Skip to main content

Kalibrierung von Vakuummessgeräten

  • Living reference work entry
  • First Online:
  • 404 Accesses

Part of the book series: Springer Reference Technik ((SRT))

Zusammenfassung

Kalibrierungen ermitteln den Unterschied der Anzeige eines Messgeräts zum wahren Wert der physikalischen Messgröße. Vakuummessgeräte werden üblicherweise im Vergleichsverfahren mit Bezugsnormalen kalibriert. Diese müssen auf Primärnormale zurückgeführt sein, das heisst, es muss eine ununterbrochene Kalibrierungen zu Primärnormalen bestehen. Die Besonderheiten der Kalibrierungen von Vakuummessgeräten werden beschrieben.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Die Temperaturerhöhung hängt vor allem von der Heizleistung der Kathode und von der Art des Gehäusekörpers ab und kann 30 K betragen, bei einer Glashülle auch 40 K [10]. Es gibt Hinweise, dass die Temperatur der Gasmoleküle im Ionisationsvakuummeter sehr viel höher ist [10].

Literatur

  1. Jousten, K., Röhl, P.: Instability of the spatial electron current distribution in hot cathode ionization gauges as a source of sensitivity changes. J. Vac. Sci. Technol. A 13, 2266–2270 (1995)

    Article  Google Scholar 

  2. ISO 3567: Vacuum technology – vacuum gauges – calibration by direct comparison with a reference gauge (2011)

    Google Scholar 

  3. Richtlinie DKD-R 6-2: Kalibrierung von Messmitteln für Vakuum, 03/2002, Teil 1 Grundlagen, Teil 2 Messunsicherheiten, Teil 3 Elektrische Membranvakuummeter, Teil 4 Ionisations-Vakuummeter, Teil 5 Wärmeleitungs-Vakuummeter, zu beziehen durch die DAkkS, Bundesallee 100, 38116 Braunschweig (2002)

    Google Scholar 

  4. Hyland, R.W., Shaffer, R.L.: Recommended practices for the calibration and use of capacitance diaphragm gages as transfer standards. J. Vac. Sci. Technol. A 9, 2843 (1991)

    Article  Google Scholar 

  5. Jousten, K.: Temperature corrections for the calibration of vacuum gauges. Vacuum 49, 81–87 (1998)

    Article  Google Scholar 

  6. Dittmann, S., Lindenau, B., Tilford, C.R.: The molecular drag gauge as a calibration standard. J. Vac. Sci. Technol. A 7, 3356–3360 (1989)

    Article  Google Scholar 

  7. Messer, G., Röhl, P.: Druckabhängigkeit der Koeffizienten für den tangentialen Impulstausch an Gasreibungsmanometer-Kugelrotoroberflächen. PTB Jahresbericht 226 (1984)

    Google Scholar 

  8. Röhl, P., Jitschin, W.: Performance of the spinning rotor gauge with a novel transport device as a transfer standard for high vacuum. Vacuum 38, 507 (1988)

    Article  Google Scholar 

  9. Abbot, P.J., Looney, J.P., Mohan, P.: The effect of ambient temperature on the sensitivity of hot-cathode ionization gauges. Vacuum 77, 217–222 (2005)

    Article  Google Scholar 

  10. Becker, H.U., Messer, G.: Sensitivity dependence on collector surface properties in ion gauges. Vide Suppl. 201, 234–237 (1980)

    Google Scholar 

  11. Grosse, G., Harten, U., Jitschin, W., Gentsch, H.: Secondary electrons in ion gauges. J. Vac. Sci. Technol. A 5, 3242–3243 (1987)

    Article  Google Scholar 

  12. Jousten, K., Röhl, P.: Comparison of the sensitivities of ionization gauges to hydrogen and deuterium. Vacuum 46, 9–12 (1995)

    Article  Google Scholar 

  13. Becker, H.U., Messer, G.: Proceedings of 5th International Vacuum Congress/9th International Conference on Surface Science, Madrid (1983), 84 (unveröffentlicht)

    Google Scholar 

  14. Holanda, R.: Investigation of the sensitivity of ionization-type vacuum gauges. J. Vac. Sci. Technol. 10, 1133 (1973)

    Article  Google Scholar 

  15. Filipelli, A.: A brief review of some recent sensitivity and residual current measurements for several commercial ionization gauges. AIP Conf. Proc. 171, 236–243 (1988)

    Article  Google Scholar 

  16. Tilford, C.R., Mc Culloh, K.E., Seung Woong, H.: Performance characteristics of a broad range ionization gage tube. J. Vac. Sci. Technol. 20, 1140 (1982)

    Article  Google Scholar 

  17. Wood, S.D., Tilford, C.R.: Long-term stability of two types of hot cathode ionization gauges. J. Vac. Sci. Technol. A 3, 542 (1985)

    Article  Google Scholar 

  18. Filipelli, A.R., Abbott, P.J.: Long-term stability of Bayard-Alpert gauge performance: results obtained from repeated calibrations against the National Institute of Standards and Technology primary vacuum standard. J. Vac. Sci. Technol. A 13, 2582 (1995)

    Article  Google Scholar 

  19. Lichtman, D.: Residual gas analysis: Past, present, and future. J. Vac. Sci. Technol. A 8, 2810 (1990)

    Article  Google Scholar 

  20. Lieszkovsky, L., Filipelli, A.R., Tilford, C.R.: Metrological characteristics of a group of quadrupole partial pressure analyzers. J. Vac. Sci. Technol. A 8, 3838 (1990)

    Article  Google Scholar 

  21. Blanchard, W.R., Mccarthy, P.J., Dylla, H.F., La Marche, H., Simpkins, J.E.: Long-term changes in the sensitivity of quadrupole mass spectrometers. J. Vac. Sci. Technol. A 4, 1715 (1986)

    Article  Google Scholar 

  22. Bennet, J.R., Elsey, R.J.: Anomalies in the measurement of the residual gases in a large UHV system using a quadrupole mass analyser. Vacuum 44, 647 (1993)

    Article  Google Scholar 

  23. Fremerey, J.K.: Qualifying an XHV system by the residual gas accumulation method. J. Vac. Soc. Jpn 37, 718 (1994)

    Article  Google Scholar 

  24. Nakashima, Y., Tsuchiya, K., Ohtoshi, K., Shoji, M., Yatsu, K., Tamano, T.: Evaluation of the background signal for mass spectrometry under high ambient hydrogen pressures in plasma discharges. J. Vac. Sci. Technol. A 13, 2470 (1995)

    Article  Google Scholar 

  25. Jousten, K., Putzke, S., Buthig, J.: Partial pressure measurement standard for characterizing partial pressure analyzers and measuring outgassing rates. J. Vac. Sci. Technol. A 33, 061603 (2015). doi:10.1116/1.4935432

    Article  Google Scholar 

  26. Ellefson, R.E., Cain, D., Lindsay, C.N.: Calibration of mass spectrometers for quantitative gas mixture analysis. J. Vac. Sci. Technol. A 5, 129 (1987)

    Article  Google Scholar 

  27. Basford, J.A., Boeckmann, N.D., Ellefson, R.E., Filipelli, A.R., Holkeboer, D.H., Lieszkovsky, L., Stupak, C.M.: Recommended practice for the calibration of mass spectrometers. J. Vac. Sci. Technol. A 11, 22 (1993)

    Article  Google Scholar 

  28. Solomon, G.M.: Standardization and temperature correction of calibrated leaks. J. Vac. Sci. Technol. A 4, 327 (1986)

    Article  Google Scholar 

  29. Ehrlich, C.D.: A note on flow rate and leak rate units. J. Vac. Sci. Technol. A 4, 2384 (1986)

    Article  Google Scholar 

  30. Thornberg, S.M.: Stepped linear piston displacement fundamental leak calibration system. J. Vac. Sci. Technol. A 6, 2522 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Jousten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this entry

Cite this entry

Jousten, K. (2017). Kalibrierung von Vakuummessgeräten. In: Jousten, K. (eds) Handbuch Vakuumtechnik. Springer Reference Technik . Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-13403-7_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-13403-7_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-13403-7

  • Online ISBN: 978-3-658-13403-7

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics