Causes of alternative pathway dysregulation in dense deposit disease. Clin J Am Soc Nephrol. 2012;7:265–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Waldo FB, Forristal J, Beischel L, West CD. A circulating inhibitor of fluid-phase amplification. C3 convertase formation in systemic lupus erythematosus. J Clin Invest. 1985;75:1786–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Arroyave CM, Wilson MR, Tan EM. Serum factors activating the alternative complement pathway in autoimmune disease: description of two different factors from patients with systemic lupus erythematosus. J Immunol. 1976;116:821–6.

    CAS  PubMed  Google Scholar 

  39. Wilson MR, Arroyave CM, Nakamura RM, Vaughan JH, Tan EM. Activation of the alternative complement pathway in systemic lupus erythematosus. Clin Exp Immunol. 1976;26:11–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Lewis LA, Ram S. Meningococcal disease and the complement system. Virulence. 2014;5:98–126.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Leroy V, Fremeaux-Bacchi V, Peuchmaur M, et al. Membranoproliferative glomerulonephritis with C3NeF and genetic complement dysregulation. Pediatr Nephrol. 2011;26:419–24.

    Article  PubMed  Google Scholar 

  42. Chen Q, Muller D, Rudolph B, et al. Combined C3b and factor B autoantibodies and MPGN type II. N Engl J Med. 2011;365:2340–2.

    Article  CAS  PubMed  Google Scholar 

  43. Strobel S, Zimmering M, Papp K, Prechl J, Jozsi M. Anti-factor B autoantibody in dense deposit disease. Mol Immunol. 2010;47:1476–83.

    Article  CAS  PubMed  Google Scholar 

  44. Hofer J, Janecke AR, Zimmerhackl LB, et al. Complement factor H-related protein 1 deficiency and factor H antibodies in pediatric patients with atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2013;8:407–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Jokiranta TS, Solomon A, Pangburn MK, Zipfel PF, Meri S. Nephritogenic lambda light chain dimer: a unique human miniautoantibody against complement factor H. J Immunol. 1999;163:4590–6.

    CAS  PubMed  Google Scholar 

  46. Meri S, Koistinen V, Miettinen A, Tornroth T, Seppala IJ. Activation of the alternative pathway of complement by monoclonal lambda light chains in membranoproliferative glomerulonephritis. J Exp Med. 1992;175:939–50.

    Article  CAS  PubMed  Google Scholar 

  47. Abrera-Abeleda MA, Nishimura C, Frees K, et al. Allelic variants of complement genes associated with dense deposit disease. J Am Soc Nephrol. 2011;22:1551–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ault BH, Schmidt BZ, Fowler NL, et al. Human factor H deficiency. Mutations in framework cysteine residues and block in H protein secretion and intracellular catabolism. J Biol Chem. 1997;272:25168–75.

    Article  CAS  PubMed  Google Scholar 

  49. Chen Q, Wiesener M, Eberhardt HU, et al. Complement factor H-related hybrid protein deregulates complement in dense deposit disease. J Clin Invest. 2014;124:145–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Dragon-Durey MA, Fremeaux-Bacchi V, Loirat C, et al. Heterozygous and homozygous factor h deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. J Am Soc Nephrol. 2004;15:787–95.

    Article  CAS  PubMed  Google Scholar 

  51. Gale DP, de Jorge EG, Cook HT, et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet. 2010;376:794–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Habbig S, Mihatsch MJ, Heinen S, et al. C3 deposition glomerulopathy due to a functional factor H defect. Kidney Int. 2009;75:1230–4.

    Article  PubMed  Google Scholar 

  53. Hageman GS, Anderson DH, Johnson LV, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A. 2005;102:7227–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Vogt BA, Wyatt RJ, Burke BA, Simonton SC, Kashtan CE. Inherited factor H deficiency and collagen type III glomerulopathy. Pediatr Nephrol. 1995;9:11–5.

    Article  CAS  PubMed  Google Scholar 

  55. Licht C, Heinen S, Jozsi M, et al. Deletion of Lys224 in regulatory domain 4 of Factor H reveals a novel pathomechanism for dense deposit disease (MPGN II). Kidney Int. 2006;70:42–50.

    Article  CAS  PubMed  Google Scholar 

  56. Martinez-Barricarte R, Heurich M, Valdes-Canedo F, et al. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest. 2010;120:3702–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Levy M, Halbwachs-Mecarelli L, Gubler MC. H deficiency in two brothers with atypical dense intramembranous deposit disease. Kidney Int. 1986;30:949–56.

    Article  CAS  PubMed  Google Scholar 

  58. Abrera-Abeleda MA, Nishimura C, Smith JLH, et al. Variations in the complement regulatory genes factor H (CFH) and factor H related 5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II (dense deposit disease). J Med Genet. 2006;43:582–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Smith RJH, Alexander J, Barlow PN, et al. New approaches to the treatment of dense deposit disease. J Am Soc Nephrol. 2007;18:2447–56.

    Article  CAS  PubMed  Google Scholar 

  60. Xiao X, Pickering MC, Smith RJ. C3 glomerulopathy: the genetic and clinical findings in dense deposit disease and c3 glomerulonephritis. Semin Thromb Hemost. 2014;40:465–71.

    Article  CAS  PubMed  Google Scholar 

  61. Malik TH, Lavin PJ, De Jorge EG, et al. A hybrid CFHR3-1 gene causes familial C3 glomerulopathy. J Am Soc Nephrol. 2012;23:1155–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Fremeaux-Bacchi V, Fakhouri F, Garnier A, et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide french series comparing children and adults. Clin J Am Soc Nephrol. 2013;8:554–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Medjeral-Thomas NR, O’Shaughnessy MM, O’Regan JA, et al. C3 glomerulopathy: clinicopathologic features and predictors of outcome. Clin J Am Soc Nephrol. 2014;9:46–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Coppo R, Gianoglio B, Porcellini MG, Maringhini S. Frequency of renal diseases and clinical indications for renal biopsy in children (report of the Italian National Registry of Renal Biopsies in Children). Group of Renal Immunopathology of the Italian Society of Pediatric Nephrology and Group of Renal Immunopathology of the Italian Society of Nephrology. Nephrol Dial Transplant. 1998;13:293–7.

    Article  CAS  PubMed  Google Scholar 

  65. Lu D-F, Moon M, Lanning LD, McCarthy AM, Smith RJH. Clinical features and outcomes of 98 children and adults with dense deposit disease. Pediatr Nephrol. 2012;27:773–81.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Nasr SH, Valeri AM, Appel GB, et al. Dense deposit disease: clinicopathologic study of 32 pediatric and adult patients. Clin J Am Soc Nephrol. 2009;4:22–32.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Sethi S, Fervenza FC, Zhang Y, et al. C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney Int. 2012;82:465–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Athanasiou Y, Voskarides K, Gale DP, et al. Familial C3 glomerulopathy associated with CFHR5 mutations: clinical characteristics of 91 patients in 16 pedigrees. Clin J Am Soc Nephrol. 2011;6:1436–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Besbas N, Gulhan B, Gucer S, Korkmaz E, Ozaltin F. A novel CFHR5 mutation associated with C3 glomerulonephritis in a Turkish girl. J Nephrol. 2014;27:457–60.

    Article  CAS  PubMed  Google Scholar 

  70. Medjeral-Thomas N, Malik TH, Patel MP, et al. A novel CFHR5 fusion protein causes C3 glomerulopathy in a family without Cypriot ancestry. Kidney Int. 2014;85:933–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Jackson EC, McAdams AJ, Strife CF. Differences between membranoproliferative glomerulonephritis types I and III in clinical presentation, glomerular morphology, and complement perturbation. Am J Kidney Dis. 1987;9:115–20.

    Article  CAS  PubMed  Google Scholar 

  72. Deltas C, Gale D, Cook T, Voskarides K, Athanasiou Y, Pierides A. C3 glomerulonephritis/CFHR5 nephropathy is an endemic disease in Cyprus: clinical and molecular findings in 21 families. Adv Exp Med Biol. 2013;735:189–96.

    Article  CAS  PubMed  Google Scholar 

  73. Zhan X, Larson DE, Wang C, et al. Identification of a rare coding variant in complement 3 associated with age-related macular degeneration. Nat Genet. 2013;45:1375–81.

    Article  CAS  PubMed  Google Scholar 

  74. Mullins RF, Aptsiauri N, Hageman GS. Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis. Eye (Lond). 2001;15:390–5.

    Article  CAS  Google Scholar 

  75. Mullins RF, Russell SR, Anderson DH, Hageman GS. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 2000;14:835–46.

    CAS  PubMed  Google Scholar 

  76. Appel GB, Cook HT, Hageman G, et al. Membranoproliferative glomerulonephritis type II (dense deposit disease): an update. J Am Soc Nephrol. 2005;16:1392–403.

    Article  PubMed  Google Scholar 

  77. Mathieson PW, Wurzner R, Oliveria DB, Lachmann PJ, Peters DK. Complement-mediated adipocyte lysis by nephritic factor sera. J Exp Med. 1993;177:1827–31.

    Article  CAS  PubMed  Google Scholar 

  78. Misra A, Peethambaram A, Garg A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine (Baltimore). 2004;83:18–34.

    Article  CAS  Google Scholar 

  79. Alchi B, Jayne D. Membranoproliferative glomerulonephritis. Pediatr Nephrol. 2010;25:1409–18.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Braun MC, West CD, Strife CF. Differences between membranoproliferative glomerulonephritis types I and III in long-term response to an alternate-day prednisone regimen. Am J Kidney Dis. 1999;34:1022–32.

    Article  CAS  PubMed  Google Scholar 

  81. McEnery PT, McAdams AJ, West CD. The effect of prednisone in a high-dose, alternate-day regimen on the natural history of idiopathic membranoproliferative glomerulonephritis. Medicine. 1985;64:401–24.

    Article  CAS  PubMed  Google Scholar 

  82. Yuan M, Zou J, Zhang X, et al. Combination therapy with mycophenolate mofetil and prednisone in steroid-resistant idiopathic membranoproliferative glomerulonephritis. Clin Nephrol. 2010;73:354–9.

    Article  CAS  PubMed  Google Scholar 

  83. Dimkovic N, Jovanovic D, Kovacevic Z, et al. Mycophenolate mofetil in high-risk patients with primary glomerulonephritis: results of a 1-year prospective study. Nephron Clin Pract. 2009;111:c189–96.

    Article  CAS  PubMed  Google Scholar 

  84. Mazo A, Margieva T, Vashurina T, Zrobok O, Tsygin A. The treatment of membranoproliferative glomerulonephritis in children with mycophenolate mofetil. Pediatr Nephrol. 2013;28(8):1607–8.

    Google Scholar 

  85. Bagheri N, Nemati E, Rahbar K, Nobakht A, Einollahi B, Taheri S. Cyclosporine in the treatment of membranoproliferative glomerulonephritis. Arch Iran Med. 2008;11:26–9.

    CAS  PubMed  Google Scholar 

  86. Fan L, Liu Q, Liao Y, et al. Tacrolimus is an alternative therapy option for the treatment of adult steroid-resistant nephrotic syndrome: a prospective, multicenter clinical trial. Int Urol Nephrol. 2013;45:459–68.

    Article  CAS  PubMed  Google Scholar 

  87. Li X, Li H, Ye H, et al. Tacrolimus therapy in adults with steroid- and cyclophosphamide-resistant nephrotic syndrome and normal or mildly reduced GFR. Am J Kidney Dis. 2009;54:51–8.

    Article  CAS  PubMed  Google Scholar 

  88. Haddad M, Lau K, Butani L. Remission of membranoproliferative glomerulonephritis type I with the use of tacrolimus. Pediatr Nephrol. 2007;22:1787–91.

    Article  PubMed  Google Scholar 

  89. Kiyomasu T, Shibata M, Kurosu H, et al. Cyclosporin A treatment for membranoproliferative glomerulonephritis type II. Nephron. 2002;91:509–11.

    Article  PubMed  Google Scholar 

  90. Hiramatsu M. Cyclosporin a treatment for dense deposit disease with steroid resistant nephrotic syndrome. Pediatr Nephrol. 2010;25(9):1804.

    Google Scholar 

  91. Dillon JJ, Hladunewich M, Haley WE, Reich HN, Cattran DC, Fervenza FC. Rituximab therapy for type I membranoproliferative glomerulonephritis. Clin Nephrol. 2012;77:290–5.

    Article  CAS  PubMed  Google Scholar 

  92. Kong WY, Swaminathan R, Irish A. Our experience with rituximab therapy for adult-onset primary glomerulonephritis and review of literature. Int Urol Nephrol. 2013;45:795–802.

    Article  CAS  PubMed  Google Scholar 

  93. Perez-Saez MJ, Toledo K, Navarro MD, et al. Recurrent membranoproliferative glomerulonephritis after second renal graft treated with plasmapheresis and rituximab. Transplant Proc. 2011;43:4005–9.

    Article  CAS  PubMed  Google Scholar 

  94. Sugiura H, Takei T, Itabashi M, et al. Effect of single-dose rituximab on primary glomerular diseases. Nephron Clin Pract. 2011;117:c98–105.

    Article  CAS  PubMed  Google Scholar 

  95. Guiard E, Karras A, Plaisier E, et al. Patterns of noncryoglobulinemic glomerulonephritis with monoclonal Ig deposits: correlation with IgG subclass and response to rituximab. Clin J Am Soc Nephrol. 2011;6:1609–16.

    Article  CAS  PubMed  Google Scholar 

  96. McCaughan JA, O’Rourke DM, Courtney AE. Recurrent dense deposit disease after renal transplantation: an emerging role for complementary therapies. Am J Transplant. 2012;12:1046–51.

    Article  CAS  PubMed  Google Scholar 

  97. Daina E, Noris M, Remuzzi G. Eculizumab in a patient with dense-deposit disease. N Engl J Med. 2012;366:1161–3. [Erratum appears in N Engl J Med. 2012 Apr 12;366(15):1454].

    Article  CAS  PubMed  Google Scholar 

  98. Nord AT, Nord BL, Schmidt AE, Smith DS. Management of dense deposit disease with plasmapheresis and eculizumab. J Clin Apher. 2014;29(1):28–9.

    Google Scholar 

  99. McGinley E, Watkins R, McLay A, Boulton-Jones JM. Plasma exchange in the treatment of mesangiocapillary glomerulonephritis. Nephron. 1985;40:385–90.

    Article  CAS  PubMed  Google Scholar 

  100. Radhakrishnan S, Lunn A, Kirschfink M, et al. Eculizumab and refractory membranoproliferative glomerulonephritis. N Engl J Med. 2012;366:1165–6.

    Article  CAS  PubMed  Google Scholar 

  101. Oberkircher OR, Enama M, West JC, Campbell P, Moran J. Regression of recurrent membranoproliferative glomerulonephritis type II in a transplanted kidney after plasmapheresis therapy. Transplant Proc. 1988;20:418–23.

    CAS  PubMed  Google Scholar 

  102. Kurtz KA, Schlueter AJ. Management of membranoproliferative glomerulonephritis type II with plasmapheresis. J Clin Apher. 2002;17:135–7.

    Article  PubMed  Google Scholar 

  103. Banks RA, May S, Wallington T. Acute renal failure in dense deposit disease: recovery after plasmapheresis. Br Med J (Clin Res Ed). 1982;284:1874–5.

    Article  CAS  Google Scholar 

  104. Masutani K, Katafuchi R, Ikeda H, et al. Recurrent nephrotic syndrome after living-related renal transplantation resistant to plasma exchange: report of two cases. Clin Transplant. 2005;19 Suppl 14:59–64.

    Article  PubMed  Google Scholar 

  105. Montoliu J, Bergada E, Botey A, et al. Plasmapheresis induced recovery from renal failure in mesangiocapillary glomerulonephritis of acute onset. Proc Eur Dial Transplant Assoc. 1983;19:794–9.

    CAS  PubMed  Google Scholar 

  106. Muczynski KA. Plasmapheresis maintained renal function in an allograft with recurrent membranoproliferative glomerulonephritis type I. Am J Nephrol. 1995;15:446–9.

    Article  CAS  PubMed  Google Scholar 

  107. Pipeleers L, Sennesael J, Massart A, et al. Successful use of plasma exchange to prevent recurrence of C3 glomerulonephritis after kidney transplantation: A case report. Transplantation. 2012;94:1050.

    Article  Google Scholar 

  108. Saxena R, Frankel WL, Sedmak DD, Falkenhain ME, Cosio FG. Recurrent type I membranoproliferative glomerulonephritis in a renal allograft: successful treatment with plasmapheresis. Am J Kidney Dis. 2000;35:749–52.

    Article  CAS  PubMed  Google Scholar 

  109. Yadav P, Ognjanovic M, Coulthard M, Moghal N, Lambert H, Tse Y. Recurrent (MPGN) membranoproliferative glomerulonephritis type 1 successfully treated with plasma exchange (PE). Pediatr Nephrol. 2011;26(9):1665–6.

    Google Scholar 

  110. Morton MR, Bannister KM. Renal failure due to mesangiocapillary glomerulonephritis in pregnancy: use of plasma exchange therapy. Clin Nephrol. 1993;40:74–8.

    CAS  PubMed  Google Scholar 

  111. Roord JJ, van Diemen-van Steenvoorde RA, Schuurman HJ, et al. Membranoproliferative glomerulonephritis in a patient with congenital deficiency of the third component of complement: effect of treatment with plasma. Am J Kidney Dis. 1989;13:413–7.

    Article  CAS  PubMed  Google Scholar 

  112. Bomback AS, Smith RJ, Barile GR, et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol. 2012;7:748–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Vivarelli M, Pasini A, Emma F. Eculizumab for the treatment of dense-deposit disease. N Engl J Med. 2012;366:1163–5.

    Article  CAS  PubMed  Google Scholar 

  114. Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25:1256–64.

    Article  CAS  PubMed  Google Scholar 

  115. Pickering MC, Warren J, Rose KL, et al. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. Proc Natl Acad Sci U S A. 2006;103:9649–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Gurkan S, Fyfe B, Weiss L, Xiao X, Zhang Y, Smith RJ. Eculizumab and recurrent C3 glomerulonephritis. Pediatr Nephrol. 2013;28:1975–81.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Ozkaya O, Nalcacioglu H, Tekcan D, et al. Eculizumab therapy in a patient with dense-deposit disease associated with partial lipodystrophy. Pediatr Nephrol. 2014;29:1283–7.

    Article  PubMed  Google Scholar 

  118. Rousset-Rouviere C, Cailliez M, Garaix F, Bruno D, Laurent D, Tsimaratos M. Rituximab fails where eculizumab restores renal function in C3nef-related DDD. Pediatr Nephrol. 2014;29:1107–11.

    Article  PubMed  Google Scholar 

  119. Vivarelli M, Emma F. Treatment of C3G with complement blockers. Semin Thromb Hemost. 2014;40(4):472–7.

    Article  CAS  PubMed  Google Scholar 

  120. Angelo JR, Bell CS, Braun MC. Allograft failure in kidney transplant recipients with membranoproliferative glomerulonephritis. Am J Kidney Dis. 2011;57:291–9.

    Article  PubMed  Google Scholar 

  121. Briganti EM, Russ GR, McNeil JJ, Atkins RC, Chadban SJ. Risk of renal allograft loss from recurrent glomerulonephritis. N Engl J Med. 2002;347:103–9.

    Article  PubMed  Google Scholar 

  122. Van Stralen KJ, Verrina E, Belingheri M, et al. Impact of graft loss among kidney diseases with a high risk of post-transplant recurrence in the paediatric population. Nephrol Dial Transplant. 2013;28:1031–8.

    Article  PubMed  CAS  Google Scholar 

  123. Braun MC, Stablein DM, Hamiwka LA, Bell L, Bartosh SM, Strife CF. Recurrence of membranoproliferative glomerulonephritis type II in renal allografts: the North American Pediatric Renal Transplant Cooperative Study experience. J Am Soc Nephrol. 2005;16:2225–33.

    Article  PubMed  Google Scholar 

  124. Zand L, Lorenz EC, Cosio FG, et al. Clinical findings, pathology, and outcomes of C3GN after kidney transplantation. J Am Soc Nephrol. 2014;25:1110–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Vernon KA, Gale DP, De Jorge EG, et al. Recurrence of complement factor H-related protein 5 nephropathy in a renal transplant. Am J Transplant. 2011 Jan; 11(1):152–5. Doi 10.1111/j. 1600-6143. 2010. 03333.x.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Paul Thorner, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada for preparing Fig. 1 and discussing pathohistological aspects of C3G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Licht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Licht, C., Riedl, M., Pickering, M.C., Braun, M. (2016). Membranoproliferative and C3-Mediated GN in Children. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics