Skip to main content

Netzwerkanalyse in der Politikwissenschaft

  • Living reference work entry
  • First Online:
Handbuch Methoden der Politikwissenschaft

Part of the book series: Springer Reference Sozialwissenschaften ((SRS))

Zusammenfassung

Die Netzwerkanalyse ist eine Sammlung von Methoden zur Analyse von Interaktionen oder Beziehungen zwischen Akteuren. In der Politikwissenschaft finden diese Methoden breite Anwendung, da Politik häufig in Gruppenkontexten mit potenzieller gegenseitiger Relevanz der Akteure abläuft, während konventionelle Nicht-Netzwerk-Methoden die Unabhängigkeit (oder höchstens triviale Abhängigkeit) der Akteure in diesen Kontexten annehmen. Netzwerkanalyse erlaubt die gleichzeitige Analyse von Akteuren und ihren Beziehungen als komplexes System. Es existieren Methoden zur Beschreibung und Visualisierung von Netzwerken sowie zur statistischen Modellierung von Netzwerken. Die statistischen Methoden lassen sich grob in statische Modelle für einen beobachteten Zeitpunkt und in temporale Netzwerkmodelle unterteilen sowie in Modelle für Netzwerke oder Dyaden als abhängige Variable und Modelle für in Netzwerken geschachtelte individuelle Beobachtungen. Das Kapitel gibt einen Überblick über diese verschiedenen Methoden und ihre Anwendung in der Politikwissenschaft und stellt den aktuellen Forschungsstand vor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Für einen Vergleich verschiedener Querschnittsmodelle wird die Lektüre von Cranmer et al. (2017) empfohlen.

  2. 2.

    Für eine detaillierte Darstellung der Wahrscheinlichkeitsdichtefunktion, der Spezifikation von ERGM-Modelltermen und des MCMC-MLE-Schätzverfahrens vgl. z. B. Cranmer et al. (2017), Cranmer und Desmarais (2011), Lusher et al. (2013) und Robins et al. (2007). Für einen Software-basierten Einstieg sei interessierten Lesern auch die Lektüre der Artikel über das R-Paket statnet im Sonderheft des Journal of Statistical Software im Jahr 2008 empfohlen (insbesondere Handcock et al. 2008; Goodreau et al. 2008; Hunter et al. 2008b; Morris et al. 2008). statnet ist die populärste Software für ERGMs. Eine Alternative ist die grafische Anwendung Pnet (Wang et al. 2006), die jedoch nicht open-source ist und eine gänzlich eigene Terminologie für die Spezifikation von Modelltermen nutzt. ERGMs sind aktuell nicht in anderer Standard-Statistiksoftware wie STATA, SPSS oder SAS verfügbar.

  3. 3.

    Einen ausführlichen Vergleich zwischen ERGM, QAP und Latent-Space-Modellen aus der Anwendungsperspektive nehmen Cranmer et al. (2017) vor.

Literatur

  • Böhmelt, Tobias, Benjamin Campbell, Skyler Cranmer, Bailey Fosdick, und Frank Marrs. 2017. Ratifying environmental agreements: A joint analysis of exogenous influences, network dependence, and spatial effects. Vortrag an der 10. Political Networks Conference, Columbus, 14–17. Juni.

    Google Scholar 

  • Bomin, Kim, Zachary Jones, Bruce Desmarais, und Hanna Wallach. 2017. A network model for continuous-time textual communications with application to government email corpora. Vortrag an der 10. Political Networks Conference, Columbus, 14–17. Juni.

    Google Scholar 

  • Brandenberger, Laurence. 2017. rem: Relational event models (REM). R-Paket Version 1.2.8. https://CRAN.R-project.org/package=rem. Zugegriffen am 01.09.2018.

  • Brandenberger, Laurence. 2018. Trading favors – Examining the temporal dynamics of reciprocity in Congressional collaborations using relational event models. Social Networks 54:238–253.

    Article  Google Scholar 

  • Brandes, Ulrik, Patrick Kenis, Jörg Raab, Volker Schneider, und Dorothea Wagner. 1999. Explorations into the visualization of policy networks. Journal of Theoretical Politics 11(1): 75–106.

    Article  Google Scholar 

  • Brandes, Ulrik, Jörg Raab, und Dorothea Wagner. 2001. Exploratory network visualizations: Simultaneous display of actor status and connections. Journal of Social Structure 2(4). https://www.cmu.edu/joss/content/articles/volume2/BrandesRaabWagner.html.

  • Brandes, Ulrik, Patrick Kenis, und Dorothea Wagner. 2003. Communicating centrality in policy network drawings. IEEE Transactions on Visualization and Computer Graphics 9(2): 241–253.

    Article  Google Scholar 

  • Brandes, Ulrik, Patrick Kenis, und Jörg Raab. 2006. Explanation through network visualization. Methodology 2(1): 16.

    Article  Google Scholar 

  • Butts, Carter T. 2008a. A relational event framework for social action. Sociological Methodology 38(1): 155–200.

    Article  Google Scholar 

  • Butts, Carter T. 2008b. Social network analysis with sna. Journal of Statistical Software 24(6): 1–51.

    Article  Google Scholar 

  • Cartwright, Dorwin, und Frank Harary. 1956. Structikural balance: A generalization of Heider’s Theory. Psychological Review 63(5): 277–293.

    Article  Google Scholar 

  • Cranmer, Skyler J., und Bruce A. Desmarais. 2011. Inferential network analysis with exponential random graph models. Political Analysis 19(1): 66–86.

    Article  Google Scholar 

  • Cranmer, Skyler J., Bruce A. Desmarais, und Elizabeth J. Menninga. 2012. Complex dependencies in the alliance network. Conflict Management and Peace Science 29(3): 279–313.

    Article  Google Scholar 

  • Cranmer, Skyler J., Elizabeth J. Menninga, und Peter J. Mucha. 2015. Kantian fractionalization predicts the conflict propensity of the international system. Proceedings of the National Academy of Sciences 112(38): 11812–11816.

    Article  Google Scholar 

  • Cranmer, Skyler J., Philip Leifeld, Scott D. McClurg, und Meredith Rolfe. 2017. Navigating the range of statistical tools for inferential network Analysis. American Journal of Political Science 61(1): 237–251.

    Article  Google Scholar 

  • Dekker, David, David Krackhardt, und Tom A. B. Snijders. 2007. Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika 72(4): 563–581.

    Article  Google Scholar 

  • Desmarais, Bruce A., und Skyler J. Cranmer. 2012. Statistical inference for valued-edge networks: The generalized exponential random graph model. PloS ONE 7(1): e30136.

    Article  Google Scholar 

  • Desmarais, Bruce A., Jeffrey J. Harden, und Frederick J. Boehmke. 2015. Persistent policy pathways: Inferring diffusion networks in the American states. American Political Science Review 109(2): 392–406.

    Article  Google Scholar 

  • Doreian, Patrick, Klaus Teuter, und Chi-Hsein Wang. 1984. Network autocorrelation models: Some Monte Carlo results. Sociological Methods & Research 13(2): 155–200.

    Article  Google Scholar 

  • Fellows, Ian, und Mark Handcock. 2017. Removing phase transitions from Gibbs measures. In Proceedings of the 20th international conference on artificial intelligence and statistics, 289–297.

    Google Scholar 

  • Fisher, Dana R., Philip Leifeld, und Yoko Iwaki. 2013a. Mapping the ideological networks of American climate politics. Climatic Change 116(3–4): 523–545.

    Article  Google Scholar 

  • Fisher, Dana R., Joseph Waggle, und Philip Leifeld. 2013b. Where does political polarization come from? Locating polarization within the US climate change debate. American Behavioral Scientist 57(1): 70–92.

    Article  Google Scholar 

  • Gomez-Rodriguez, Manuel, Jure Leskovec, und Andreas Krause. 2012. Inferring networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, 1019–1028. ACM.

    Google Scholar 

  • Goodreau, Steven M., Mark S. Handcock, David R. Hunter, Carter T. Butts, und Martina Morris. 2008. A statnet tutorial. Journal of Statistical Software 24(9): 1–26.

    Article  Google Scholar 

  • Handcock, Mark S., David R. Hunter, Carter T. Butts, Steven M. Goodreau, und Martina Morris. 2008. statnet: Software tools for the representation, visualization, analysis and simulation of network data. Journal of Statistical Software 24(1): 1–11.

    Article  Google Scholar 

  • Hays, Jude C., Aya Kachi, und Robert J. Franzese. 2010. A spatial model incorporating dynamic, endogenous network interdependence: A political science application. Statistical Methodology 7(3): 406–428.

    Article  Google Scholar 

  • Heaney, Michael T., und Philip Leifeld. 2018. Contributions by interest groups to lobbying coalitions. The Journal of Politics 80(2): 494–509.

    Article  Google Scholar 

  • Hennig, Marina, Ulrik Brandes, Jürgen Pfeffer, und Ines Mergel. 2012. Studying social networks: A guide to empirical research. Frankfurt a. M.: Campus Verlag.

    Google Scholar 

  • Hoff, Peter D. 2005. Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association 100(469): 286–295.

    Article  Google Scholar 

  • Hoff, Peter D. 2015. Dyadic data analysis with amen. arXiv Preprint arXiv: 1506.08237.

    Google Scholar 

  • Hoff, Peter D., Adrian E. Raftery, und Mark S. Handcock. 2002. Latent space approaches to social network analysis. Journal of the American Statistical Association 97(460): 1090–1098.

    Article  Google Scholar 

  • Hoff, Peter D., Bailey Fosdick, Alex Volfovsky, und Yanjun He. 2017. amen: Additive and multiplicative effects models for networks and relational data. R-Paket Version 1.3. https://CRAN.R-project.org/package=amen. Zugegriffen am 24.11.2018.

  • Hunter, David R. 2007. Curved exponential family models for social networks. Social Networks 29(2): 216–230.

    Article  Google Scholar 

  • Hunter, David R., Steven M. Goodreau, und Mark S. Handcock. 2008a. Goodness of fit of social network models. Journal of the American Statistical Association 103(481): 248–258.

    Article  Google Scholar 

  • Hunter, David R., Mark S. Handcock, Carter T. Butts, Steven M. Goodreau, und Martina Morris. 2008b. ergm: A package to fit, simulate and diagnose exponential-family models for networks. Journal of Statistical Software 24(3): 1–29.

    Article  Google Scholar 

  • Ingold, Karin, und Philip Leifeld. 2016. Structural and institutional determinants of influence reputation: A comparison of collaborative and adversarial policy networks in decision making and implementation. Journal of Public Administration Research and Theory 26(1): 1–18.

    Article  Google Scholar 

  • Kaufmann, Michael, und Dorothea Wagner. 2003. Drawing graphs: Methods and models. In Lecture notes in computer science 2025. Berlin: Springer.

    Google Scholar 

  • Kenny, David A., und Lawrence La Voie. 1984. The social relations model. Advances in Experimental Social Psychology 18:141–182.

    Google Scholar 

  • Krackhardt, David. 1988. Predicting with networks: Nonparametric multiple regression analysis of dyadic data. Social Networks 10(4): 359–381.

    Article  Google Scholar 

  • Krebs, Vladis E. 2001. Mapping networks of terrorist cells. Connections 24(3): 43–52.

    Google Scholar 

  • Krivitsky, Pavel N., und Mark S. Handcock. 2014. A sparable model for dynamic networks. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76(1): 29–46.

    Article  Google Scholar 

  • Leenders, Roger Th. A. J. 2002. Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks 24(1): 21–47.

    Article  Google Scholar 

  • Leifeld, Philip. 2013. Reconceptualizing major policy change in the advocacy coalition framework: A discourse network analysis of German pension politics. Policy Studies Journal 41(1): 169–198.

    Article  Google Scholar 

  • Leifeld, Philip. 2016. Policy debates as dynamic networks: German pension politics and privatization discourse. Frankfurt a. M./New York: Campus.

    Google Scholar 

  • Leifeld, Philip. 2017. Discourse network analysis: Policy debates as dynamic networks. In The Oxford handbook of political networks, Hrsg. J. N. Victor, M. N. Lubell und A. H. Montgomery, 301–326. Oxford University Press.

    Google Scholar 

  • Leifeld, Philip. 2018. Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions. Physica A: Statistical Mechanics and its Applications 507:510–523.

    Article  Google Scholar 

  • Leifeld, Philip, und Skyler J. Cranmer. 2017. tnam. Temporal network autocorrelation models. R-Paket Version 1.6.5. https://CRAN.R-project.org/package=tnam. Zugegriffen am 24.11.2018.

  • Leifeld, Philip, und Skyler J. Cranmer. 2018. A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model. Network Science. [vor Druck].

    Google Scholar 

  • Leifeld, Philip, und Dana R. Fisher. 2017. Membership nominations in international scientific assessments. Nature Climate Change 7(10): 730–735.

    Article  Google Scholar 

  • Leifeld, Philip, und Sebastian Haunss. 2012. Political discourse networks and the conflict over software patents in Europe. European Journal of Political Research 51(3): 382–409.

    Article  Google Scholar 

  • Leifeld, Philip, und Karin Ingold. 2016. Co-authorship networks in Swiss political research. Swiss Political Science Review 22(2): 264–287.

    Article  Google Scholar 

  • Leifeld, Philip, und Volker Schneider. 2012. Information exchange in policy networks. American Journal of Political Science 56(3): 731–744.

    Article  Google Scholar 

  • Leifeld, Philip, Sandra Wankmüller, Valentin T. Z. Berger, Karin Ingold, und Christiane Steiner. 2017. Collaboration patterns in the German political science co-authorship network. PLoS ONE 12(4): e0174671.

    Article  Google Scholar 

  • Leifeld, Philip, Skyler J. Cranmer, und Bruce A. Desmarais. 2018. Temporal exponential random graph models with btergm: Estimation and bootstrap confidence intervals. Journal of Statistical Software 83(6): 1–36.

    Article  Google Scholar 

  • Lerner, Jürgen, Margit Bussmann, Tom A. B. Snijders, und Ulrk Brandes. 2013. Modeling frequency and type of interaction in event networks. Corvinus Journal of Sociology and Social Policy 4(1): 3–32.

    Google Scholar 

  • Li, Weihua, Aisha E. Bradshaw, Caitlin B. Clary, und Skyler J. Cranmer. 2017. A three-degree horizon of peace in the military alliance network. Science Advances 3(3): e1601895.

    Article  Google Scholar 

  • Linder, Fridolin, und Bruce A. Desmarais. 2018. NetworkInference: Inferring latent diffusion networks. R-Paket Version 1.2.3. https://CRAN.R-project.org/package=NetworkInference. Zugegriffen am 24.11.2018.

  • Lusher, Dean, Johan Koskinen, und Garry Robins. 2013. Exponential random graph models for social networks: Theory, methods, and applications. New York: Cambridge University Press.

    Google Scholar 

  • Malang, Thomas, Laurence Brandenberger, und Philip Leifeld. 2018. Networks and social influence in European legislative politics. British Journal of Political Science. Vor Druck.

    Google Scholar 

  • Marcum, Christopher S., und Carter T. Butts. 2015. Constructing and modifying sequence statistics for relevent using informR in R. Journal of Statistical Software 64(5): 1–36.

    Article  Google Scholar 

  • Montgomery, Jacob M., und Brendan Nyhan. 2017. The effects of Congressional staff networks in the US House of Representatives. The eJournal of Politics 79(3): 745–761.

    Google Scholar 

  • Morris, Martina, Mark S. Handcock, und David R. Hunter. 2008. Specification of exponential-family random graph models: Terms and computational aspects. Journal of Statistical Software 24(4): 1–24.

    Article  Google Scholar 

  • Nagels, Melanie. 2016. Polarisierung im politischen Diskurs: Eine Netzwerkanalyse zum Konflikt um „Stuttgart 21“. Berlin: Springer.

    Book  Google Scholar 

  • Phadke, Sayali, und Bruce A. Desmarais. 2016. Network effects in field experiments on interactive groups: Cases from legislative studies. Vortrag an der 9. Political Networks Conference, Washington University in St. Louis, 23–25. Juni. https://ssrn.com/abstract=2799074. Zugegriffen am 24.11.2018.

  • Robins, Garry, Pip Pattison, Yuval Kalish, und Dean Lusher. 2007. An introduction to exponential random graph (p*) models for social networks. Social Networks 29(2): 173–191.

    Article  Google Scholar 

  • Rule, Alix, Jean-Philippe Cointet, und Peter S. Bearman. 2015. Lexical shifts, substantive changes, and continuity in state of the union discourse, 1790–2014. Proceedings of the National Academy of Sciences 112(35): 10837–10844.

    Article  Google Scholar 

  • Schneider, Volker, Frank Janning, Philip Leifeld, und Thomas Malang. 2009. Politiknetzwerke. Modelle, Anwendungen und Visualisierungen. Wiesbaden: VS Verlag.

    Google Scholar 

  • Schoch, David, und Ulrik Brandes. 2016. Re-conceptualizing centrality in social networks. European Journal of Applied Mathematics 27(6): 971–985.

    Article  Google Scholar 

  • Scott, John. 2017. Social network analysis, 4. Aufl. Thousand Oaks: Sage.

    Google Scholar 

  • Shalizi, Cosma R., und Andrew C. Thomas. 2011. Homophily and contagion are generically confounded in observational social network studies. Sociological Methods & Research 40(2): 211–239.

    Article  Google Scholar 

  • Snijders, Tom A., Philippa E. Pattison, Garry L. Robins, und Mark S. Handcock. 2006. New specifications for exponential random graph models. Sociological Methodology 36(1): 99–153.

    Article  Google Scholar 

  • Snijders, Tom A., Gerhard G. van de Bunt, und Christian E. G. Steglich. 2010. Introduction to stochastic actor-based models for network dynamics. Social Networks 32(1): 44–60.

    Article  Google Scholar 

  • Wang, Peng, Garry Robins, und Philippa E. Pattison. 2006. PNet: A program for the simulation and estimation of exponential random graph models. Melbourne: University of Melbourne.

    Google Scholar 

  • Ward, Michael D., Randolph M. Siverson, und Xun Cao. 2007. Disputes, democracies, and dependencies: A reexamination of the Kantian peace. American Journal of Political Science 51(3): 583–601.

    Article  Google Scholar 

  • Ward, Michael D., John S. Ahlquist, und Arturas Rozenas. 2013. Gravity’s rainbow: A dynamic latent space model for the world trade network. Network Science 1(1): 95–118.

    Article  Google Scholar 

  • Wasserman, Stanley, und Katherine Faust. 1994. Social network analysis: Methods and applications. New York: Cambridge University Press.

    Google Scholar 

  • Wilson, James D., Matthew J. Denny, Shankar Bhamidi, Skyler J. Cranmer, und Bruce A. Desmarais. 2017. Stochastic weighted graphs: Flexible model specification and simulation. Social Networks 49:37–473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Leifeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Leifeld, P. (2019). Netzwerkanalyse in der Politikwissenschaft. In: Wagemann, C., Goerres, A., Siewert, M. (eds) Handbuch Methoden der Politikwissenschaft. Springer Reference Sozialwissenschaften. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-16937-4_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-16937-4_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-16937-4

  • Online ISBN: 978-3-658-16937-4

  • eBook Packages: Springer Referenz Sozialwissenschaften und Recht

Publish with us

Policies and ethics