Skip to main content

Translational Research Methods: Tissue Engineering of the Kidney and Urinary Tract

  • Reference work entry
  • First Online:
Pediatric Nephrology
  • 7102 Accesses

Abstract

Patients suffering from diseased or injured genitourinary organs are often treated with reconstructive surgery or transplants, but there is a severe shortage of donor tissue and organs. This shortage worsens yearly as modern medicine increases the human lifespan. The aging population grows, and the need for organs grows with it. Physicians and scientists have begun to look to the fields of regenerative medicine and tissue engineering to provide new options for these patients. These fields apply the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can significantly improve the quality of life of the urologic patient by eliminating the need for intensive grafting procedures or transplant surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahms SE, et al. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol. 1998;82(3):411–19.

    Article  CAS  PubMed  Google Scholar 

  2. Yoo JJ, et al. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51(2):221–5.

    Article  CAS  PubMed  Google Scholar 

  3. Piechota HJ, et al. In vitro functional properties of the rat bladder regenerated by the bladder acellular matrix graft. J Urol. 1998;159(5):1717–24.

    Article  CAS  PubMed  Google Scholar 

  4. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology. 1999;54(3):407–10.

    Article  CAS  PubMed  Google Scholar 

  5. Amiel GE, Atala A. Current and future modalities for functional renal replacement. Urol Clin N Am. 1999;26(1):235–46.

    Article  CAS  Google Scholar 

  6. Amiel GE, et al. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng. 2006;12(8):2355–65.

    Article  CAS  PubMed  Google Scholar 

  7. Yoo JJ, et al. Autologous engineered cartilage rods for penile reconstruction. J Urol. 1999;162(3 Pt 2):1119–21.

    Article  CAS  PubMed  Google Scholar 

  8. Atala A. Autologous cell transplantation for urologic reconstruction. J Urol. 1998;159(1):2–3.

    Article  CAS  PubMed  Google Scholar 

  9. Atala A. Bladder regeneration by tissue engineering.[see comment]. BJU Int. 2001;88(7):765–70.

    Article  CAS  PubMed  Google Scholar 

  10. Atala A. Creation of bladder tissue in vitro and in vivo. A system for organ replacement. Adv Exp Med Biol. 1999;462:31–42.

    Article  CAS  PubMed  Google Scholar 

  11. Cilento BG, et al. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol. 1994;152(2 Pt 2):665–70.

    CAS  PubMed  Google Scholar 

  12. Oberpenning F, et al. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. [see comment]. Nat Biotechnol. 1999;17(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  13. Orabi H, Bouhout S, Morissette A, Rousseau A, Chabaud S, Bolduc S. Tissue engineering of urinary bladder and urethra: advances from bench to patients. Sci World J. 2013;2013.

    Google Scholar 

  14. Scriven SD, et al. Reconstitution of human urothelium from monolayer cultures. J Urol. 1997;158(3 Pt 2):1147–52.

    Article  CAS  PubMed  Google Scholar 

  15. Liebert M, et al. Expression of mal is associated with urothelial differentiation in vitro: identification by differential display reverse-transcriptase polymerase chain reaction. Differentiation. 1997;61(3):177–85.

    Article  CAS  PubMed  Google Scholar 

  16. Liebert M, et al. Stimulated urothelial cells produce cytokines and express an activated cell surface antigenic phenotype. Semin Urol. 1991;9(2):124–30.

    CAS  PubMed  Google Scholar 

  17. Puthenveettil JA, Burger MS, Reznikoff CA. Replicative senescence in human uroepithelial cells. Adv Exp Med Biol. 1999;462:83–91.

    Article  CAS  PubMed  Google Scholar 

  18. Nagele U, Maurer S, Feil G, Bock C, Krug J, Sievert KD, Stenzl A. In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings. Eur Urol. 2008;54(6):1414–22.

    Article  PubMed  Google Scholar 

  19. Zhang Y, McNeill E, Tian H, Soker S, Andersson KE, Yoo JJ, Atala A. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180(5):2226–33.

    Article  CAS  PubMed  Google Scholar 

  20. Freeman MR, et al. Heparin-binding EGF-like growth factor is an autocrine growth factor for human urothelial cells and is synthesized by epithelial and smooth muscle cells in the human bladder. J Clin Invest. 1997;99(5):1028–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Nguyen HT, et al. Cell-specific activation of the HB-EGF and ErbB1 genes by stretch in primary human bladder cells. In Vitro Cell Dev Biol Anim. 1999;35(7):371–5.

    Article  CAS  PubMed  Google Scholar 

  22. Harriss DR. Smooth muscle cell culture: a new approach to the study of human detrusor physiology and pathophysiology. Br J Urol. 1995;75 Suppl 1:18–26.

    PubMed  Google Scholar 

  23. Atala A, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.

    Article  PubMed  Google Scholar 

  24. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Reubinoff BE, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol. 2001;19(12):1134–40 [see comment].

    Article  CAS  PubMed  Google Scholar 

  26. Schuldiner M, et al. Induced neuronal differentiation of human embryonic stem cells. Brain Res. 2001;913(2):201–5.

    Article  CAS  PubMed  Google Scholar 

  27. Schuldiner M, et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2000;97(21):11307–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhang SC, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001;19(12):1129–33 [see comment].

    Article  CAS  PubMed  Google Scholar 

  29. Kaufman DS, et al. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2001;98(19):10716–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kehat I, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108(3):407–14 [see comment].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Levenberg S, et al. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2002;99(7):4391–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Assady S, et al. Insulin production by human embryonic stem cells. Diabetes. 2001;50(8):1691–7.

    Article  CAS  PubMed  Google Scholar 

  33. Itskovitz-Eldor J, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6(2):88–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Reubinoff BE, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnol. 2000;18(4):399–404 [see comment] [erratum appears in Nat Biotechnol 2000 May;18(5):559].

    Article  CAS  Google Scholar 

  35. Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7 [see comment] [erratum appears in Science 1998 Dec 4;282(5395):1827].

    Article  CAS  PubMed  Google Scholar 

  36. Tian H, Bharadwaj S, Liu Y, Ma PX, Atala A, Zhang Y. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng Part A. 2010;16(5):1769–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Bharadwaj S, Liu G, Shi Y, Wu R, Yang B, He T, Fan Y, Lu X, Zhou X, Liu H, Atala A, Rohozinski J, Zhang Y. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells. 2013;31(9):1840–56.

    Article  CAS  PubMed  Google Scholar 

  38. Wilmut I, et al. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385(6619):810–13 [see comment] [erratum appears in Nature 1997 Mar 13;386(6621):200].

    Article  CAS  PubMed  Google Scholar 

  39. Brambrink T, et al. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable 1. Proc Natl Acad Sci U S A. 2006;103(4):933–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Rideout III WM, et al. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell. 2002;109(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  41. Hochedlinger K, Jaenisch R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature. 2002;415(6875):1035–8.

    Article  CAS  PubMed  Google Scholar 

  42. Eggan K, et al. Mice cloned from olfactory sensory neurons 1. Nature. 2004;428(6978):44–9.

    Article  CAS  PubMed  Google Scholar 

  43. Lanza RP, et al. Generation of histocompatible tissues using nuclear transplantation 1. Nat Biotechnol. 2002;20(7):689–96.

    Article  CAS  PubMed  Google Scholar 

  44. Hwang WS, et al. Patient-specific embryonic stem cells derived from human SCNT blastocysts 1. Science. 2005;308(5729):1777–83.

    Article  CAS  PubMed  Google Scholar 

  45. Simerly C, et al. Molecular correlates of primate nuclear transfer failures 2. Science. 2003;300(5617):297.

    Article  PubMed  Google Scholar 

  46. Hwang WS, et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst 1. Science. 2004;303(5664):1669–74.

    Article  CAS  PubMed  Google Scholar 

  47. Byrne J et al. Producing primate embryonic stem cells by somatic cell nuclear transfer 1. Nature. 2007;450(7169):497–502.

    Google Scholar 

  48. Mitalipov S. Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum Reprod. 2007;22:2232–42.

    Article  CAS  PubMed  Google Scholar 

  49. Atala A. Tissue engineering of reproductive tissues and organs. Fertil Steril. 2012;98(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  50. Dinnyés A, De Sousa P, King T, Wilmut I. Somatic cell nuclear transfer: recent progress and challenges. Cloning Stem Cells. 2002;4(1):81–90.

    Article  PubMed  Google Scholar 

  51. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors 2. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  52. Wernig M, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state 1. Nature. 2007;448(7151):318–24.

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  54. Yu J et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858):1917–1920.

    Google Scholar 

  55. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–17.

    Article  CAS  PubMed  Google Scholar 

  56. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007;25(10):1177–81.

    Article  CAS  PubMed  Google Scholar 

  57. Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H, Yamato M, Vacanti CA. Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature. 2014;505(7485):641–7.

    Article  CAS  PubMed  Google Scholar 

  58. Obokata H, Sasai Y, Niwa H, Kadota M, Andrabi M, Takata N, Tokoro M, Terashita Y, Yonemura S, Vacanti CA, Wakayama T. Bidirectional developmental potential in reprogrammed cells with acquired pluripotency. Nature. 2014;505(7485):676–80.

    Article  CAS  PubMed  Google Scholar 

  59. De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy.[see comment]. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  60. Jiang G, Di Bernardo J, Delong CJ, Monteiro da Rocha A, O’Shea KS, Kunisaki SM, Induced Pluripotent Stem Cells from Human Placental Chorion for Perinatal Tissue Engineering Applications. Tissue Eng Part C Methods. 2014;20(9):731–40.

    Google Scholar 

  61. Zhong ZN, Zhu SF, Yuan AD, Lu GH, He ZY, Fa ZQ, Li WH. Potential of placenta-derived mesenchymal stem cells as seed cells for bone tissue engineering: preliminary study of osteoblastic differentiation and immunogenicity. Orthopedics. 2012;35(9):779–88.

    Article  PubMed  Google Scholar 

  62. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16(5):224–30.

    Article  CAS  PubMed  Google Scholar 

  63. Bergsma JE, et al. In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles. Biomaterials. 1995;16(4):267–74 [see comment].

    Article  CAS  PubMed  Google Scholar 

  64. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69(1):11–25.

    Article  CAS  PubMed  Google Scholar 

  65. Pariente JL, Kim BS, Atala A. In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. J Biomed Mater Res. 2001;55(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  66. Pariente JL, Kim BS, Atala A. In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. J Urol. 2002;167(4):1867–71.

    Article  PubMed  Google Scholar 

  67. Li ST. Biologic biomaterials: tissue derived biomaterials (collagen). In: JD B, editor. The biomedical engineering handbook. Boca Raton: CRS Press; 1995. p. 627–47.

    Google Scholar 

  68. Arora PD, et al. A novel model system for characterization of phagosomal maturation, acidification, and intracellular collagen degradation in fibroblasts. J Biol Chem. 2000;275(45):35432–41.

    Article  CAS  PubMed  Google Scholar 

  69. Silver FH, Pins G. Cell growth on collagen: a review of tissue engineering using scaffolds containing extracellular matrix. J Long Term Eff Med Implants. 1992;2(1):67–80.

    CAS  PubMed  Google Scholar 

  70. Sams AE, Nixon AJ. Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage. 1995;3(1):47–59.

    Article  CAS  PubMed  Google Scholar 

  71. Shen Y, Dai L, Li X, Liang R, Guan G, Zhang Z, Cao W, Liu Z, Mei S, Liang W, Qin S, Xu J, Chen H. Epidermal stem cells cultured on collagen-modified chitin membrane induce in situ tissue regeneration of full-thickness skin defects in mice. PLoS One. 2014;9(2).

    Google Scholar 

  72. Smidsrod O, Skjak-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8(3):71–8.

    Article  CAS  PubMed  Google Scholar 

  73. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210(4472):908–10.

    Article  CAS  PubMed  Google Scholar 

  74. Gilding D. Biodegradable polymers. In: Williams D, editor. Biocompatibility of clinical implant materials. Boca Raton: CRC Press; 1981. p. 209–32.

    Google Scholar 

  75. Mikos AG, et al. Wetting of poly(l-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials. 1994;15(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  76. Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res. 1998;42(3):396–402.

    Article  CAS  PubMed  Google Scholar 

  77. Peppas NA, Langer R. New challenges in biomaterials. Science. 1994;263(5154):1715–20 [see comment].

    Article  CAS  PubMed  Google Scholar 

  78. Chen F, Yoo JJ, Atala A. Experimental and clinical experience using tissue regeneration for urethral reconstruction. World J Urol. 2000;18(1):67–70.

    Article  CAS  PubMed  Google Scholar 

  79. Atala A, et al. Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol. 1992;148(2 Pt 2):658–62.

    CAS  PubMed  Google Scholar 

  80. Olsen L, et al. Urethral reconstruction with a new synthetic absorbable device. An experimental study. Scand J Urol Nephrol. 1992;26(4):323–6.

    Article  CAS  PubMed  Google Scholar 

  81. Kropp BP, et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology. 1998;52(1):138–42.

    Article  CAS  PubMed  Google Scholar 

  82. Sievert KD, et al. Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation. J Urol. 2000;163(6):1958–65.

    Article  CAS  PubMed  Google Scholar 

  83. De Filippo RE, Yoo JJ, Atala A. Urethral replacement using cell seeded tubularized collagen matrices. J Urol. 2002;168(4 Pt 2):1789–92; discussion 1792–3.

    Article  PubMed  Google Scholar 

  84. Atala A. Experimental and clinical experience with tissue engineering techniques for urethral reconstruction. Urol Clin N A. 2002;29(2):485–92.

    Article  Google Scholar 

  85. El-Kassaby AW, et al. Urethral stricture repair with an off-the-shelf collagen matrix. J Urol. 2003;169(1):170–3; discussion 173.

    Article  CAS  PubMed  Google Scholar 

  86. Bhargava S, Patterson JM, Inman RD, MacNeil S, Chapple CR. Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. Eur Urol. 2008;53(6):1263–9.

    Article  PubMed  Google Scholar 

  87. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377(9772):1175–82.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Fossum M, Svensson J, Kratz G, Nordenskjold A. Autologous in vitro cultured urothelium in hypospadias repair. J Pediatr Urol. 2007;3(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  89. Cattan V, Bernard G, Rousseau A, Bouhout S, Chabaud S, Auger FA, Bolduc S. Mechanical stimuli-induced urothelial differentiation in a human tissue-engineered tubular genitourinary graft. Eur Urol. 2011;60(6):1291–8.

    Article  PubMed  Google Scholar 

  90. Imbeault A, Bernard G, Rousseau A, Morissette A, Chabaud S, Bouhout S, Bolduc S. An endothelialized urothelial cell-seeded tubular graft for urethral replacement. Can Urol Assoc J. 2013;7(1–2):E4–9.

    PubMed Central  PubMed  Google Scholar 

  91. Atala A, et al. Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol. 1993;150(2 Pt 2):608–12.

    CAS  PubMed  Google Scholar 

  92. Jayo MJ, Jain D, Ludlow JW, Payne R, Wagner BJ, McLorie G, Bertram TA. Long-term durability, tissue regeneration and neo-organ growth during skeletal maturation with a neo-bladder augmentation construct. Regen Med. 2008;3(5):671–82.

    Article  PubMed  Google Scholar 

  93. Yoo JJ, Olson J, Atala A, Kim B. Regenerative medicine strategies for treating neurogenic bladder. Int Neurourol J. 2011;15(3):109–19.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Zhang Y, Frimberger D, Cheng EY, Lin HK, Kropp BP. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int. 2006;98(5):1100–5.

    Article  PubMed  Google Scholar 

  95. Farhat WA, Yeger H. Does mechanical stimulation have any role in urinary bladder tissue engineering? World J Urol. 2008;26(4):301–5.

    Article  PubMed  Google Scholar 

  96. Ikarashi K, et al. Bone marrow cells contribute to regeneration of damaged glomerular endothelial cells. Kidney Int. 2005;67(5):1925–33.

    Article  CAS  PubMed  Google Scholar 

  97. Kale S, et al. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest. 2003;112(1):42–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Lin F, et al. Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol. 2003;14(5):1188–99.

    Article  PubMed  Google Scholar 

  99. Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest. 2005;115(7):1756–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.

    Article  CAS  PubMed  Google Scholar 

  101. Yokoo T, et al. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci U S A. 2005;102(9):3296–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Carley WW, Milici AJ, Madri JA. Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp Cell Res. 1988;178(2):426–34.

    Article  CAS  PubMed  Google Scholar 

  103. Horikoshi S, Koide H, Shirai T. Monoclonal antibodies against laminin A chain and B chain in the human and mouse kidneys. Lab Invest. 1988;58(5):532–8.

    CAS  PubMed  Google Scholar 

  104. Humes HD, Cieslinski DA. Interaction between growth factors and retinoic acid in the induction of kidney tubulogenesis in tissue culture. Exp Cell Res. 1992;201(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  105. Milici AJ, Furie MB, Carley WW. The formation of fenestrations and channels by capillary endothelium in vitro. Proc Natl Acad Sci U S A. 1985;82(18):6181–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Schena FP. Role of growth factors in acute renal failure. Kidney Int Suppl. 1998;66:S11–15.

    CAS  PubMed  Google Scholar 

  107. Lanza RP, et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002;20(7):689–96.

    Article  CAS  PubMed  Google Scholar 

  108. Gupta S, et al. A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int. 2002;62(4):1285–90.

    Article  PubMed  Google Scholar 

  109. Ito T, et al. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol. 2001;12(12):2625–35.

    CAS  PubMed  Google Scholar 

  110. Iwano M, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Poulsom R, et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001;195(2):229–35.

    Article  CAS  PubMed  Google Scholar 

  112. Rookmaaker MB, et al. Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am J Pathol. 2003;163(2):553–62.

    Article  PubMed Central  PubMed  Google Scholar 

  113. Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med. 1973;138(4):745–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Atala A, Schlussel RN, Retik AB. Renal cell growth in vivo after attachment to biodegradable polymer scaffolds. J Urol. 1995;153(4):10.

    Google Scholar 

  115. Tachibana M, Nagamatsu GR, Addonizio JC. Ureteral replacement using collagen sponge tube grafts. J Urol. 1985;133(5):866–9.

    CAS  PubMed  Google Scholar 

  116. Freed LE, et al. Biodegradable polymer scaffolds for tissue engineering. Bio/Technology. 1994;12(7):689–93.

    Article  CAS  PubMed  Google Scholar 

  117. Hubbell JA, et al. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Bio/Technology. 1991;9(6):568–72.

    Article  CAS  PubMed  Google Scholar 

  118. Mooney DJ, et al. Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials. 1996;17(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  119. Wald HL, et al. Cell seeding in porous transplantation devices. Biomaterials. 1993;14(4):270–8.

    Article  CAS  PubMed  Google Scholar 

  120. Arenas-Herrera JE, Ko IK, Atala A, Yoo JJ. Decellularization for whole organ bioengineering. Biomed Mater. 2013;8(1).

    Google Scholar 

  121. Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Ellison GW, Jorgensen M, Batich CD. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol. 2009;20(11):2338–47.

    Article  PubMed Central  PubMed  Google Scholar 

  122. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A. 2010;16(7):2207–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Baptista PM, Orlando G, Mirmalek-Sani SH, Siddigui M, Atala A, Soker S. Whole organ decellularization – a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6526–9.

    PubMed  Google Scholar 

  124. Dekel B, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003;9(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  125. Steer DL, et al. A strategy for in vitro propagation of rat nephrons. Kidney Int. 2002;62(6):1958–65.

    Article  PubMed  Google Scholar 

  126. Rogers SA, et al. Transplantation of developing metanephroi into adult rats. Kidney Int. 1998;54(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  127. Hammerman MR. Transplantation of embryonic kidneys. Clin Sci (Lond). 2002;103(6):599–612.

    Article  CAS  Google Scholar 

  128. Hammerman MR. Xenotransplantation of developing kidneys. Am J Physiol Renal Physiol. 2002;283(4):F601–6.

    Article  PubMed  Google Scholar 

  129. Rogers SA, Powell-Braxton L, Hammerman MR. Insulin-like growth factor I regulates renal development in rodents. Dev Genet. 1999;24(3–4):293–8.

    Article  CAS  PubMed  Google Scholar 

  130. Nigam SK. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs? Stem Cells Transl Med. 2013;2(12):993–1000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Rosines E, Johkura K, Zhang X, Schmidt HJ, Decambre M, Bush KT, Nigam SK. Constructing kidney-like tissues from cells based on programs for organ development: toward a method of in vitro tissue engineering of the kidney. Tissue Eng Part A. 2010;16(8):2441–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Basu J, Ludlow JW. Developmental engineering the kidney: leveraging principles of morphogenesis for renal regeneration. Birth Defects Res C Embryo Today. 2012;96(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  133. Fung LCT, Elenius K, Freeman M, Donovan MJ, Atala A. Reconstitution of poor EGFr-poor renal epithelial cells into tubular structures on biodegradable polymer scaffold. Pediatrics. 1996;98(Suppl):S631.

    Google Scholar 

  134. Yoo J, Ashkar S, Atala A. Creation of functional kidney structures with excretion of kidney-like fluid in vivo. Pediatrics. 1996;98:S605.

    Google Scholar 

  135. Evans MJ, et al. Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat Genet. 1999;23(1):90–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Hiendleder S, et al. Transmitochondrial differences and varying levels of heteroplasmy in nuclear transfer cloned cattle. Mol Reprod Dev. 1999;54(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  137. Steinborn R, et al. Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nat Genet. 2000;25(3):255–7.

    Article  CAS  PubMed  Google Scholar 

  138. Fischer Lindahl K, et al. Maternally transmitted antigen of mice: a model transplantation antigen. Annu Rev Immunol. 1991;9:351–72.

    Article  CAS  PubMed  Google Scholar 

  139. Hadley GA, Linders B, Mohanakumar T. Immunogenicity of MHC class I alloantigens expressed on parenchymal cells in the human kidney. Transplantation. 1992;54(3):537–42.

    Article  CAS  PubMed  Google Scholar 

  140. Yard BA, et al. Analysis of T cell lines from rejecting renal allografts. Kidney Int Suppl. 1993;39:S133–8.

    CAS  PubMed  Google Scholar 

  141. Yoo JJ, Atala A. A novel gene delivery system using urothelial tissue engineered neo-organs. J Urol. 1997;158(3 Pt 2):1066–70.

    Article  CAS  PubMed  Google Scholar 

  142. Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F, Dipl C, Sangalli F, Conti S, Benigni A, Remuzzi A, Remuzzi G. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A. 2014;20(9–10):1486–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Kershen RT, et al. Reconstitution of human corpus cavernosum smooth muscle in vitro and in vivo. Tissue Eng. 2002;8(3):515–24.

    Article  PubMed  Google Scholar 

  144. Kwon TG, Yoo JJ, Atala A. Autologous penile corpora cavernosa replacement using tissue engineering techniques. J Urol. 2002;168(4 Pt 2):1754–8.

    Article  CAS  PubMed  Google Scholar 

  145. Palmer BW, Kropp BP. Update on tissue engineering in pediatric urology. Curr Urol Rep. 2013;14(4):327–32.

    Article  PubMed  Google Scholar 

  146. Elmore JM, Kirsch AJ, Scherz HC, Smith EA. Small intestinal submucosa for corporeal body grafting in severe hypospadias requiring division of the urethral plate. J Urol. 2007;178(4 Pt 2):1698–701.

    Article  PubMed  Google Scholar 

  147. Leslie JA, Cain MP, Kaefer M, Meldrum KK, Misseri R, Rink RC. Corporeal grafting for severe hypospadias: a single institution experience with 3 techniques. J Urol. 2008;180(4 Suppl):1749–52.

    Article  PubMed  Google Scholar 

  148. Hayn MH, Bellinger MF, Schneck FX. Small intestine submucosa as a corporal body graft in the repair of severe chordee. Urology. 2009;73(2):277–9.

    Article  PubMed  Google Scholar 

  149. Castellan M, Gosalbez R, Devendra J, Bar-Yosef Y, Labbie A. Ventral corporal body grafting for correcting severe penile curvature associated with single or two-stage hypospadias repair. J Pediatr Urol. 2011;7(3):289–93.

    Article  PubMed  Google Scholar 

  150. Wang T, Koh C, Yoo JJ. Creation of an engineered uterus for surgical reconstruction. New Orleans: American Academy of Pediatrics Section on Urology; 2003.

    Google Scholar 

  151. Takagi S, Shimizu T, Kuramoto G, Ishitani K, Matsui H, Yamato M, Okano T. Reconstruction of functional endometrium-like tissue in vitro and in vivo using cell sheet engineering. Biochem Biophys Res Commun. 2014;446(1):335–40.

    Article  CAS  PubMed  Google Scholar 

  152. Schutte SC, Taylor RN. A tissue-engineered human endometrial stroma that responds to cues for secretory differentiation, decidualization, and menstruation. Fertil Steril. 2012;97(4):997–1003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. De Filippo RE, Yoo JJ, Atala A. Engineering of vaginal tissue in vivo. Tissue Eng. 2003;9(2):301–6.

    Article  PubMed  Google Scholar 

  154. Zhu L, Zhou H, Sun Z, Lou W, Lang J. Anatomic and sexual outcomes after vaginoplasty using tissue-engineered biomaterial graft in patients with Mayer-Rokitansky-Küster-Hauser syndrome: a new minimally invasive and effective surgery. J Sex Med. 2013;10(6):1652–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Atala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hester, A.G., Atala, A. (2016). Translational Research Methods: Tissue Engineering of the Kidney and Urinary Tract. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics