Membranoproliferative and C3-Mediated GN in Children

  • Christoph Licht
  • Magdalena Riedl
  • Matthew C. Pickering
  • Michael Braun
Reference work entry


Membranoproliferative glomerulonephritis (MPGN) describes a histopathological pattern characterized by mesangial and endocapillary proliferation and capillary wall remodeling with formation of double contours. This injury pattern is a result of deposition of immunoglobulins (Ig)/immune complexes (IC) and/or complement proteins in the mesangium and/or along the capillary wall of the glomerulus [1, 2].


Hepatitis Carbohydrate Angiotensin Cyclosporine Meningitis 

List of Abbreviations


Atypical hemolytic uremic syndrome


Age-related macular degeneration


Alternative pathway (of complement)


Acquired partial lipodystrophy




C3 glomerulopathy


C3 glomerulonephritis


C3 nephritic factor


Complement factor B


Complement factor H


Complement factor H-related protein 1–5


Complement factor I




Classical pathway (of complement)


Dense deposit disease


Deficiency of CFHR plasma proteins and CFH autoantibody positive HUS


End-stage renal disease


Fresh frozen plasma




Immune complexes




Intravenous cyclophosphamide


Lectin pathway (of complement)


Membrane cofactor protein


Membranoproliferative glomerulonephritis


Nephritic factor


Plasma exchange


Plasma infusion


Postinfectious glomerulonephritis


Short consensus repeat


Thrombotic microangiopathy



The authors wish to thank Dr. Paul Thorner, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada for preparing Fig. 1 and discussing pathohistological aspects of C3G.


  1. 1.
    Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis–a new look at an old entity. N Engl J Med. 2012;366:1119–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis: pathogenetic heterogeneity and proposal for a new classification. Semin Nephrol. 2011;31:341–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Pickering MC, D’Agati VD, Nester CM, et al. C3 glomerulopathy: consensus report. Kidney Int. 2013;84:1079–89.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Zand L, Fervenza FC, Nasr SH, Sethi S. Membranoproliferative glomerulonephritis associated with autoimmune diseases. J Nephrol. 2014;27:165–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Zand L, Kattah A, Fervenza FC, et al. C3 glomerulonephritis associated with monoclonal gammopathy: a case series. Am J Kidney Dis. 2013;62:506–14.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Rennke HG. Secondary membranoproliferative glomerulonephritis. Kidney Int. 1995;47:643–56.PubMedCrossRefGoogle Scholar
  7. 7.
    Sethi S, Gamez JD, Vrana JA, et al. Glomeruli of Dense Deposit Disease contain components of the alternative and terminal complement pathway. Kidney Int. 2009;75:952–60.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sethi S, Vrana JA, Theis JD, Dogan A. Mass spectrometry based proteomics in the diagnosis of kidney disease. Curr Opin Nephrol Hypertens. 2013;22:273–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Fervenza FC, Smith RJH, Sethi S. Association of a novel complement factor H mutation with severe crescentic and necrotizing glomerulonephritis. Am J Kidney Dis. 2012;60:126–32.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Walker PD. Dense deposit disease: new insights. Curr Opin Nephrol Hypertens. 2007;16:204–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Cook HT, Pickering MC. Histopathology of MPGN and C3 glomerulopathies. Nat Rev Nephrol. 2015;11:14–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Sethi S, Fervenza FC, Zhang Y, et al. Atypical postinfectious glomerulonephritis is associated with abnormalities in the alternative pathway of complement. Kidney Int. 2013;83:293–9.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Walport MJ. Complement. Second of two parts. N Engl J Med. 2001;344:1140–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344:1058–66.PubMedCrossRefGoogle Scholar
  15. 15.
    Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9:729–40.PubMedGoogle Scholar
  16. 16.
    Riedl M, Fakhouri F, Lequintrec M. The spectrum of complement-mediated thrombotic microangiopathies – pathogenetic insights identifying novel treatment approaches. Semin Thromb Hemost. 2014;40(4):444–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Noone D, Al-Matrafi J, Tinckam K, et al. Antibody mediated rejection associated with complement factor H-related protein 3/1 deficiency successfully treated with Eculizumab. Am J Transplant. 2012;12:2546–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33:479–92.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Servais A, Noel L-H, Roumenina LT, et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 2012;82:454–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Heinen S, Hartmann A, Lauer N, et al. Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood. 2009;114:2439–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Goicoechea de Jorge E, Caesar JJ, Malik TH, et al. Dimerization of complement factor H-related proteins modulates complement activation in vivo. Proc Natl Acad Sci U S A. 2013;110:4685–90.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Tortajada A, Yebenes H, Abarrategui-Garrido C, et al. C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest. 2013;123:2434–46.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hebecker M, Jozsi M. Factor H-related protein 4 activates complement by serving as a platform for the assembly of alternative pathway C3 convertase via its interaction with C3b protein. J Biol Chem. 2012;287:19528–36.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Holers VM. Complement and its receptors: new insights into human disease. Annu Rev Immunol. 2014;32:433–59.PubMedCrossRefGoogle Scholar
  25. 25.
    Pickering MC, Cook HT, Warren J, et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet. 2002;31:424–8.PubMedGoogle Scholar
  26. 26.
    Jansen JH, Hogasen K, Harboe M, Hovig T. In situ complement activation in porcine membranoproliferative glomerulonephritis type II. Kidney Int. 1998;53:331–49.PubMedCrossRefGoogle Scholar
  27. 27.
    Hegasy GA, Manuelian T, Hogasen K, Jansen JH, Zipfel PF. The molecular basis for hereditary porcine membranoproliferative glomerulonephritis type II: point mutations in the factor H coding sequence block protein secretion. Am J Pathol. 2002;161:2027–34.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Rose KL, Paixao-Cavalcante D, Fish J, et al. Factor I is required for the development of membranoproliferative glomerulonephritis in factor H-deficient mice. J Clin Invest. 2008;118:608–18.PubMedCentralPubMedGoogle Scholar
  29. 29.
    de Jorge EG, Macor P, Paixao-Cavalcante D, et al. The development of atypical hemolytic uremic syndrome depends on complement C5. J Am Soc Nephrol. 2011;22:137–45.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Pickering MC, de Jorge EG, Martinez-Barricarte R, et al. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J Exp Med. 2007;204:1249–56.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Spitzer RE, Stitzel AE. On the origin and control of C3NeF. In Vivo. 1988;2:79–81.PubMedGoogle Scholar
  32. 32.
    Berthoux FC, Carpenter CB, Traeger J, Merrill JP. [C3 nephritic factor and heat labile complement inactivator in chronic hypocomplementemic mesangioproliferative glomerulonephritis, French]. Le Facteur Nephritique (C3 Nephritic Factor) Et L’inactivateur Thermolabile Du Complement (Heat Labile Complement Inactivator) Dans Les Glomerulonephrites Mesangioproliferatives Hypocomplementaires Chroniques. Actualites Nephrologiques de l’Hopital Necker. 1974;1974:141–56.Google Scholar
  33. 33.
    Nicolas C, Vuiblet V, Baudouin V, et al. C3 nephritic factor associated with C3 glomerulopathy in children. Pediatr Nephrol. 2014;29:85–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Fremeaux-Bacchi V, Weiss L, Brun P, Kazatchkine MD. Selective disappearance of C3NeF IgG autoantibody in the plasma of a patient with membranoproliferative glomerulonephritis following renal transplantation. Nephrol Dial Transplant. 1994;9:811–4.PubMedGoogle Scholar
  35. 35.
    Paixao-Cavalcante D, Lopez-Trascasa M, Skattum L, et al. Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation. Kidney Int. 2012;82:1084–92.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Zhang Y, Meyer NC, Wang K, et al. Causes of alternative pathway dysregulation in dense deposit disease. Clin J Am Soc Nephrol. 2012;7:265–74.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Waldo FB, Forristal J, Beischel L, West CD. A circulating inhibitor of fluid-phase amplification. C3 convertase formation in systemic lupus erythematosus. J Clin Invest. 1985;75:1786–95.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Arroyave CM, Wilson MR, Tan EM. Serum factors activating the alternative complement pathway in autoimmune disease: description of two different factors from patients with systemic lupus erythematosus. J Immunol. 1976;116:821–6.PubMedGoogle Scholar
  39. 39.
    Wilson MR, Arroyave CM, Nakamura RM, Vaughan JH, Tan EM. Activation of the alternative complement pathway in systemic lupus erythematosus. Clin Exp Immunol. 1976;26:11–20.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Lewis LA, Ram S. Meningococcal disease and the complement system. Virulence. 2014;5:98–126.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Leroy V, Fremeaux-Bacchi V, Peuchmaur M, et al. Membranoproliferative glomerulonephritis with C3NeF and genetic complement dysregulation. Pediatr Nephrol. 2011;26:419–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen Q, Muller D, Rudolph B, et al. Combined C3b and factor B autoantibodies and MPGN type II. N Engl J Med. 2011;365:2340–2.PubMedCrossRefGoogle Scholar
  43. 43.
    Strobel S, Zimmering M, Papp K, Prechl J, Jozsi M. Anti-factor B autoantibody in dense deposit disease. Mol Immunol. 2010;47:1476–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Hofer J, Janecke AR, Zimmerhackl LB, et al. Complement factor H-related protein 1 deficiency and factor H antibodies in pediatric patients with atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2013;8:407–15.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Jokiranta TS, Solomon A, Pangburn MK, Zipfel PF, Meri S. Nephritogenic lambda light chain dimer: a unique human miniautoantibody against complement factor H. J Immunol. 1999;163:4590–6.PubMedGoogle Scholar
  46. 46.
    Meri S, Koistinen V, Miettinen A, Tornroth T, Seppala IJ. Activation of the alternative pathway of complement by monoclonal lambda light chains in membranoproliferative glomerulonephritis. J Exp Med. 1992;175:939–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Abrera-Abeleda MA, Nishimura C, Frees K, et al. Allelic variants of complement genes associated with dense deposit disease. J Am Soc Nephrol. 2011;22:1551–9.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Ault BH, Schmidt BZ, Fowler NL, et al. Human factor H deficiency. Mutations in framework cysteine residues and block in H protein secretion and intracellular catabolism. J Biol Chem. 1997;272:25168–75.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen Q, Wiesener M, Eberhardt HU, et al. Complement factor H-related hybrid protein deregulates complement in dense deposit disease. J Clin Invest. 2014;124:145–55.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Dragon-Durey MA, Fremeaux-Bacchi V, Loirat C, et al. Heterozygous and homozygous factor h deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. J Am Soc Nephrol. 2004;15:787–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Gale DP, de Jorge EG, Cook HT, et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet. 2010;376:794–801.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Habbig S, Mihatsch MJ, Heinen S, et al. C3 deposition glomerulopathy due to a functional factor H defect. Kidney Int. 2009;75:1230–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Hageman GS, Anderson DH, Johnson LV, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A. 2005;102:7227–32.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Vogt BA, Wyatt RJ, Burke BA, Simonton SC, Kashtan CE. Inherited factor H deficiency and collagen type III glomerulopathy. Pediatr Nephrol. 1995;9:11–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Licht C, Heinen S, Jozsi M, et al. Deletion of Lys224 in regulatory domain 4 of Factor H reveals a novel pathomechanism for dense deposit disease (MPGN II). Kidney Int. 2006;70:42–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Martinez-Barricarte R, Heurich M, Valdes-Canedo F, et al. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest. 2010;120:3702–12.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Levy M, Halbwachs-Mecarelli L, Gubler MC. H deficiency in two brothers with atypical dense intramembranous deposit disease. Kidney Int. 1986;30:949–56.PubMedCrossRefGoogle Scholar
  58. 58.
    Abrera-Abeleda MA, Nishimura C, Smith JLH, et al. Variations in the complement regulatory genes factor H (CFH) and factor H related 5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II (dense deposit disease). J Med Genet. 2006;43:582–9.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Smith RJH, Alexander J, Barlow PN, et al. New approaches to the treatment of dense deposit disease. J Am Soc Nephrol. 2007;18:2447–56.PubMedCrossRefGoogle Scholar
  60. 60.
    Xiao X, Pickering MC, Smith RJ. C3 glomerulopathy: the genetic and clinical findings in dense deposit disease and c3 glomerulonephritis. Semin Thromb Hemost. 2014;40:465–71.PubMedCrossRefGoogle Scholar
  61. 61.
    Malik TH, Lavin PJ, De Jorge EG, et al. A hybrid CFHR3-1 gene causes familial C3 glomerulopathy. J Am Soc Nephrol. 2012;23:1155–60.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Fremeaux-Bacchi V, Fakhouri F, Garnier A, et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide french series comparing children and adults. Clin J Am Soc Nephrol. 2013;8:554–62.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Medjeral-Thomas NR, O’Shaughnessy MM, O’Regan JA, et al. C3 glomerulopathy: clinicopathologic features and predictors of outcome. Clin J Am Soc Nephrol. 2014;9:46–53.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Coppo R, Gianoglio B, Porcellini MG, Maringhini S. Frequency of renal diseases and clinical indications for renal biopsy in children (report of the Italian National Registry of Renal Biopsies in Children). Group of Renal Immunopathology of the Italian Society of Pediatric Nephrology and Group of Renal Immunopathology of the Italian Society of Nephrology. Nephrol Dial Transplant. 1998;13:293–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Lu D-F, Moon M, Lanning LD, McCarthy AM, Smith RJH. Clinical features and outcomes of 98 children and adults with dense deposit disease. Pediatr Nephrol. 2012;27:773–81.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Nasr SH, Valeri AM, Appel GB, et al. Dense deposit disease: clinicopathologic study of 32 pediatric and adult patients. Clin J Am Soc Nephrol. 2009;4:22–32.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Sethi S, Fervenza FC, Zhang Y, et al. C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney Int. 2012;82:465–73.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Athanasiou Y, Voskarides K, Gale DP, et al. Familial C3 glomerulopathy associated with CFHR5 mutations: clinical characteristics of 91 patients in 16 pedigrees. Clin J Am Soc Nephrol. 2011;6:1436–46.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Besbas N, Gulhan B, Gucer S, Korkmaz E, Ozaltin F. A novel CFHR5 mutation associated with C3 glomerulonephritis in a Turkish girl. J Nephrol. 2014;27:457–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Medjeral-Thomas N, Malik TH, Patel MP, et al. A novel CFHR5 fusion protein causes C3 glomerulopathy in a family without Cypriot ancestry. Kidney Int. 2014;85:933–7.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Jackson EC, McAdams AJ, Strife CF. Differences between membranoproliferative glomerulonephritis types I and III in clinical presentation, glomerular morphology, and complement perturbation. Am J Kidney Dis. 1987;9:115–20.PubMedCrossRefGoogle Scholar
  72. 72.
    Deltas C, Gale D, Cook T, Voskarides K, Athanasiou Y, Pierides A. C3 glomerulonephritis/CFHR5 nephropathy is an endemic disease in Cyprus: clinical and molecular findings in 21 families. Adv Exp Med Biol. 2013;735:189–96.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhan X, Larson DE, Wang C, et al. Identification of a rare coding variant in complement 3 associated with age-related macular degeneration. Nat Genet. 2013;45:1375–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Mullins RF, Aptsiauri N, Hageman GS. Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis. Eye (Lond). 2001;15:390–5.CrossRefGoogle Scholar
  75. 75.
    Mullins RF, Russell SR, Anderson DH, Hageman GS. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 2000;14:835–46.PubMedGoogle Scholar
  76. 76.
    Appel GB, Cook HT, Hageman G, et al. Membranoproliferative glomerulonephritis type II (dense deposit disease): an update. J Am Soc Nephrol. 2005;16:1392–403.PubMedCrossRefGoogle Scholar
  77. 77.
    Mathieson PW, Wurzner R, Oliveria DB, Lachmann PJ, Peters DK. Complement-mediated adipocyte lysis by nephritic factor sera. J Exp Med. 1993;177:1827–31.PubMedCrossRefGoogle Scholar
  78. 78.
    Misra A, Peethambaram A, Garg A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine (Baltimore). 2004;83:18–34.CrossRefGoogle Scholar
  79. 79.
    Alchi B, Jayne D. Membranoproliferative glomerulonephritis. Pediatr Nephrol. 2010;25:1409–18.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Braun MC, West CD, Strife CF. Differences between membranoproliferative glomerulonephritis types I and III in long-term response to an alternate-day prednisone regimen. Am J Kidney Dis. 1999;34:1022–32.PubMedCrossRefGoogle Scholar
  81. 81.
    McEnery PT, McAdams AJ, West CD. The effect of prednisone in a high-dose, alternate-day regimen on the natural history of idiopathic membranoproliferative glomerulonephritis. Medicine. 1985;64:401–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Yuan M, Zou J, Zhang X, et al. Combination therapy with mycophenolate mofetil and prednisone in steroid-resistant idiopathic membranoproliferative glomerulonephritis. Clin Nephrol. 2010;73:354–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Dimkovic N, Jovanovic D, Kovacevic Z, et al. Mycophenolate mofetil in high-risk patients with primary glomerulonephritis: results of a 1-year prospective study. Nephron Clin Pract. 2009;111:c189–96.PubMedCrossRefGoogle Scholar
  84. 84.
    Mazo A, Margieva T, Vashurina T, Zrobok O, Tsygin A. The treatment of membranoproliferative glomerulonephritis in children with mycophenolate mofetil. Pediatr Nephrol. 2013;28(8):1607–8.Google Scholar
  85. 85.
    Bagheri N, Nemati E, Rahbar K, Nobakht A, Einollahi B, Taheri S. Cyclosporine in the treatment of membranoproliferative glomerulonephritis. Arch Iran Med. 2008;11:26–9.PubMedGoogle Scholar
  86. 86.
    Fan L, Liu Q, Liao Y, et al. Tacrolimus is an alternative therapy option for the treatment of adult steroid-resistant nephrotic syndrome: a prospective, multicenter clinical trial. Int Urol Nephrol. 2013;45:459–68.PubMedCrossRefGoogle Scholar
  87. 87.
    Li X, Li H, Ye H, et al. Tacrolimus therapy in adults with steroid- and cyclophosphamide-resistant nephrotic syndrome and normal or mildly reduced GFR. Am J Kidney Dis. 2009;54:51–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Haddad M, Lau K, Butani L. Remission of membranoproliferative glomerulonephritis type I with the use of tacrolimus. Pediatr Nephrol. 2007;22:1787–91.PubMedCrossRefGoogle Scholar
  89. 89.
    Kiyomasu T, Shibata M, Kurosu H, et al. Cyclosporin A treatment for membranoproliferative glomerulonephritis type II. Nephron. 2002;91:509–11.PubMedCrossRefGoogle Scholar
  90. 90.
    Hiramatsu M. Cyclosporin a treatment for dense deposit disease with steroid resistant nephrotic syndrome. Pediatr Nephrol. 2010;25(9):1804.Google Scholar
  91. 91.
    Dillon JJ, Hladunewich M, Haley WE, Reich HN, Cattran DC, Fervenza FC. Rituximab therapy for type I membranoproliferative glomerulonephritis. Clin Nephrol. 2012;77:290–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Kong WY, Swaminathan R, Irish A. Our experience with rituximab therapy for adult-onset primary glomerulonephritis and review of literature. Int Urol Nephrol. 2013;45:795–802.PubMedCrossRefGoogle Scholar
  93. 93.
    Perez-Saez MJ, Toledo K, Navarro MD, et al. Recurrent membranoproliferative glomerulonephritis after second renal graft treated with plasmapheresis and rituximab. Transplant Proc. 2011;43:4005–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Sugiura H, Takei T, Itabashi M, et al. Effect of single-dose rituximab on primary glomerular diseases. Nephron Clin Pract. 2011;117:c98–105.PubMedCrossRefGoogle Scholar
  95. 95.
    Guiard E, Karras A, Plaisier E, et al. Patterns of noncryoglobulinemic glomerulonephritis with monoclonal Ig deposits: correlation with IgG subclass and response to rituximab. Clin J Am Soc Nephrol. 2011;6:1609–16.PubMedCrossRefGoogle Scholar
  96. 96.
    McCaughan JA, O’Rourke DM, Courtney AE. Recurrent dense deposit disease after renal transplantation: an emerging role for complementary therapies. Am J Transplant. 2012;12:1046–51.PubMedCrossRefGoogle Scholar
  97. 97.
    Daina E, Noris M, Remuzzi G. Eculizumab in a patient with dense-deposit disease. N Engl J Med. 2012;366:1161–3. [Erratum appears in N Engl J Med. 2012 Apr 12;366(15):1454].PubMedCrossRefGoogle Scholar
  98. 98.
    Nord AT, Nord BL, Schmidt AE, Smith DS. Management of dense deposit disease with plasmapheresis and eculizumab. J Clin Apher. 2014;29(1):28–9.Google Scholar
  99. 99.
    McGinley E, Watkins R, McLay A, Boulton-Jones JM. Plasma exchange in the treatment of mesangiocapillary glomerulonephritis. Nephron. 1985;40:385–90.PubMedCrossRefGoogle Scholar
  100. 100.
    Radhakrishnan S, Lunn A, Kirschfink M, et al. Eculizumab and refractory membranoproliferative glomerulonephritis. N Engl J Med. 2012;366:1165–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Oberkircher OR, Enama M, West JC, Campbell P, Moran J. Regression of recurrent membranoproliferative glomerulonephritis type II in a transplanted kidney after plasmapheresis therapy. Transplant Proc. 1988;20:418–23.PubMedGoogle Scholar
  102. 102.
    Kurtz KA, Schlueter AJ. Management of membranoproliferative glomerulonephritis type II with plasmapheresis. J Clin Apher. 2002;17:135–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Banks RA, May S, Wallington T. Acute renal failure in dense deposit disease: recovery after plasmapheresis. Br Med J (Clin Res Ed). 1982;284:1874–5.CrossRefGoogle Scholar
  104. 104.
    Masutani K, Katafuchi R, Ikeda H, et al. Recurrent nephrotic syndrome after living-related renal transplantation resistant to plasma exchange: report of two cases. Clin Transplant. 2005;19 Suppl 14:59–64.PubMedCrossRefGoogle Scholar
  105. 105.
    Montoliu J, Bergada E, Botey A, et al. Plasmapheresis induced recovery from renal failure in mesangiocapillary glomerulonephritis of acute onset. Proc Eur Dial Transplant Assoc. 1983;19:794–9.PubMedGoogle Scholar
  106. 106.
    Muczynski KA. Plasmapheresis maintained renal function in an allograft with recurrent membranoproliferative glomerulonephritis type I. Am J Nephrol. 1995;15:446–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Pipeleers L, Sennesael J, Massart A, et al. Successful use of plasma exchange to prevent recurrence of C3 glomerulonephritis after kidney transplantation: A case report. Transplantation. 2012;94:1050.CrossRefGoogle Scholar
  108. 108.
    Saxena R, Frankel WL, Sedmak DD, Falkenhain ME, Cosio FG. Recurrent type I membranoproliferative glomerulonephritis in a renal allograft: successful treatment with plasmapheresis. Am J Kidney Dis. 2000;35:749–52.PubMedCrossRefGoogle Scholar
  109. 109.
    Yadav P, Ognjanovic M, Coulthard M, Moghal N, Lambert H, Tse Y. Recurrent (MPGN) membranoproliferative glomerulonephritis type 1 successfully treated with plasma exchange (PE). Pediatr Nephrol. 2011;26(9):1665–6.Google Scholar
  110. 110.
    Morton MR, Bannister KM. Renal failure due to mesangiocapillary glomerulonephritis in pregnancy: use of plasma exchange therapy. Clin Nephrol. 1993;40:74–8.PubMedGoogle Scholar
  111. 111.
    Roord JJ, van Diemen-van Steenvoorde RA, Schuurman HJ, et al. Membranoproliferative glomerulonephritis in a patient with congenital deficiency of the third component of complement: effect of treatment with plasma. Am J Kidney Dis. 1989;13:413–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Bomback AS, Smith RJ, Barile GR, et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol. 2012;7:748–56.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Vivarelli M, Pasini A, Emma F. Eculizumab for the treatment of dense-deposit disease. N Engl J Med. 2012;366:1163–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25:1256–64.PubMedCrossRefGoogle Scholar
  115. 115.
    Pickering MC, Warren J, Rose KL, et al. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. Proc Natl Acad Sci U S A. 2006;103:9649–54.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Gurkan S, Fyfe B, Weiss L, Xiao X, Zhang Y, Smith RJ. Eculizumab and recurrent C3 glomerulonephritis. Pediatr Nephrol. 2013;28:1975–81.PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Ozkaya O, Nalcacioglu H, Tekcan D, et al. Eculizumab therapy in a patient with dense-deposit disease associated with partial lipodystrophy. Pediatr Nephrol. 2014;29:1283–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Rousset-Rouviere C, Cailliez M, Garaix F, Bruno D, Laurent D, Tsimaratos M. Rituximab fails where eculizumab restores renal function in C3nef-related DDD. Pediatr Nephrol. 2014;29:1107–11.PubMedCrossRefGoogle Scholar
  119. 119.
    Vivarelli M, Emma F. Treatment of C3G with complement blockers. Semin Thromb Hemost. 2014;40(4):472–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Angelo JR, Bell CS, Braun MC. Allograft failure in kidney transplant recipients with membranoproliferative glomerulonephritis. Am J Kidney Dis. 2011;57:291–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Briganti EM, Russ GR, McNeil JJ, Atkins RC, Chadban SJ. Risk of renal allograft loss from recurrent glomerulonephritis. N Engl J Med. 2002;347:103–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Van Stralen KJ, Verrina E, Belingheri M, et al. Impact of graft loss among kidney diseases with a high risk of post-transplant recurrence in the paediatric population. Nephrol Dial Transplant. 2013;28:1031–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Braun MC, Stablein DM, Hamiwka LA, Bell L, Bartosh SM, Strife CF. Recurrence of membranoproliferative glomerulonephritis type II in renal allografts: the North American Pediatric Renal Transplant Cooperative Study experience. J Am Soc Nephrol. 2005;16:2225–33.PubMedCrossRefGoogle Scholar
  124. 124.
    Zand L, Lorenz EC, Cosio FG, et al. Clinical findings, pathology, and outcomes of C3GN after kidney transplantation. J Am Soc Nephrol. 2014;25:1110–7.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Vernon KA, Gale DP, De Jorge EG, et al. Recurrence of complement factor H-related protein 5 nephropathy in a renal transplant. Am J Transplant. 2011 Jan; 11(1):152–5. Doi 10.1111/j. 1600-6143. 2010. 03333.x.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christoph Licht
    • 1
    • 2
    • 3
  • Magdalena Riedl
    • 2
    • 4
  • Matthew C. Pickering
    • 5
  • Michael Braun
    • 6
  1. 1.Division of NephrologyThe Hospital for Sick Children, University of TorontoTorontoCanada
  2. 2.Research Institute, Cell Biology ProgramThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Department of PaediatricsUniversity of TorontoTorontoCanada
  4. 4.Department of PaediatricsInnsbruck Medical UniversityInnsbruckAustria
  5. 5.Centre for Complement and Inflammation ResearchImperial CollegeLondonUK
  6. 6.Renal Section, Department of Pediatrics, Texas Children’s HospitalBalyor College of MedicineHoustonUSA

Personalised recommendations