Embryonic Development of the Kidney

Reference work entry


The mammalian kidney functions as a key regulator of water balance, acid–base homeostasis, maintenance of electrolytes, and waste excretion. The performance of these activities depends on the development of specific cell types in a precise temporal and spatial pattern, to produce a sufficient number of nephrons. Over the past several decades, considerable advances have been made in understanding the molecular basis for this developmental program. Defects in this program result in congenital anomalies of the kidney and urinary tract, which are the leading causes of chronic kidney disease and renal failure in children. These developmental disorders range from renal malformations, such as renal aplasia (absence of the kidney), dysplasia (failure of normal renal differentiation), and hypoplasia (smaller kidneys), to urinary tract abnormalities such as vesicoureteral reflux and duplicated collecting systems. This chapter describes the embryology of the kidney and urinary tract, as a means to understand the developmental origins of these disorders.


Metanephric Mesenchyme Mesonephric Duct Intermediate Mesoderm Nephron Progenitor Fibroblast Growth Factor Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Osathanondh V, Potter EL. Development of human kidney as shown by microdissection. Arch Path. 1966;82:391–402.PubMedGoogle Scholar
  2. 2.
    Potter EL. Normal and abnormal development of the kidney. Chicago: Year Book Medical Publishers; 1972.Google Scholar
  3. 3.
    Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest. 1991;64(6):777–84.PubMedGoogle Scholar
  4. 4.
    Hughson M, Farris 3rd AB, Douglas-Denton R, Hoy WE, Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 2003;63(6):2113–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2004;7(1):17–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348(2):101–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Hoy WE, Hughson MD, Singh GR, Douglas-Denton R, Bertram JF. Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension. Kidney Int. 2006;70(1):104–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Piscione TD, Rosenblum ND. The molecular control of renal branching morphogenesis: current knowledge and emerging insights. Differentiation. 2002;70(6):227–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Dressler GR. The cellular basis of kidney development. Annu Rev Cell Dev Biol. 2006;22:509–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Costantini F. Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation. 2006;74(7):402–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK. Branching morphogenesis and kidney disease. Development. 2004;131(7):1449–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Yu J, McMahon AP, Valerius MT. Recent genetic studies of mouse kidney development. Curr Opin Genet Dev. 2004;14(5):550–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol [Research Support, N.I.H., Extramural Review]. 2012;4(5):1–18.Google Scholar
  14. 14.
    Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell [Research Support, N.I.H., Extramural Review]. 2010;18(5):698–712.Google Scholar
  15. 15.
    Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85(6):1429–33.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Chen S, Bellew C, Yao X, Stefkova J, Dipp S, Saifudeen Z, et al. Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation. J Biol Chem [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2011;286(37):32775–89.Google Scholar
  17. 17.
    Chen S, El-Dahr SS. Histone deacetylases in kidney development: implications for disease and therapy. Pediatr Nephrol [Review]. 2013;28(5):689–98.Google Scholar
  18. 18.
    McLaughlin N, Wang F, Saifudeen Z, El-Dahr SS. In situ histone landscape of nephrogenesis. Epigenetics [Research Support, N.I.H., Extramural]. 2014;9(2):222–35.Google Scholar
  19. 19.
    Ho J, Kreidberg JA. The long and short of microRNAs in the kidney. J Am Soc Nephrol. 2012;23(3):400–4.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19(11):2069–75.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Marrone AK, Stolz DB, Bastacky SI, Kostka D, Bodnar AJ, Ho J. MicroRNA-17~92 is required for nephrogenesis and renal function. J Am Soc Nephrol. 2014;25(7):1440–52.Google Scholar
  22. 22.
    Ho J, Pandey P, Schatton T, Sims-Lucas S, Khalid M, Frank MH, et al. The pro-apoptotic protein Bim is a microRNA target in kidney progenitors. J Am Soc Nephrol [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2011;22(6):1053–63.Google Scholar
  23. 23.
    Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 1998;54(5):1455–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Goodyer P, Kurpad A, Rekha S, Muthayya S, Dwarkanath P, Iyengar A, et al. Effects of maternal vitamin A status on kidney development: a pilot study. Pediatr Nephrol [Multicenter Study Research Support, Non-U.S. Gov’t]. 2007;22(2):209–14.Google Scholar
  25. 25.
    Harding SD, Armit C, Armstrong J, Brennan J, Cheng Y, Haggarty B, et al. The GUDMAP database–an online resource for genitourinary research. Development. 2011;138(13):2845–53.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    McMahon AP, Aronow BJ, Davidson DR, Davies JA, Gaido KW, Grimmond S, et al. GUDMAP: the genitourinary developmental molecular anatomy project. J Am Soc Nephrol. 2008;19(4):667–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol [Research Support, Non-U.S. Gov’t]. 2011;9(1):e1000582.Google Scholar
  28. 28.
    Avner ED, Ellis D, Temple T, Jaffe R. Metanephric development in serum-free organ culture. In Vitro Cell Dev Biol. 1982;18:675–82. PMID: 7129481.CrossRefGoogle Scholar
  29. 29.
    Sariola H, Saarma M, Sainio K, Arumae U, Palgi J, Vaahtokari A, et al. Dependence of kidney morphogenesis on the expression of nerve growth factor receptor. Science [Research Support, Non-U.S. Gov’t]. 1991;254(5031):571–3.Google Scholar
  30. 30.
    Woolf AS, Kolatsi-Joannou M, Hardman P, Andermarcher E, Moorby C, Fine LG, et al. Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. J Cell Biol [Research Support, Non-U.S. Gov’t]. 1995;128(1–2):171–84.Google Scholar
  31. 31.
    Sims-Lucas S. Analysis of 3D branching pattern: hematoxylin and eosin method. Methods Mol Biol. 2012;886:73–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Sims-Lucas S, Argyropoulos C, Kish K, McHugh K, Bertram JF, Quigley R, et al. Three-dimensional imaging reveals ureteric and mesenchymal defects in Fgfr2-mutant kidneys. J Am Soc Nephrol. 2009;20(12):2525–33.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, et al. Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell [Research Support, Non-U.S. Gov’t]. 2014;29(2):188–202.Google Scholar
  34. 34.
    Tarantal AF, Han VK, Cochrum KC, Mok A, daSilva M, Matsell DG. Fetal rhesus monkey model of obstructive renal dysplasia. Kidney Int [Research Support, U.S. Gov’t, P.H.S.]. 2001;59(2):446–56.Google Scholar
  35. 35.
    Yang SP, Woolf AS, Quinn F, Winyard PJ. Deregulation of renal transforming growth factor-beta1 after experimental short-term ureteric obstruction in fetal sheep. Am J Pathol [Research Support, Non-U.S. Gov’t]. 2001;159(1):109–17.Google Scholar
  36. 36.
    Welham SJ, Riley PR, Wade A, Hubank M, Woolf AS. Maternal diet programs embryonic kidney gene expression. Physiol Genomics [Research Support, Non-U.S. Gov’t]. 2005;22(1):48–56.Google Scholar
  37. 37.
    Tse HK, Leung MB, Woolf AS, Menke AL, Hastie ND, Gosling JA, et al. Implication of Wt1 in the pathogenesis of nephrogenic failure in a mouse model of retinoic acid-induced caudal regression syndrome. Am J Pathol [Research Support, Non-U.S. Gov’t]. 2005;166(5):1295–307.Google Scholar
  38. 38.
    Sanker S, Cirio MC, Vollmer LL, Goldberg ND, McDermott LA, Hukriede NA, et al. Development of high-content assays for kidney progenitor cell expansion in transgenic zebrafish. J Biomol Screen [Research Support, N.I.H., Extramural]. 2013;18(10):1193–202.Google Scholar
  39. 39.
    Liu L, Fan XD. CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol Biol. 2014;85(3):209–18.PubMedCrossRefGoogle Scholar
  40. 40.
    Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development. 1998;125:4655–67.PubMedGoogle Scholar
  41. 41.
    Vize PD, Seufert DW, Carroll TJ, Wallingford JB. Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev Biol. 1997;188:189–204.PubMedCrossRefGoogle Scholar
  42. 42.
    Staack A, Donjacour AA, Brody J, Cunha GR, Carroll P. Mouse urogenital development: a practical approach. Differentiation. 2003;71(7):402–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Saxen L. Organogenesis of the kidney. Cambridge: Cambridge University Press; 1987.CrossRefGoogle Scholar
  44. 44.
    James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development. 2006;133(15):2995–3004.PubMedCrossRefGoogle Scholar
  45. 45.
    Mugford JW, Sipila P, McMahon JA, McMahon AP. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2008;324(1):88–98.Google Scholar
  46. 46.
    Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P. Pax-2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development. 1990;109:787–95.PubMedGoogle Scholar
  47. 47.
    Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Genes Dev [Research Support, Non-U.S. Gov’t]. 2002;16(22):2958–70.Google Scholar
  48. 48.
    Fujii T, Pichel JG, Taira M, Toyama R, Dawid IB, Westphal H. Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev Dyn. 1994;1:73–83.CrossRefGoogle Scholar
  49. 49.
    Grote D, Souabni A, Busslinger M, Bouchard M. Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development. 2006;133(1):53–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development. 1993;119:1005–17.PubMedGoogle Scholar
  51. 51.
    Erickson RA. Inductive interactions in the development of the mouse metanephros. J Exp Zool. 1968;169(1):33–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Grobstein C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 1953;172:869–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Grobstein C. Inductive interaction in the development of the mouse metanephros. J Exp Zool. 1955;130:319–40.CrossRefGoogle Scholar
  54. 54.
    Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 1996;10:1467–78.PubMedCrossRefGoogle Scholar
  55. 55.
    Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development. 1999;126:1139–48.PubMedGoogle Scholar
  56. 56.
    Batourina E, Gim S, Bello N, Shy M, Clagett-Dame M, Srinivas S, et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet. 2001;27:74–8.PubMedGoogle Scholar
  57. 57.
    Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development [Research Support, U.S. Gov’t, P.H.S.]. 2005;132(3):529–39.Google Scholar
  58. 58.
    Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D. FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development. 1999;126:547–54.PubMedGoogle Scholar
  59. 59.
    Gao X, Chen X, Taglienti M, Rumballe B, Little MH, Kreidberg JA. Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. Development. 2005;132(24):5437–49.PubMedCrossRefGoogle Scholar
  60. 60.
    Tufro-McReddie A, Norwood VF, Aylor KW, Botkin SJ, Carey RM, Gomez RA. Oxygen regulates vascular endothelial growth factor-mediated vasculogenesis and tubulogenesis. Dev Biol. 1997;183(2):139–49.PubMedCrossRefGoogle Scholar
  61. 61.
    Meyer TN, Schwesinger C, Bush KT, Stuart RO, Rose DW, Shah MM, et al. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Dev Biol. 2004;275(1):44–67.PubMedCrossRefGoogle Scholar
  62. 62.
    Barasch J, Qiao J, McWilliams G, Chen D, Oliver JA, Herzlinger D. Ureteric bud cells secrete multiple factors, including bFGF, which rescue renal progenitors from apoptosis. Am J Physiol. 1997;273:F757–67.PubMedGoogle Scholar
  63. 63.
    Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, et al. Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell. 1999;99(4):377–86.PubMedCrossRefGoogle Scholar
  64. 64.
    Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, et al. Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol. 2013;15(9):1035–44.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Yang J, Blum A, Novak T, Levinson R, Lai E, Barasch J. An epithelial precursor is regulated by the ureteric bud and by the renal stroma. Dev Biol. 2002;246(2):296–310.PubMedCrossRefGoogle Scholar
  66. 66.
    Cui S, Schwartz L, Quaggin SE. Pod1 is required in stromal cells for glomerulogenesis. Dev Dyn. 2003;226(3):512–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Clark AT, Bertram JF. Molecular regulation of nephron endowment. Am J Physiol. 1999;276(4 Pt 2):F485–97.PubMedGoogle Scholar
  68. 68.
    Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 2004;65(6):2003–17.PubMedCrossRefGoogle Scholar
  69. 69.
    Simon M, Rockl W, Hornig C, Grone EF, Theis H, Weich HA, et al. Receptors of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in fetal and adult human kidney: localization and [125I]VEGF binding sites. J Am Soc Nephrol. 1998;9(6):1032–44.PubMedGoogle Scholar
  70. 70.
    Evan AP, Gattone 2nd VH, Schwartz GJ. Development of solute transport in rabbit proximal tubule. II. Morphologic segmentation. Am J Physiol. 1983;245(3):F391–407.PubMedGoogle Scholar
  71. 71.
    Fetterman GH, Shuplock NA, Philipp FJ, Gregg HS. The growth and maturation of human glomeruli and proximal convolutions from term to adulthood: studies by microdissection. Pediatrics. 1965;35:601–19.PubMedGoogle Scholar
  72. 72.
    Neiss WF. Histogenesis of the loop of Henle in the rat kidney. Anat Embryol. 1982;164(3):315–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Nakai S, Sugitani Y, Sato H, Ito S, Miura Y, Ogawa M, et al. Crucial roles of Brn1 in distal tubule formation and function in mouse kidney. Development. 2003;130(19):4751–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Neiss WF, Klehn KL. The postnatal development of the rat kidney, with special reference to the chemodifferentiation of the proximal tubule. Histochemistry. 1981;73(2):251–68.PubMedCrossRefGoogle Scholar
  75. 75.
    Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development. 2001;128:3105–15.PubMedGoogle Scholar
  76. 76.
    Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required for the early organogenesis of mammalian kidney. Development. 2003;130(14):3085–94.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Kalatzis V, Sahly I, El-Amraoui A, Petit C. Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn. 1998;213:486–99.PubMedCrossRefGoogle Scholar
  78. 78.
    Xu P-X, Adams J, Peters H, Brown MC, Heaney S, Maas R. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet. 1999;23:113–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A. Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev. 1996;54:95–105.PubMedCrossRefGoogle Scholar
  80. 80.
    Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74:679–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Boyle S, Shioda T, Perantoni AO, de Caestecker M. Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev Dyn [Research Support, N.I.H., Extramural]. 2007;236(8):2321–30.Google Scholar
  82. 82.
    Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25(21):5214–28.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Cho EA, Patterson LT, Brookhiser WT, Mah S, Kintner C, Dressler GR. Differential expression and function of cadherin-6 during renal epithelium development. Development. 1998;125(5):803–12.PubMedGoogle Scholar
  84. 84.
    Müller U, Wang D, Denda S, Meneses JJ, Pedersen RA, Reichardt LF. Integrin α8β1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell. 1997;88:603–13.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Brophy PD, Ostrom L, Lang KM, Dressler GR. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development. 2001;128:4747–56.PubMedGoogle Scholar
  86. 86.
    Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.]. 2005;132(12):2809–23.Google Scholar
  87. 87.
    Rothenpieler UW, Dressler GR. Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. Development. 1993;119:711–20.PubMedGoogle Scholar
  88. 88.
    Torres M, Gomez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development. 1995;121:4057–65.PubMedGoogle Scholar
  89. 89.
    Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, et al. Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol. 2000;223(1):77–90.PubMedCrossRefGoogle Scholar
  90. 90.
    Shawlot W, Behringer RR. Requirement for Lim1 in head-organizer function. Nature. 1995;374:425–30.PubMedCrossRefGoogle Scholar
  91. 91.
    Hilliard SA, Yao X, El-Dahr SS. Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol. 2014;387(1):1–14.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Davies JA, Garrod DR. Induction of early stages of kidney tubule differentiation by lithium ions. Dev Biol. 1995;167(1):50–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol. 1997;185(1):82–91.PubMedCrossRefGoogle Scholar
  94. 94.
    Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A. 1996;93(16):8455–9.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005;9(2):283–92.PubMedCrossRefGoogle Scholar
  96. 96.
    Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2011;138(7):1247–57.Google Scholar
  97. 97.
    Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh L. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development [Research Support, American Recovery and Reinvestment Act Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2011;138(23):5099–112.Google Scholar
  98. 98.
    Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell. 2012;22(6):1191–207.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM. Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res [Research Support, N.I.H., Extramural]. 2008;64(6):592–8.Google Scholar
  100. 100.
    Poladia DP, Kish K, Kutay B, Hains D, Kegg H, Zhao H, et al. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol [Research Support, N.I.H., Extramural]. 2006;291(2):325–39.Google Scholar
  101. 101.
    Sims-Lucas S, Cusack B, Baust J, Eswarakumar VP, Masatoshi H, Takeuchi A, et al. Fgfr1 and the IIIc isoform of Fgfr2 play critical roles in the metanephric mesenchyme mediating early inductive events in kidney development. Dev Dyn [Research Support, N.I.H., Extramural]. 2011;240(1):240–9.Google Scholar
  102. 102.
    Bard JB. Growth and death in the developing mammalian kidney: signals, receptors and conversations. Bioessays. 2002;24(1):72–82.PubMedCrossRefGoogle Scholar
  103. 103.
    Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999;13:1601–13.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Koseki C, Herzlinger D, Al-Awqati Q. Apoptosis in metanephric development. J Cell Biol. 1992;119(5):1327–33.PubMedCrossRefGoogle Scholar
  105. 105.
    Plisov SY, Yoshino K, Dove LF, Higinbotham KG, Rubin JS, Perantoni AO. TGF beta 2, LIF and FGF2 cooperate to induce nephrogenesis. Development. 2001;128(7):1045–57.PubMedGoogle Scholar
  106. 106.
    Araki T, Saruta T, Okano H, Miura M. Caspase activity is required for nephrogenesis in the developing mouse metanephros. Exp Cell Res. 1999;248(2):423–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell. 1999;3:1–10.PubMedCrossRefGoogle Scholar
  108. 108.
    Coles HSR, Burne JF, Raff MC. Large-scale normal cell death in the developing rat kidney and its reduction by epidermal growth factor. Development. 1993;117:777–84.Google Scholar
  109. 109.
    Winyard PJD, Nauta J, Lirenman DS, Hardman P, Sams VR, Risdon RA, et al. Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int. 1996;49:135–46.PubMedCrossRefGoogle Scholar
  110. 110.
    Marrone AK, Stolz DB, Bastacky SI, Kostka D, Bodnar AJ, Ho J. MicroRNA-17~92 is required for nephrogenesis and renal function. J Am Soc Nephrol. 2014;25(7):1440–52.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Karavanov AA, Karavanova I, Perantoni A, Dawid IB. Expression pattern of the rat Lim-1 homeobox gene suggests a dual role during kidney development. Int J Dev Biol. 1998;42:61–6.PubMedGoogle Scholar
  112. 112.
    Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359(6390):76–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, et al. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development. 1997;124:2659–70.PubMedCentralPubMedGoogle Scholar
  114. 114.
    McPherron AC, Lawler AM, Lee SJ. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet. 1999;22(3):260–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Herzlinger D, Qiao J, Cohen D, Ramakrishna N, Brown AMC. Induction of kidney epithelial morphogenesis by cells expressing wnt-1. Dev Biol. 1994;166:815–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development. 1998;125:4225–34.PubMedGoogle Scholar
  117. 117.
    Yoshino K, Rubin JS, Higinbotham KG, Uren A, Anest V, Plisov SY, et al. Secreted Frizzled-related proteins can regulate metanephric development. Mech Dev. 2001;102(1–2):45–55.PubMedCrossRefGoogle Scholar
  118. 118.
    Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR. FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 2005;132(17):3847–57.Google Scholar
  119. 119.
    Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, et al. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development. 2005;132(17):3859–71.PubMedCrossRefGoogle Scholar
  120. 120.
    Gerber SD, Steinberg F, Beyeler M, Villiger PM, Trueb B. The murine Fgfrl1 receptor is essential for the development of the metanephric kidney. Dev Biol. 2009;335(1):106–19.PubMedCrossRefGoogle Scholar
  121. 121.
    Majumdar A, Lun K, Brand M, Drummond IA. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development. 2000;127(10):2089–98.PubMedGoogle Scholar
  122. 122.
    Wallingford JB, Carroll TJ, Vize PD. Precocious expression of the Wilms’ tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev Biol. 1998;202(1):103–12.PubMedCrossRefGoogle Scholar
  123. 123.
    Ryan G, Steele-Perkins V, Morris JF, Rauscher 3rd FJ, Dressler GR. Repression of Pax-2 by WT1 during normal kidney development. Development. 1995;121(3):867–75.PubMedGoogle Scholar
  124. 124.
    Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, Housman D. Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Genes Dev. 1991;5:1345–56.PubMedCrossRefGoogle Scholar
  125. 125.
    Dressler GR, Wilkinson JE, Rothenpieler UW, Patterson LT, Silliams-Simons L, Westphal H. Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature. 1993;362:65–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Dressler GR, Douglass EC. Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci U S A. 1992;89:1179–83.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Cheng HT, Miner JH, Lin M, Tansey MG, Roth K, Kopan R. Gamma-secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development. 2003;130(20):5031–42.PubMedCrossRefGoogle Scholar
  128. 128.
    Cheng HT, Kim M, Valerius MT, Surendran K, Schuster-Gossler K, Gossler A, et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development. 2007;134(4):801–11.Google Scholar
  129. 129.
    Wang P, Pereira FA, Beasley D, Zheng H. Presenilins are required for the formation of comma- and S-shaped bodies during nephrogenesis. Development. 2003;130(20):5019–29.PubMedCrossRefGoogle Scholar
  130. 130.
    Boyle SC, Kim M, Valerius MT, McMahon AP, Kopan R. Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development [Research Support, N.I.H., Extramural]. 2011;138(19):4245–54.Google Scholar
  131. 131.
    Kreidberg JA. Podocyte differentiation and glomerulogenesis. J Am Soc Nephrol. 2003;14(3):806–14.PubMedCrossRefGoogle Scholar
  132. 132.
    Robert B, St John PL, Hyink DP, Abrahamson DR. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am J Physiol. 1996;271(3 Pt 2):F744–53.PubMedGoogle Scholar
  133. 133.
    Hyink DP, Tucker DC, St John PL, Leardkamolkarn V, Accavitti MA, Abrass CK, et al. Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am J Physiol. 1996;270(5 Pt 2):F886–99.PubMedGoogle Scholar
  134. 134.
    Ricono JM, Xu YC, Arar M, Jin DC, Barnes JL, Abboud HE. Morphological insights into the origin of glomerular endothelial and mesangial cells and their precursors. J Histochem Cytochem. 2003;51(2):141–50.PubMedCrossRefGoogle Scholar
  135. 135.
    Sariola H, Ekblom P, Lehtonen E, Saxen L. Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev Biol. 1983;96(2):427–35.PubMedCrossRefGoogle Scholar
  136. 136.
    Nagata M, Nakayama K, Terada Y, Hoshi S, Watanabe T. Cell cycle regulation and differentiation in the human podocyte lineage. Am J Pathol. 1998;153(5):1511–20.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Garrod DR, Fleming S. Early expression of desmosomal components during kidney tubule morphogenesis in human and murine embryos. Development. 1990;108(2):313–21.PubMedGoogle Scholar
  138. 138.
    Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83(1):253–307.PubMedCrossRefGoogle Scholar
  139. 139.
    Miner JH, Sanes JR. Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J Cell Biol. 1994;127(3):879–91.PubMedCrossRefGoogle Scholar
  140. 140.
    Miner JH, Li C. Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol. 2000;217(2):278–89.PubMedCrossRefGoogle Scholar
  141. 141.
    Miner JH, Sanes JR. Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): implications for Alport syndrome. J Cell Biol. 199;135(5):1403–13.Google Scholar
  142. 142.
    Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP. The renal glomerulus of mice lacking s-laminin/laminin ß2: nephrosis despite molecular compensation by laminin ß1. Nature Genet. 1995;10:400–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Ekblom P. Formation of basement membranes in embryonic kidney: an immunohistological study. J Cell Biol. 1981;91:1–10.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Sariola H, Timpl R, von der Mark K, Mayne R, Fitch JM, Linsenmayer TF, et al. Dual origin of glomerular basement membrane. Dev Biol. 1984;101:86–96.PubMedCrossRefGoogle Scholar
  145. 145.
    Gao F, Maiti S, Sun G, Ordonez NG, Udtha M, Deng JM, et al. The Wt1+/R394W mouse displays glomerulosclerosis and early-onset renal failure characteristic of human Denys-Drash syndrome. Mol Cell Biol. 2004;24(22):9899–910.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Patek CE, Little MH, Fleming S, Miles C, Charlieu JP, Clarke AR, et al. A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome. Proc Natl Acad Sci U S A. 1999;96(6):2931–6.PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell. 2001;106(3):319–29.PubMedCrossRefGoogle Scholar
  148. 148.
    Guo JK, Menke AL, Gubler MC, Clarke AR, Harrison D, Hammes A, et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet. 2002;11(6):651–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Yang Y, Jeanpierre C, Dressler GR, Lacoste M, Niaudet P, Gubler MC. WT1 and PAX-2 podocyte expression in Denys-Drash syndrome and isolated diffuse mesangial sclerosis. Am J Pathol. 1999;154(1):181–92.PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Barbaux S, Niaudet P, Gubler M-C, Grünfeld J-P, Jaubert F, Kuttenn F, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet. 1997;17:467–70.PubMedCrossRefGoogle Scholar
  151. 151.
    Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta P, et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1+/−KTS splice isoforms. Hum Mol Genet. 1998;7:709–14.PubMedCrossRefGoogle Scholar
  152. 152.
    Coppes MJ, Liefers GJ, Higuchi M, Zinn AB, Balfe JW, Williams BR. Inherited WT1 mutation in Denys-Drash syndrome. Cancer Res. 1992;52(21):6125–8.PubMedGoogle Scholar
  153. 153.
    Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, et al. The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development. 1999;126:5771–83.PubMedGoogle Scholar
  154. 154.
    Sadl V, Jin F, Yu J, Cui S, Holmyard D, Quaggin S, et al. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev Biol. 2002;249(1):16–29.PubMedCrossRefGoogle Scholar
  155. 155.
    Miner JH, Morello R, Andrews KL, Li C, Antignac C, Shaw AS, et al. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J Clin Invest. 2002;109(8):1065–72.PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet. 1998;19:47–50.PubMedCrossRefGoogle Scholar
  157. 157.
    Lemley KV. Kidney disease in nail-patella syndrome. Pediatr Nephrol [Research Support, Non-U.S. Gov’t Review]. 2009;24(12):2345–54.Google Scholar
  158. 158.
    Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19(11):2150–8.PubMedCentralPubMedCrossRefGoogle Scholar
  159. 159.
    Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19(11):2159–69.PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Kitamoto Y, Tokunaga H, Tomita K. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J Clin Invest. 1997;99(10):2351–7.PubMedCentralPubMedCrossRefGoogle Scholar
  161. 161.
    Tufro A, Norwood VF, Carey RM, Gomez RA. Vascular endothelial growth factor induces nephrogenesis and vasculogenesis. J Am Soc Nephrol. 1999;10(10):2125–34.PubMedGoogle Scholar
  162. 162.
    Woolf AS, Yuan HT. Angiopoietin growth factors and Tie receptor tyrosine kinases in renal vascular development. Pediatr Nephrol. 2001;16(2):177–84.PubMedCrossRefGoogle Scholar
  163. 163.
    Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, et al. Paracrine PDGF-B/PDGF-Rß signaling controls mesangial cell development in kidney glomeruli. Development. 1998;125:3313–22.PubMedGoogle Scholar
  164. 164.
    Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994;8:1875–87.PubMedCrossRefGoogle Scholar
  165. 165.
    Soriano P. Abnormal kidney development and hematological disorders in PDGF ß-receptor mutant mice. Genes Dev. 1994;8:1888–96.PubMedCrossRefGoogle Scholar
  166. 166.
    McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development. 2001;128:491–502.PubMedGoogle Scholar
  167. 167.
    Li W, Hartwig S, Rosenblum ND. Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev Dyn. 2014;243(7):853–863.Google Scholar
  168. 168.
    Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. 2010;176(1):85–97.Google Scholar
  169. 169.
    Miyazaki Y, Oshima Y, Fogo A, Hogan BLM, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest. 2000;105:863–73.PubMedCentralPubMedCrossRefGoogle Scholar
  170. 170.
    Cullen-McEwen LA, Caruana G, Bertram JF. The where, what and why of the developing renal stroma. Nephron Exp Nephrol [Review]. 2005;99(1):e1–8.Google Scholar
  171. 171.
    Lemley KV, Kriz W. Anatomy of the renal interstitium. Kidney Int. 1991;39(3):370–81.PubMedCrossRefGoogle Scholar
  172. 172.
    Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2010;137(2):283–92.Google Scholar
  173. 173.
    Quaggin SE, Vanden Heuvel GB, Igarashi P. Pod-1, a mesoderm-specific basic-helix-loop-helix protein expressed in mesenchymal and glomerular epithelial cells in the developing kidney. Mech Dev. 1998;71:37–48.PubMedCrossRefGoogle Scholar
  174. 174.
    Fetting JL, Guay JA, Karolak MJ, Iozzo RV, Adams DC, Maridas DE, et al. FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development. 2014;141(1):17–27.PubMedCentralPubMedCrossRefGoogle Scholar
  175. 175.
    Hum S, Rymer C, Schaefer C, Bushnell D, Sims-Lucas S. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS One. 2014;9(2):e88400.PubMedCentralPubMedCrossRefGoogle Scholar
  176. 176.
    Stolz DB, Sims-Lucas S. Unwrapping the origins and roles of the renal endothelium. Pediatr Nephrol. 2014.Google Scholar
  177. 177.
    Yu J, Valerius MT, Duah M, Staser K, Hansard JK, Guo JJ. Identification of molecular compartments and genetic circuitry in the developing mammalian kidney. Development. 2012;139(10):1863–73.PubMedCentralPubMedCrossRefGoogle Scholar
  178. 178.
    Brunskill EW, Potter SS. Gene expression programs of mouse endothelial cells in kidney development and disease. PLoS One. 2010;5(8):e12034.PubMedCentralPubMedCrossRefGoogle Scholar
  179. 179.
    Abrahamson DR, Robert B, Hyink DP, St John PL, Daniel TO. Origins and formation of microvasculature in the developing kidney. Kidney Int Suppl [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. 1998;67:S7–11.Google Scholar
  180. 180.
    Robert B, St John PL, Abrahamson DR. Direct visualization of renal vascular morphogenesis in Flk1 heterozygous mutant mice. Am J Physiol [Research Support, U.S. Gov’t, P.H.S.]. 1998;275(1 Pt 2):F164–72.Google Scholar
  181. 181.
    Sequeira Lopez ML, Gomez RA. Development of the renal arterioles. J Am Soc Nephrol. 2011;22(12):2156–65.PubMedCentralPubMedCrossRefGoogle Scholar
  182. 182.
    Lancrin C, Sroczynska P, Serrano AG, Gandillet A, Ferreras C, Kouskoff V, et al. Blood cell generation from the hemangioblast. J Mol Med [Research Support, Non-U.S. Gov’t Review]. 2010;88(2):167–72.Google Scholar
  183. 183.
    Kume T. Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol Histopathol. 2010;25(5):637–46.PubMedCentralPubMedGoogle Scholar
  184. 184.
    Sims-Lucas S, Schaefer C, Bushnell D, Ho J, Logar A, Prochownik E, et al. Endothelial progenitors exist within the kidney and lung mesenchyme. PLoS One. 2013;8(6):e65993.PubMedCentralPubMedCrossRefGoogle Scholar
  185. 185.
    Schmidt-Ott KM, Chen X, Paragas N, Levinson RS, Mendelsohn CL, Barasch J. c-kit delineates a distinct domain of progenitors in the developing kidney. Dev Biol [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2006;299(1):238–49.Google Scholar
  186. 186.
    Marlier A, Schmidt-Ott KM, Gallagher AR, Barasch J, Karihaloo A. Vegf as an epithelial cell morphogen modulates branching morphogenesis of embryonic kidney by directly acting on the ureteric bud. Mech Dev [Research Support, Non-U.S. Gov’t]. 2009;126(3–4):91–8.Google Scholar
  187. 187.
    Freeburg PB, Robert B, St John PL, Abrahamson DR. Podocyte expression of hypoxia-inducible factor (HIF)-1 and HIF-2 during glomerular development. J Am Soc Nephrol. 2003;14(4):927–38.PubMedCrossRefGoogle Scholar
  188. 188.
    Steenhard BM, Freeburg PB, Isom K, Stroganova L, Borza DB, Hudson BG, et al. Kidney development and gene expression in the HIF2alpha knockout mouse. Dev Dyn. 2007;236(4):1115–25.PubMedCrossRefGoogle Scholar
  189. 189.
    Kappel A, Ronicke V, Damert A, Flamme I, Risau W, Breier G. Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood. 1999;93(12):4284–92.PubMedGoogle Scholar
  190. 190.
    Gerber HP, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem. 1997;272(38):23659–67.PubMedCrossRefGoogle Scholar
  191. 191.
    Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995;270(22):13333–40.PubMedCrossRefGoogle Scholar
  192. 192.
    Liu Y, Cox SR, Morita T, Kourembanas S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’ enhancer. Circ Res. 1995;77(3):638–43.PubMedCrossRefGoogle Scholar
  193. 193.
    Woolf AS, Gnudi L, Long DA. Roles of angiopoietins in kidney development and disease. J Am Soc Nephrol. 2009;20(2):239–44.PubMedCrossRefGoogle Scholar
  194. 194.
    Simon MP, Tournaire R, Pouyssegur J. The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J Cell Physiol. 2008;217(3):809–18.PubMedCrossRefGoogle Scholar
  195. 195.
    Kolatsi-Joannou M, Li XZ, Suda T, Yuan HT, Woolf AS. Expression and potential role of angiopoietins and Tie-2 in early development of the mouse metanephros. Dev Dyn. 2001;222(1):120–6.PubMedCrossRefGoogle Scholar
  196. 196.
    Jeansson M, Gawlik A, Anderson G, Li C, Kerjaschki D, Henkelman M, et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest. 2011;121(6):2278–89.PubMedCentralPubMedCrossRefGoogle Scholar
  197. 197.
    Tachibana K, Jones N, Dumont DJ, Puri MC, Bernstein A. Selective role of a distinct tyrosine residue on Tie2 in heart development and early hematopoiesis. Mol Cell Biol. 2005;25(11):4693–702.PubMedCentralPubMedCrossRefGoogle Scholar
  198. 198.
    Pitera JE, Woolf AS, Gale NW, Yancopoulos GD, Yuan HT. Dysmorphogenesis of kidney cortical peritubular capillaries in angiopoietin-2-deficient mice. Am J Pathol. 2004;165(6):1895–906.PubMedCentralPubMedCrossRefGoogle Scholar
  199. 199.
    Tung JJ, Tattersall IW, Kitajewski J. Tips, stalks, tubes: notch-mediated cell fate determination and mechanisms of tubulogenesis during angiogenesis. Cold Spring Harb Perspect Med. 2012;2(2):a006601.PubMedCentralPubMedCrossRefGoogle Scholar
  200. 200.
    Piscione TD, Rosenblum ND. The malformed kidney: disruption of glomerular and tubular development. Clin Genet. 1999;56(5):343–58.CrossRefGoogle Scholar
  201. 201.
    Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development. 1997;124:4077–87.PubMedGoogle Scholar
  202. 202.
    Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367:380–3.PubMedCrossRefGoogle Scholar
  203. 203.
    Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EMJ, et al. GFRα 1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21:317–24.PubMedCrossRefGoogle Scholar
  204. 204.
    Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382:73–6.PubMedCrossRefGoogle Scholar
  205. 205.
    Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382:70–3.PubMedCrossRefGoogle Scholar
  206. 206.
    Schuchardt A, D'Agati V, Pachnis V, Costantini F. Renal agenesis and hypodysplasia in ret-k mutant mice result from defects in ureteric bud development. Development. 1996;122:1919–29.PubMedGoogle Scholar
  207. 207.
    Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, et al. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron. 1998;21:53–62.PubMedCentralPubMedCrossRefGoogle Scholar
  208. 208.
    Jain S, Encinas M, Johnson EM, Jr., Milbrandt J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2006;20(3):321–33.Google Scholar
  209. 209.
    Jain S, Knoten A, Hoshi M, Wang H, Vohra B, Heuckeroth RO, et al. Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2010;120(3):778–90.Google Scholar
  210. 210.
    Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ. Renal aplasia in humans is associated with RET mutations. Am J Hum Genet. 2008;82(2):344–51.PubMedCentralPubMedCrossRefGoogle Scholar
  211. 211.
    Yang Y, Houle AM, Letendre J, Richter A. RET Gly691Ser mutation is associated with primary vesicoureteral reflux in the French-Canadian population from Quebec. Hum Mutat [Research Support, Non-U.S. Gov’t]. 2008;29(5):695–702.Google Scholar
  212. 212.
    Bullock SL, Fletcher JM, Beddington RSP, Wilson VA. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 1998;12:1894–906.PubMedCentralPubMedCrossRefGoogle Scholar
  213. 213.
    Pepicelli CV, Kispert A, Rowitch D, McMahon AP. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol. 1997;192:193–8.PubMedCrossRefGoogle Scholar
  214. 214.
    Srinivas S, Wu Z, Chen C-M, D’Agati V, Costantini F. Dominant effects of RET receptor misexpression and ligand-independent RET signaling on ureteric bud development. Development. 1999;126:1375–86.PubMedGoogle Scholar
  215. 215.
    Shakya R, Jho EH, Kotka P, Wu Z, Kholodilov N, Burke R, et al. The role of GDNF in patterning the excretory system. Dev Biol. 2005;283(1):70–84.PubMedCrossRefGoogle Scholar
  216. 216.
    Kume T, Deng K, Hogan BL. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development. 2000;127:1387–95.PubMedGoogle Scholar
  217. 217.
    Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6(5):709–17.PubMedCrossRefGoogle Scholar
  218. 218.
    Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science. 1996;274:1123–33.PubMedCrossRefGoogle Scholar
  219. 219.
    Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999;96:795–806.PubMedCrossRefGoogle Scholar
  220. 220.
    Piper M, Georgas K, Yamada T, Little M. Expression of the vertebrate Slit gene family and their putative receptors, the Robo genes, in the developing murine kidney. Mech Dev. 2000;94:213–7.PubMedCrossRefGoogle Scholar
  221. 221.
    Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet [Comparative Study]. 2007;80(4):616–32.Google Scholar
  222. 222.
    Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, et al. Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol. 2006;299(2):466–77.PubMedCrossRefGoogle Scholar
  223. 223.
    Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell. 2005;8(2):229–39.PubMedCrossRefGoogle Scholar
  224. 224.
    Dudley AT, Robertson EJ. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn. 1997;208:349–62.PubMedCrossRefGoogle Scholar
  225. 225.
    Pope IV JC, Brock III JW, Adams MC, Stephens FD, Ichikawa I. How they begin and how they end: classis and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol. 1999;10:2018–28.PubMedGoogle Scholar
  226. 226.
    Ichikawa I, Kuwayama F, Pope JCT, Stephens FD, Miyazaki Y. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int. 2002;61(3):889–98.PubMedCrossRefGoogle Scholar
  227. 227.
    Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, et al. TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol. 2004;266(2):285–98.PubMedCrossRefGoogle Scholar
  228. 228.
    Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol [Research Support, Non-U.S. Gov’t]. 2008;19(5):891–903.Google Scholar
  229. 229.
    Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2009;41(12):1295–302.Google Scholar
  230. 230.
    Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development. 2003;130(14):3175–85.PubMedCrossRefGoogle Scholar
  231. 231.
    Al-Awqati Q, Goldberg MR. Architectural patterns in branching morphogenesis in the kidney. Kidney Int. 1998;54:1832–42.PubMedCrossRefGoogle Scholar
  232. 232.
    Watanabe T, Costantini F. Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol. 2004;271(1):98–108.PubMedCrossRefGoogle Scholar
  233. 233.
    Lin Y, Zhang S, Tuukkanen J, Peltoketo H, Pihlajaniemi T, Vainio S. Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions. Int J Dev Biol. 2003;47(1):3–13.PubMedGoogle Scholar
  234. 234.
    Fisher CE, Michael L, Barnett MW, Davies JA. Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development. 2001;128(21):4329–38.PubMedGoogle Scholar
  235. 235.
    Michael L, Davies JA. Pattern and regulation of cell proliferation during murine ureteric bud development. J Anat. 2004;204(4):241–55.PubMedCentralPubMedCrossRefGoogle Scholar
  236. 236.
    Sorenson CM, Rogers SA, Korsmeyer SJ, Hammerman MR. Fulminant metanephric apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Physiol. 1995;268:F73–81.PubMedGoogle Scholar
  237. 237.
    Moser M, Pscherer A, Roth C, Becker J, Mücher G, Zerres K, et al. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2ß. Genes Dev. 1997;11:1938–48.PubMedCentralPubMedCrossRefGoogle Scholar
  238. 238.
    Chevalier RL. Growth factors and apoptosis in neonatal ureteral obstruction. J Am Soc Nephrol. 1996;7:1098–105.PubMedGoogle Scholar
  239. 239.
    Tarantal AF, Han VK, Cochrum KC, Mok A, daSilva M, Matsell DG. Fetal rhesus monkey model of obstructive renal dysplasia. Kidney Int. 2001;59:446–56.PubMedCrossRefGoogle Scholar
  240. 240.
    Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP. Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development. 1996;122:3627–37.PubMedGoogle Scholar
  241. 241.
    Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, et al. Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol. 2008;317(1):83–94.PubMedCrossRefGoogle Scholar
  242. 242.
    Marose TD, Merkel CE, McMahon AP, Carroll TJ. Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol. 2008;314(1):112–26.PubMedCentralPubMedCrossRefGoogle Scholar
  243. 243.
    Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, et al. Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev. 2001;109(2):123–35.PubMedCrossRefGoogle Scholar
  244. 244.
    Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun. 2000;277:643–9.PubMedCrossRefGoogle Scholar
  245. 245.
    Poladia DP, Kish K, Kutay B, Hains D, Kegg H, Zhao H, et al. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol. 2006;291(2):325–39.PubMedCrossRefGoogle Scholar
  246. 246.
    Sims-Lucas S, Cusack B, Eswarakumar VP, Zhang J, Wang F, Bates CM. Independent roles of Fgfr2 and Frs2alpha in ureteric epithelium. Development. 2011;138(7):1275–80.PubMedCentralPubMedCrossRefGoogle Scholar
  247. 247.
    Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, et al. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol. 2004;276(2):403–15.PubMedCentralPubMedCrossRefGoogle Scholar
  248. 248.
    Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D'Agati V, et al. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 2010;6(1):e1000809.PubMedCentralPubMedCrossRefGoogle Scholar
  249. 249.
    Chi L, Zhang S, Lin Y, Prunskaite-Hyyrylainen R, Vuolteenaho R, Itaranta P, et al. Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development. 2004;131(14):3345–56.PubMedCrossRefGoogle Scholar
  250. 250.
    Cebrian C, Borodo K, Charles N, Herzlinger DA. Morphometric index of the developing murine kidney. Dev Dyn. 2004;231(3):601–8.PubMedCrossRefGoogle Scholar
  251. 251.
    Bard J. A new role for the stromal cells in kidney development. Bioessays. 1996;18(9):705–7.PubMedCrossRefGoogle Scholar
  252. 252.
    Bonneh-Barkay D, Shlissel M, Berman B, Shaoul E, Admon A, Vlodavsky I, et al. Identification of glypican as a dual modulator of the biological activity of fibroblast growth factors. J Biol Chem. 1997;272:12415–21.PubMedCrossRefGoogle Scholar
  253. 253.
    Cano-Gauci DF, Song H, Yang H, McKerlie C, Choo B, Shi W, et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the renal abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol. 1999;146:255–64.PubMedCentralPubMedCrossRefGoogle Scholar
  254. 254.
    Grisaru S, Cano-Gauci D, Tee J, Filmus J, Rosenblum ND. Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol. 2001;231:31–46.PubMedCrossRefGoogle Scholar
  255. 255.
    Jackson SM, Nakato H, Sugiura M, Jannuzi A, Oakes R, Kaluza V, et al. Dally, a drosophila glypican, controls cellular responses to the TGF-ß-related morphogen Dpp. Development. 1997;124:4113–20.PubMedGoogle Scholar
  256. 256.
    Tsuda M, Kamimura K, Nakato H, Archer M, Staatz W, Fox B, et al. The cell-surface proteoglycan dally regulates wingless signalling in Drosophila. Nature. 1999;400:276–80.PubMedCrossRefGoogle Scholar
  257. 257.
    Zhang P, Liégeois NJ, Wong C, Finegold M, Thompson JC, Silverman A, et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature. 1997;387:151–8.PubMedCrossRefGoogle Scholar
  258. 258.
    Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2009;136(1):161–71.Google Scholar
  259. 259.
    Liu Y, Chattopadhyay N, Qin S, Szekeres C, Vasylyeva T, Mahoney ZX, et al. Coordinate integrin and c-Met signaling regulate Wnt gene expression during epithelial morphogenesis. Development [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2009;136(5):843–53.Google Scholar
  260. 260.
    Niimura F, Labostky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, et al. Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest. 1995;96:2947–54.PubMedCentralPubMedCrossRefGoogle Scholar
  261. 261.
    Miyazaki Y, Tsuchida S, Nishimura H, Pope IV JC, Harris RC, McKanna JM, et al. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest. 1998;102:1489–97.PubMedCentralPubMedCrossRefGoogle Scholar
  262. 262.
    Rasouly HM, Lu W. Lower urinary tract development and disease. Wiley Interdiscip Rev Syst Biol Med. 2013;5(3):307–42.PubMedCentralPubMedCrossRefGoogle Scholar
  263. 263.
    Brenner-Anantharam A, Cebrian C, Guillaume R, Hurtado R, Sun TT, Herzlinger D. Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development. 2007;134(10):1967–75.PubMedCrossRefGoogle Scholar
  264. 264.
    McHugh KM. Molecular analysis of smooth muscle development in the mouse. Dev Dyn. 1995;204(3):278–90.PubMedCrossRefGoogle Scholar
  265. 265.
    Yu J, Carroll TJ, McMahon AP. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 2002;129(22):5301–12.Google Scholar
  266. 266.
    Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT. Uroplakins in urothelial biology, function, and disease. Kidney Int. 2009;75(11):1153–65.PubMedCentralPubMedCrossRefGoogle Scholar
  267. 267.
    Weiss RM, Guo S, Shan A, Shi H, Romano RA, Sinha S, et al. Brg1 determines urothelial cell fate during ureter development. J Am Soc Nephrol. 2013;24(4):618–26.PubMedCentralPubMedCrossRefGoogle Scholar
  268. 268.
    Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND. GLI3 repressor controls functional development of the mouse ureter. J Clin Invest [Research Support, Non-U.S. Gov’t]. 2011;121(3):1199–206.Google Scholar
  269. 269.
    Hurtado R, Bub G, Herzlinger D. The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int. 2010;77(6):500–8.PubMedCentralPubMedCrossRefGoogle Scholar
  270. 270.
    Price KL, Woolf AS, Long DA. Unraveling the genetic landscape of bladder development in mice. J Urol [Research Support, Non-U.S. Gov’t]. 2009;181(5):2366–74.Google Scholar
  271. 271.
    Singh S, Robinson M, Nahi F, Coley B, Robinson ML, Bates CM, et al. Identification of a unique transgenic mouse line that develops megabladder, obstructive uropathy, and renal dysfunction. J Am Soc Nephrol. 2007;18(2):461–71.PubMedCrossRefGoogle Scholar
  272. 272.
    Gandhi D, Molotkov A, Batourina E, Schneider K, Dan H, Reiley M, et al. Retinoid signaling in progenitors controls specification and regeneration of the urothelium. Dev Cell [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2013;26(5):469–82.Google Scholar
  273. 273.
    Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, et al. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet. 2005;37(10):1082–9.PubMedCrossRefGoogle Scholar
  274. 274.
    Viana R, Batourina E, Huang H, Dressler GR, Kobayashi A, Behringer RR, et al. The development of the bladder trigone, the center of the anti-reflux mechanism. Development. 2007;134(20):3763–9.PubMedCrossRefGoogle Scholar
  275. 275.
    Airik R, Bussen M, Singh MK, Petry M, Kispert A. Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest. 2006;116(3):663–74.PubMedCentralPubMedCrossRefGoogle Scholar
  276. 276.
    Kong XT, Deng FM, Hu P, Liang FX, Zhou G, Auerbach AB, et al. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol. 2004;167(6):1195–204.PubMedCentralPubMedCrossRefGoogle Scholar
  277. 277.
    Hu P, Deng FM, Liang FX, Hu CM, Auerbach AB, Shapiro E, et al. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol. 2000;151(5):961–72.PubMedCentralPubMedCrossRefGoogle Scholar
  278. 278.
    Jenkins D, Bitner-Glindzicz M, Malcolm S, Hu CC, Allison J, Winyard PJ, et al. De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol. 2005;16(7):2141–9.PubMedCrossRefGoogle Scholar
  279. 279.
    Jenkins D, Bitner-Glindzicz M, Malcolm S, Allison J, de Bruyn R, Flanagan S, et al. Mutation analyses of Uroplakin II in children with renal tract malformations. Nephrol Dial Transplant. 2006;21(12):3415–21.PubMedCrossRefGoogle Scholar
  280. 280.
    Wang GJ, Brenner-Anantharam A, Vaughan ED, Herzlinger D. Antagonism of BMP4 signaling disrupts smooth muscle investment of the ureter and ureteropelvic junction. J Urol. 2009;181(1):401–7.PubMedCentralPubMedCrossRefGoogle Scholar
  281. 281.
    Caubit X, Lye CM, Martin E, Core N, Long DA, Vola C, et al. Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development [Research Support, Non-U.S. Gov’t]. 2008;135(19):3301–10.Google Scholar
  282. 282.
    Kang S, Graham Jr JM, Olney AH, Biesecker LG. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet. 1997;15(3):266–8.PubMedCrossRefGoogle Scholar
  283. 283.
    Trowe MO, Airik R, Weiss AC, Farin HF, Foik AB, Bettenhausen E, et al. Canonical Wnt signaling regulates smooth muscle precursor development in the mouse ureter. Development. 2012;139:2009–3108.Google Scholar
  284. 284.
    Chang CP, McDill BW, Neilson JR, Joist HE, Epstein JA, Crabtree GR, et al. Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest. 2004;113(7):1051–8.PubMedCentralPubMedCrossRefGoogle Scholar
  285. 285.
    Miyazaki Y, Tsuchida S, Nishimura H, Pope JCt, Harris RC, McKanna JM, et al. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 1998;102(8):1489–97.Google Scholar
  286. 286.
    Mahoney ZX, Sammut B, Xavier RJ, Cunningham J, Go G, Brim KL, et al. Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc Natl Acad Sci U S A. 2006;103(52):19872–7.PubMedCentralPubMedCrossRefGoogle Scholar
  287. 287.
    Dravis C, Yokoyama N, Chumley MJ, Cowan CA, Silvany RE, Shay J, et al. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev Biol. 2004;271(2):272–90.PubMedCrossRefGoogle Scholar
  288. 288.
    Mo R, Kim JH, Zhang J, Chiang C, Hui CC, Kim PC. Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol. 2001;159(2):765–74.PubMedCentralPubMedCrossRefGoogle Scholar
  289. 289.
    Baskin L, DiSandro M, Li Y, Li W, Hayward S, Cunha G. Mesenchymal-epithelial interactions in bladder smooth muscle development: effects of the local tissue environment. J Urol. 2001;165(4):1283–8.PubMedCrossRefGoogle Scholar
  290. 290.
    DiSandro MJ, Li Y, Baskin LS, Hayward S, Cunha G. Mesenchymal-epithelial interactions in bladder smooth muscle development: epithelial specificity. J Urol. 1998;160(3 Pt 2):1040–6; discussion 79.PubMedGoogle Scholar
  291. 291.
    Cao M, Tasian G, Wang MH, Liu B, Cunha G, Baskin L. Urothelium-derived Sonic hedgehog promotes mesenchymal proliferation and induces bladder smooth muscle differentiation. Differentiation [Research Support, N.I.H., Extramural]. 2010;79(4–5):244–50.Google Scholar
  292. 292.
    Cheng W, Yeung CK, Ng YK, Zhang JR, Hui CC, Kim PC. Sonic Hedgehog mediator Gli2 regulates bladder mesenchymal patterning. J Urol [Research Support, Non-U.S. Gov’t]. 2008;180(4):1543–50.Google Scholar
  293. 293.
    DeSouza KR, Saha M, Carpenter AR, Scott M, McHugh KM. Analysis of the Sonic Hedgehog signaling pathway in normal and abnormal bladder development. PLoS One [Research Support, N.I.H., Extramural]. 2013;8(1):e53675.Google Scholar
  294. 294.
    Hoshi M, Batourina E, Mendelsohn C, Jain S. Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice. Development. 2012;139(13):2405–15.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Carlton Bates
    • 1
  • Jacqueline Ho
    • 1
  • Sunder Sims-Lucas
    • 1
  1. 1.Department of Pediatrics, Division of Pediatric NephrologyChildren’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations