Skip to main content

Complement-Mediated Glomerular Injury in Children

  • Reference work entry
  • First Online:
Book cover Pediatric Nephrology

Abstract

The complement system comprises about 30–40 proteins, glycoproteins, and membrane receptors that are present in body fluids and on cell surfaces (Tables 1, 2, and 3). Nearly all the soluble proteins are produced by the liver, but most are also synthesized in other tissues, including cells of the myeloid lineage and renal cells. Complement is considered part of the immune system, as its main biological function is the lysis and removal of pathogens by opsonization. In the past decade, new studies have revealed a pivotal role of complement in immune surveillance, the generation of inflammation, the initiation of antibody production, and tissue repair [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forneris F, Ricklin D, Wu J, Tzekou A, Wallace RS, Lambris JD, et al. Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science. 2010;330(6012):1816–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Leslie M. Immunology. The new view of complement. Science. 2012;337(6098):1034–7.

    Article  CAS  PubMed  Google Scholar 

  3. Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol. 2013;190(8):3831–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. Interactions between coagulation and complement – their role in inflammation. Semin Immunopathol. 2012;34(1):151–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Endo Y, Nakazawa N, Iwaki D, Takahashi M, Matsushita M, Fujita T. Interactions of ficolin and mannose-binding lectin with fibrinogen/fibrin augment the lectin complement pathway. J Innate Immun. 2010;2(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  6. Gulla KC, Gupta K, Krarup A, Gal P, Schwaeble WJ, Sim RB, et al. Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot. Immunology. 2010;129(4):482–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hamad OA, Back J, Nilsson PH, Nilsson B, Ekdahl KN. Platelets, complement, and contact activation: partners in inflammation and thrombosis. Adv Exp Med Biol. 2012;946:185–205.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X, Kimura Y, Fang C, Zhou L, Sfyroera G, Lambris JD, et al. Regulation of toll-like receptor-mediated inflammatory response by complement in vivo. Blood. 2007;110(1):228–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Harris CL, Heurich M, Rodriguez de Cordoba S, Morgan BP. The complotype: dictating risk for inflammation and infection. Trends Immunol. 2012;33(10):513–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Carroll MV, Sim RB. Complement in health and disease. Adv Drug Deliv Rev. 2011;63(12):965–75.

    Article  CAS  PubMed  Google Scholar 

  11. Roumenina LT, Loirat C, Dragon-Durey MA, Halbwachs-Mecarelli L, Sautes-Fridman C, Fremeaux-Bacchi V. Alternative complement pathway assessment in patients with atypical HUS. J Immunol Methods. 2011;365(1–2):8–26.

    Article  CAS  PubMed  Google Scholar 

  12. Forneris F, Burnley BT, Gros P. Ensemble refinement shows conformational flexibility in crystal structures of human complement factor D. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 3):733–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kemper C, Atkinson JP, Hourcade DE. Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol. 2010;28:131–55.

    Article  CAS  PubMed  Google Scholar 

  14. Kang YH, Tan LA, Carroll MV, Gentle ME, Sim RB. Target pattern recognition by complement proteins of the classical and alternative pathways. Adv Exp Med Biol. 2009;653:117–28.

    Article  CAS  PubMed  Google Scholar 

  15. Kjaer TR, Thiel S, Andersen GR. Toward a structure-based comprehension of the lectin pathway of complement. Mol Immunol. 2013;56(4):413–22.

    Article  CAS  PubMed  Google Scholar 

  16. Megyeri M, Harmat V, Major B, Vegh A, Balczer J, Heja D, et al. Quantitative characterization of the activation steps of mannan-binding lectin (MBL)-associated serine proteases (MASPs) points to the central role of MASP-1 in the initiation of the complement lectin pathway. J Biol Chem. 2013;288(13):8922–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Megyeri M, Mako V, Beinrohr L, Doleschall Z, Prohaszka Z, Cervenak L, et al. Complement protease MASP-1 activates human endothelial cells: PAR4 activation is a link between complement and endothelial function. J Immunol. 2009;183(5):3409–16.

    Article  CAS  PubMed  Google Scholar 

  18. Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol. 2001;167(5):2861–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kuraya M, Ming Z, Liu X, Matsushita M, Fujita T. Specific binding of L-ficolin and H-ficolin to apoptotic cells leads to complement activation. Immunobiology. 2005;209(9):689–97.

    Article  CAS  PubMed  Google Scholar 

  20. Garlatti V, Martin L, Gout E, Reiser JB, Fujita T, Arlaud GJ, et al. Structural basis for innate immune sensing by M-ficolin and its control by a pH-dependent conformational switch. J Biol Chem. 2007;282(49):35814–20.

    Article  CAS  PubMed  Google Scholar 

  21. Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33(6):479–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Nilsson SC, Sim RB, Lea SM, Fremeaux-Bacchi V, Blom AM. Complement factor I in health and disease. Mol Immunol. 2011;48(14):1611–20.

    Article  CAS  PubMed  Google Scholar 

  23. Jozsi M, Meri S. Factor H-related proteins. Methods Mol Biol. 2014;1100:225–36.

    Article  CAS  PubMed  Google Scholar 

  24. Albrecht EA, Chinnaiyan AM, Varambally S, Kumar-Sinha C, Barrette TR, Sarma JV, et al. C5a-induced gene expression in human umbilical vein endothelial cells. Am J Pathol. 2004;164(3):849–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Noris M, Caprioli J, Bresin E, Mossali C, Pianetti G, Gamba S, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rostgaard J, Qvortrup K. Sieve plugs in fenestrae of glomerular capillaries – site of the filtration barrier? Cells Tissues Organs. 2002;170(2–3):132–8.

    Article  PubMed  Google Scholar 

  27. Morgan HP, Schmidt CQ, Guariento M, Blaum BS, Gillespie D, Herbert AP, et al. Structural basis for engagement by complement factor H of C3b on a self surface. Nat Struct Mol Biol. 2011;18(4):463–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pierchala BA, Munoz MR, Tsui CC. Proteomic analysis of the slit diaphragm complex: CLIC5 is a protein critical for podocyte morphology and function. Kidney Int. 2010;78(9):868–82.

    Article  CAS  PubMed  Google Scholar 

  29. Song D, Zhou W, Sheerin SH, Sacks SH. Compartmental localization of complement component transcripts in the normal human kidney. Nephron. 1998;78(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  30. Sheerin NS, Zhou W, Adler S, Sacks SH. TNF-alpha regulation of C3 gene expression and protein biosynthesis in rat glomerular endothelial cells. Kidney Int. 1997;51(3):703–10.

    Article  CAS  PubMed  Google Scholar 

  31. Falus A, Beuscher HU, Auerbach HS, Colten HR. Constitutive and IL 1-regulated murine complement gene expression is strain and tissue specific. J Immunol. 1987;138(3):856–60.

    CAS  PubMed  Google Scholar 

  32. Farrar CA, Zhou W, Lin T, Sacks SH. Local extravascular pool of C3 is a determinant of postischemic acute renal failure. FASEB J. 2006;20(2):217–26.

    Article  CAS  PubMed  Google Scholar 

  33. Nangaku M. Complement regulatory proteins in glomerular diseases. Kidney Int. 1998;54(5):1419–28.

    Article  CAS  PubMed  Google Scholar 

  34. Richards A. Glomerular endothelial microvascular heterogeneity and response to cytokines predispose to the development of atypical HUS. Mol Immunol. 2011;48(14):1732.

    Article  Google Scholar 

  35. Boels MG, Lee DH, van den Berg BM, Dane MJ, van der Vlag J, Rabelink TJ. The endothelial glycocalyx as a potential modifier of the hemolytic uremic syndrome. Eur J Intern Med. 2013;24(6):503–9.

    Article  CAS  PubMed  Google Scholar 

  36. Takano T, Elimam H, Cybulsky AV. Complement-mediated cellular injury. Semin Nephrol. 2013;33(6):586–601.

    Article  CAS  PubMed  Google Scholar 

  37. Tegla CA, Cudrici C, Patel S, Trippe 3rd R, Rus V, Niculescu F, et al. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res. 2011;51(1):45–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Langer F, Spath B, Fischer C, Stolz M, Ayuk FA, Kroger N, et al. Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase. Blood. 2013;121(12):2324–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med. 1994;179(3):985–92.

    Article  CAS  PubMed  Google Scholar 

  40. Viedt C, Hansch GM, Brandes RP, Kubler W, Kreuzer J. The terminal complement complex C5b-9 stimulates interleukin-6 production in human smooth muscle cells through activation of transcription factors NF-kappa B and AP-1. FASEB J. 2000;14(15):2370–2.

    CAS  PubMed  Google Scholar 

  41. Kilgore KS, Schmid E, Shanley TP, Flory CM, Maheswari V, Tramontini NL, et al. Sublytic concentrations of the membrane attack complex of complement induce endothelial interleukin-8 and monocyte chemoattractant protein-1 through nuclear factor-kappa B activation. Am J Pathol. 1997;150(6):2019–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Corallini F, Bossi F, Gonelli A, Tripodo C, Castellino G, Mollnes TE, et al. The soluble terminal complement complex (SC5b-9) up-regulates osteoprotegerin expression and release by endothelial cells: implications in rheumatoid arthritis. Rheumatology (Oxford). 2009;48(3):293–8.

    Article  CAS  Google Scholar 

  43. Wood SC, Bushar G, Tesfamariam B. Inhibition of mammalian target of rapamycin modulates expression of adhesion molecules in endothelial cells. Toxicol Lett. 2006;165(3):242–9.

    Article  CAS  PubMed  Google Scholar 

  44. Gao L, Qiu W, Wang Y, Xu W, Xu J, Tong J. Sublytic complement C5b-9 complexes induce thrombospondin-1 production in rat glomerular mesangial cells via PI3-k/Akt: association with activation of latent transforming growth factor-beta1. Clin Exp Immunol. 2006;144(2):326–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Abe K, Li K, Sacks SH, Sheerin NS. The membrane attack complex, C5b-9, up regulates collagen gene expression in renal tubular epithelial cells. Clin Exp Immunol. 2004;136(1):60–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Chen Y, Zhang J, Guo G, Ruan Z, Jiang M, Wu S, et al. Induced B7-H1 expression on human renal tubular epithelial cells by the sublytic terminal complement complex C5b-9. Mol Immunol. 2009;46(3):375–83.

    Article  CAS  PubMed  Google Scholar 

  47. Nauta AJ, Daha MR, Tijsma O, van de Water B, Tedesco F, Roos A. The membrane attack complex of complement induces caspase activation and apoptosis. Eur J Immunol. 2002;32(3):783–92.

    Article  CAS  PubMed  Google Scholar 

  48. Manthey HD, Woodruff TM, Taylor SM, Monk PN. Complement component 5a (C5a). Int J Biochem Cell Biol. 2009;41(11):2114–17.

    Article  CAS  PubMed  Google Scholar 

  49. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–52.

    Article  CAS  PubMed  Google Scholar 

  50. Foreman KE, Glovsky MM, Warner RL, Horvath SJ, Ward PA. Comparative effect of C3a and C5a on adhesion molecule expression on neutrophils and endothelial cells. Inflammation. 1996;20(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  51. Woodruff TM, Nandakumar KS, Tedesco F. Inhibiting the C5-C5a receptor axis. Mol Immunol. 2011;48(14):1631–42.

    Article  CAS  PubMed  Google Scholar 

  52. Koski CL, Ramm LE, Hammer CH, Mayer MM, Shin ML. Cytolysis of nucleated cells by complement: cell death displays multi-hit characteristics. Proc Natl Acad Sci U S A. 1983;80(12):3816–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Papadimitriou JC, Ramm LE, Drachenberg CB, Trump BF, Shin ML. Quantitative analysis of adenine nucleotides during the prelytic phase of cell death mediated by C5b-9. J Immunol. 1991;147(1):212–17.

    CAS  PubMed  Google Scholar 

  54. Ziporen L, Donin N, Shmushkovich T, Gross A, Fishelson Z. Programmed necrotic cell death induced by complement involves a Bid-dependent pathway. J Immunol. 2009;182(1):515–21.

    Article  CAS  PubMed  Google Scholar 

  55. Ramm LE, Whitlow MB, Koski CL, Shin ML, Mayer MM. Elimination of complement channels from the plasma membranes of U937, a nucleated mammalian cell line: temperature dependence of the elimination rate. J Immunol. 1983;131(3):1411–15.

    CAS  PubMed  Google Scholar 

  56. Burwick RM, Fichorova RN, Dawood HY, Yamamoto HS, Feinberg BB. Urinary excretion of C5b-9 in severe preeclampsia: tipping the balance of complement activation in pregnancy. Hypertension. 2013;62(6):1040–5.

    Article  CAS  PubMed  Google Scholar 

  57. Hogan J, Mohan P, Appel GB. Diagnostic tests and treatment options in glomerular disease: 2014 update. Am J Kidney Dis. 2014;63(4):656–66.

    Article  PubMed  Google Scholar 

  58. Couser WG. Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol. 2012;23(3):381–99.

    Article  CAS  PubMed  Google Scholar 

  59. McCullough JW, Renner B, Thurman JM. The role of the complement system in acute kidney injury. Semin Nephrol. 2013;33(6):543–56.

    Article  CAS  PubMed  Google Scholar 

  60. Cravedi P, Heeger PS. Complement as a multifaceted modulator of kidney transplant injury. J Clin Invest. 2014;124(6):2348–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Eison TM, Ault BH, Jones DP, Chesney RW, Wyatt RJ. Post-streptococcal acute glomerulonephritis in children: clinical features and pathogenesis. Pediatr Nephrol. 2011;26(2):165–80.

    Article  PubMed  Google Scholar 

  62. Rodriguez-Iturbe B, Musser JM. The current state of poststreptococcal glomerulonephritis. J Am Soc Nephrol. 2008;19(10):1855–64.

    Article  PubMed  Google Scholar 

  63. Rodriguez-Iturbe B, Batsford S. Pathogenesis of poststreptococcal glomerulonephritis a century after Clemens von Pirquet. Kidney Int. 2007;71(11):1094–104.

    Article  CAS  PubMed  Google Scholar 

  64. Singh GR. Glomerulonephritis and managing the risks of chronic renal disease. Pediatr Clin North Am. 2009;56(6):1363–82.

    Article  PubMed  Google Scholar 

  65. Ahn SY, Ingulli E. Acute poststreptococcal glomerulonephritis: an update. Curr Opin Pediatr. 2008;20(2):157–62.

    Article  PubMed  Google Scholar 

  66. Batsford SR, Mezzano S, Mihatsch M, Schiltz E, Rodriguez-Iturbe B. Is the nephritogenic antigen in post-streptococcal glomerulonephritis pyrogenic exotoxin B (SPE B) or GAPDH? Kidney Int. 2005;68(3):1120–9.

    Article  CAS  PubMed  Google Scholar 

  67. Hogg RJ. Idiopathic immunoglobulin A nephropathy in children and adolescents. Pediatr Nephrol. 2010;25(5):823–9.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Haas M, Rahman MH, Cohn RA, Fathallah-Shaykh S, Ansari A, Bartosh SM. IgA nephropathy in children and adults: comparison of histologic features and clinical outcomes. Nephrol Dial Transplant. 2008;23(8):2537–45.

    Article  PubMed  Google Scholar 

  69. Coppo R, Troyanov S, Bellur S, Cattran D, Cook HT, Feehally J, et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014;86(4):828–836.

    Google Scholar 

  70. A multicenter study of IgA nephropathy in children. A report of the Southwest Pediatric Nephrology Study Group. Kidney Int. 1982;22(6):643–52. http://www.ncbi.nlm.nih.gov/pubmed/?term=6761487

  71. Coppo R, Feehally J, Glassock RJ. IgA nephropathy at two score and one. Kidney Int. 2010;77(3):181–6.

    Article  CAS  PubMed  Google Scholar 

  72. Imai H, Chen A, Wyatt RJ, Rifai A. Lack of complement activation by human IgA immune complexes. Clin Exp Immunol. 1988;73(3):479–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Wyatt RJ, Kanayama Y, Julian BA, Negoro N, Sugimoto S, Hudson EC, et al. Complement activation in IgA nephropathy. Kidney Int. 1987;31(4):1019–23.

    Article  CAS  PubMed  Google Scholar 

  74. McCaughan JA, O’Rourke DM, Courtney AE. The complement cascade in kidney disease: from sideline to center stage. Am J Kidney Dis. 2013;62(3):604–14.

    Article  CAS  PubMed  Google Scholar 

  75. Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol. 2006;17(6):1724–34.

    Article  CAS  PubMed  Google Scholar 

  76. Montinaro V, Gesualdo L, Ranieri E, Monno R, Grandaliano G, Schena FP. Renal cortical complement C3 gene expression in IgA nephropathy. J Am Soc Nephrol. 1997;8(3):415–25.

    CAS  PubMed  Google Scholar 

  77. Seelen MA, Roos A, Daha MR. Role of complement in innate and autoimmunity. J Nephrol. 2005;18(6):642–53.

    CAS  PubMed  Google Scholar 

  78. Ruggiero B, Vivarelli M, Gianviti A, Benetti E, Peruzzi L, Barbano G, et al. Lupus nephritis in children and adolescents: results of the Italian Collaborative Study. Nephrol Dial Transplant. 2013;28(6):1487–96.

    Article  CAS  PubMed  Google Scholar 

  79. Hiraki LT, Benseler SM, Tyrrell PN, Hebert D, Harvey E, Silverman ED. Clinical and laboratory characteristics and long-term outcome of pediatric systemic lupus erythematosus: a longitudinal study. J Pediatr. 2008;152(4):550–6.

    Article  PubMed  Google Scholar 

  80. Ortega LM, Schultz DR, Lenz O, Pardo V, Contreras GN. Review: lupus nephritis: pathologic features, epidemiology and a guide to therapeutic decisions. Lupus. 2010;19(5):557–74.

    Article  CAS  PubMed  Google Scholar 

  81. O’Flynn J, Flierman R, van der Pol P, Rops A, Satchell SC, Mathieson PW, et al. Nucleosomes and C1q bound to glomerular endothelial cells serve as targets for autoantibodies and determine complement activation. Mol Immunol. 2011;49(1–2):75–83.

    Article  PubMed  CAS  Google Scholar 

  82. Ng KP, Manson JJ, Rahman A, Isenberg DA. Association of antinucleosome antibodies with disease flare in serologically active clinically quiescent patients with systemic lupus erythematosus. Arthritis Rheum. 2006;55(6):900–4.

    Article  CAS  PubMed  Google Scholar 

  83. Crispin JC, Liossis SN, Kis-Toth K, Lieberman LA, Kyttaris VC, Juang YT, et al. Pathogenesis of human systemic lupus erythematosus: recent advances. Trends Mol Med. 2010;16(2):47–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Chen M, Daha MR, Kallenberg CG. The complement system in systemic autoimmune disease. J Autoimmun. 2010;34(3):J276–86.

    Article  CAS  PubMed  Google Scholar 

  85. Markowitz GS, D’Agati VD. Classification of lupus nephritis. Curr Opin Nephrol Hypertens. 2009;18(3):220–5.

    Article  CAS  PubMed  Google Scholar 

  86. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008;358(9):929–39.

    Article  CAS  PubMed  Google Scholar 

  87. Gilliland WR, Tsokos GC. Prophylactic use of antibiotics and immunisations in patients with SLE. Ann Rheum Dis. 2002;61(3):191–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Kao AH, Navratil JS, Ruffing MJ, Liu CC, Hawkins D, McKinnon KM, et al. Erythrocyte C3d and C4d for monitoring disease activity in systemic lupus erythematosus. Arthritis Rheum. 2010;62(3):837–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Manzi S, Navratil JS, Ruffing MJ, Liu CC, Danchenko N, Nilson SE, et al. Measurement of erythrocyte C4d and complement receptor 1 in systemic lupus erythematosus. Arthritis Rheum. 2004;50(11):3596–604.

    Article  CAS  PubMed  Google Scholar 

  90. Birmingham DJ, Gavit KF, McCarty SM, Yu CY, Rovin BH, Nagaraja HN, et al. Consumption of erythrocyte CR1 (CD35) is associated with protection against systemic lupus erythematosus renal flare. Clin Exp Immunol. 2006;143(2):274–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Cohen JH, Lutz HU, Pennaforte JL, Bouchard A, Kazatchkine MD. Peripheral catabolism of CR1 (the C3b receptor, CD35) on erythrocytes from healthy individuals and patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. 1992;87(3):422–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Campistol JM, Arias M, Ariceta G, Blasco M, Espinosa M, Grinyo JM, et al. An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document. Nefrologia. 2013;33(1):27–45.

    PubMed  Google Scholar 

  93. Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Le Quintrec M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45(5):531–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Fogo AB, Bruijn JA, Cohen AH, Colvin RB, Jennette JCE. Fundamentals of renal pathology. New York: Springer; 2006.

    Google Scholar 

  95. Cataland SR, Wu HM. How I treat: the clinical differentiation and initial treatment of adult patients with atypical hemolytic uremic syndrome. Blood. 2014;123(16):2478–84.

    Article  CAS  PubMed  Google Scholar 

  96. Kavanagh D, Goodship TH, Richards A. Atypical hemolytic uremic syndrome. Semin Nephrol. 2013;33(6):508–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Zuber J, Fakhouri F, Roumenina LT, Loirat C, Fremeaux-Bacchi V. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol. 2012;8(11):643–57.

    Article  CAS  PubMed  Google Scholar 

  98. Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis – a new look at an old entity. N Engl J Med. 2012;366(12):1119–31.

    Article  CAS  PubMed  Google Scholar 

  99. Sethi S, Nester CM, Smith RJ. Membranoproliferative glomerulonephritis and C3 glomerulopathy: resolving the confusion. Kidney Int. 2012;81(5):434–41.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Zand L, Fervenza FC, Nasr SH, Sethi S. Membranoproliferative glomerulonephritis associated with autoimmune diseases. J Nephrol. 2014;27(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  101. Fakhouri F, Fremeaux-Bacchi V, Noel LH, Cook HT, Pickering MC. C3 glomerulopathy: a new classification. Nat Rev Nephrol. 2010;6(8):494–9.

    Article  CAS  PubMed  Google Scholar 

  102. Smith KD, Alpers CE. Pathogenic mechanisms in membranoproliferative glomerulonephritis. Curr Opin Nephrol Hypertens. 2005;14(4):396–403.

    Article  CAS  PubMed  Google Scholar 

  103. Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis: pathogenetic heterogeneity and proposal for a new classification. Semin Nephrol. 2011;31(4):341–8.

    Article  CAS  PubMed  Google Scholar 

  104. D’Souza YB, Jones CJ, Short CD, Roberts IS, Bonshek RE. Oligosaccharide composition is similar in drusen and dense deposits in membranoproliferative glomerulonephritis type II. Kidney Int. 2009;75(8):824–7.

    Article  PubMed  CAS  Google Scholar 

  105. Barbour TD, Pickering MC, Terence Cook H. Dense deposit disease and C3 glomerulopathy. Semin Nephrol. 2013;33(6):493–507.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Nasr SH, Valeri AM, Appel GB, Sherwinter J, Stokes MB, Said SM, et al. Dense deposit disease: clinicopathologic study of 32 pediatric and adult patients. Clin J Am Soc Nephrol. 2009;4(1):22–32.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Martinez-Barricarte R, Heurich M, Valdes-Canedo F, Vazquez-Martul E, Torreira E, Montes T, et al. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest. 2010;120(10):3702–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Alchi B, Jayne D. Membranoproliferative glomerulonephritis. Pediatr Nephrol. 2010;25(8):1409–18.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Nakopoulou L. Membranoproliferative glomerulonephritis. Nephrol Dial Transplant. 2001;16 Suppl 6:71–3.

    Article  PubMed  Google Scholar 

  110. Servais A, Noel LH, Roumenina LT, Le Quintrec M, Ngo S, Dragon-Durey MA, et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 2012;82(4):454–64.

    Article  CAS  PubMed  Google Scholar 

  111. Sethi S, Fervenza FC, Zhang Y, Nasr SH, Leung N, Vrana J, et al. Proliferative glomerulonephritis secondary to dysfunction of the alternative pathway of complement. Clin J Am Soc Nephrol. 2011;6(5):1009–17.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Ronco P, Debiec H. Membranous glomerulopathy: the evolving story. Curr Opin Nephrol Hypertens. 2010;19(3):254–9.

    Article  PubMed  Google Scholar 

  113. Menon S, Valentini RP. Membranous nephropathy in children: clinical presentation and therapeutic approach. Pediatr Nephrol. 2010;25(8):1419–28.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Liao MT, Chang MH, Lin FG, Tsai IJ, Chang YW, Tsau YK. Universal hepatitis B vaccination reduces childhood hepatitis B virus-associated membranous nephropathy. Pediatrics. 2011;128(3):e600–4.

    PubMed  Google Scholar 

  115. Debiec H, Lefeu F, Kemper MJ, Niaudet P, Deschenes G, Remuzzi G, et al. Early-childhood membranous nephropathy due to cationic bovine serum albumin. N Engl J Med. 2011;364(22):2101–10.

    Article  CAS  PubMed  Google Scholar 

  116. Ronco P, Debiec H. New insights into the pathogenesis of membranous glomerulonephritis. Curr Opin Nephrol Hypertens. 2006;15(3):258–63.

    Article  CAS  PubMed  Google Scholar 

  117. Glassock RJ. The pathogenesis of membranous nephropathy: evolution and revolution. Curr Opin Nephrol Hypertens. 2012;21(3):235–42.

    Article  CAS  PubMed  Google Scholar 

  118. Schlumberger W, Hornig N, Lange S, Probst C, Komorowski L, Fechner K, et al. Differential diagnosis of membranous nephropathy with autoantibodies to phospholipase A2 receptor 1. Autoimmun Rev. 2014;13(2):108–13.

    Article  CAS  PubMed  Google Scholar 

  119. Hofstra JM, Wetzels JF. Anti-PLA(2)R antibodies in membranous nephropathy: ready for routine clinical practice? Neth J Med. 2012;70(3):109–13.

    CAS  PubMed  Google Scholar 

  120. Racusen LC, Haas M. Antibody-mediated rejection in renal allografts: lessons from pathology. Clin J Am Soc Nephrol. 2006;1(3):415–20.

    Article  CAS  PubMed  Google Scholar 

  121. Drachenberg CB, Papadimitriou JC. Endothelial injury in renal antibody-mediated allograft rejection: a schematic view based on pathogenesis. Transplantation. 2013;95(9):1073–83.

    Article  CAS  PubMed  Google Scholar 

  122. Haas M. Pathologic features of antibody-mediated rejection in renal allografts: an expanding spectrum. Curr Opin Nephrol Hypertens. 2012;21(3):264–71.

    Article  CAS  PubMed  Google Scholar 

  123. Reinsmoen NL, Lai CH, Heidecke H, Haas M, Cao K, Ong G, et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation. 2010;90(12):1473–7.

    Article  CAS  PubMed  Google Scholar 

  124. Regele H, Bohmig GA, Habicht A, Gollowitzer D, Schillinger M, Rockenschaub S, et al. Capillary deposition of complement split product C4d in renal allografts is associated with basement membrane injury in peritubular and glomerular capillaries: a contribution of humoral immunity to chronic allograft rejection. J Am Soc Nephrol. 2002;13(9):2371–80.

    Article  PubMed  Google Scholar 

  125. Abbate M, Zoja C, Corna D, Rottoli D, Zanchi C, Azzollini N, et al. Complement-mediated dysfunction of glomerular filtration barrier accelerates progressive renal injury. J Am Soc Nephrol. 2008;19(6):1158–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81.

    Article  CAS  PubMed  Google Scholar 

  127. Zuber J, Le Quintrec M, Krid S, Bertoye C, Gueutin V, Lahoche A, et al. Eculizumab for atypical hemolytic uremic syndrome recurrence in renal transplantation. Am J Transplant. 2012;12(12):3337–54.

    Article  CAS  PubMed  Google Scholar 

  128. Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: therapeutic interventions. J Immunol. 2013;190(8):3839–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Vivarelli M, Emma F. Treatment of C3 glomerulopathy with complement blockers. Semin Thromb Hemost. 2014;40(4):472–7.

    Article  CAS  PubMed  Google Scholar 

  130. Bomback AS. Anti-complement therapy for glomerular diseases. Adv Chronic Kidney Dis. 2014;21(2):152–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Lilan Varga and Eniko Barnucz for their helpful suggestions. Research in the author’s laboratories was supported by the following grants: Hungarian Scientific Research Fund of Hungary OTKA 100909 to GSR, and OTKA 100687, OTKA 110909 to ZP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Prohászka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Prohászka, Z., Vivarelli, M., Reusz, G.S. (2016). Complement-Mediated Glomerular Injury in Children. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics