Skip to main content

Ionisationsvakuummeter

  • Living reference work entry
  • First Online:
  • 822 Accesses

Part of the book series: Springer Reference Technik ((SRT))

Zusammenfassung

In Ionisationsvakuummetern werden die neutralen Gasteilchen ionisiert und der entstehende Ionenstrom gemessen. Die Ionisierung erfolgt entweder in einem Plasma oder durch einen Elektronenstrahl. Ionisationsvakuummeter messen sehr empfindlich die Gasdichte und sind daher als Messgerät für das Ultrahochvakuum geeignet.

This is a preview of subscription content, log in via an institution.

Literatur

  1. von Baeyer, O.: Phys. Z. 10, 168 (1909)

    Google Scholar 

  2. Buckley, O.E.: An ionization manometer. Proc. Natl. Acad. Sci. U. S. A. 2, 683 (1916)

    Article  Google Scholar 

  3. Dushman, S., Lafferty, J.M.: Scientific foundations of vacuum technique. 2. Aufl. Wiley, New York (1962)

    Google Scholar 

  4. Penning, F.M.: Ein neues Manometer für niedrige Gasdrücke, insbesondere zwischen 10−3 und 10−5 mm. Physica 4, 71 (1937) und Philips Tech. Rev. 2, 201 (1937)

    Article  Google Scholar 

  5. Penning, F.M.: Die Glimmentladung bei niedrigem Druck zwischen koaxialen Zylindern in einem axialen Magnetfeld. Physica 3, 873 (1936) und US Patent, 1939 verliehen

    Article  Google Scholar 

  6. Penning, F.M., Nienhuis, K.: Construction and application of a new design of the Philips vacuum gauge. Philips Tech. Rev. 11, 116 (1949)

    Google Scholar 

  7. Lotz, W.: Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions. Astrophys. J. Suppl. 14, 207–238 (1967)

    Article  Google Scholar 

  8. Tilford, C.R.: Sensitivity of hot cathode ionization gauges. J. Vac. Sci. Technol. A 3, 546–549 (1985)

    Article  Google Scholar 

  9. Edelmann, Chr., Engelmann, P.: Möglichkeiten der Messbereichserweiterung bei Glühkatoden-Ionisationsvakuummetern. Vak. Technol. 31, 2–10 (1982)

    Google Scholar 

  10. Kno, Z.H.: An approach to the non-linearity of an ionization vacuum gauge at the upper limit of the measured pressure. Vacuum 31(7), 303/08 (1981)

    Google Scholar 

  11. Wang, Y.-Z.: A fundamental theory of high pressure hot cathode ionization gauges. Vacuum 34, 775–778 (1984)

    Article  Google Scholar 

  12. Schulz, G.J., Phleps, A.V.: Ionization gauges for measuring pressures up to the millimeter range. Rev. Sci. Instrum. 28, 1051 (1957)

    Article  Google Scholar 

  13. Bayard, R.T., Alpert, D.: Extension of the low pressure range of the ionization gauge. Rev. Sci. Instrum. 21, 571 (1950)

    Article  Google Scholar 

  14. Arnold, P.C., Bills, D.G., Borenstein, M.D., Borichevsky, S.C.: Stable and reproducible Bayard-Alpert ionization gauge. J. Vac. Sci. Technol. A 12, 580–586 (1994)

    Article  Google Scholar 

  15. Schmidt, K., Bergner, U.: Stabilität von Hochvakuum-Meßröhren. Vak. Forsch. Prax. 3, 177–182 (1996)

    Google Scholar 

  16. Peacock, R.N., Peacock, N.T.: Sensitivity variation of Bayard–Alpert gauges with and without closed grids from 10–4 to 1 Pa. J. Vac. Sci. Technol. A 8, 3341 (1990)

    Article  Google Scholar 

  17. van Oostrom, A.: Vac. Symp. Trans. Comm. Vac. Technol. 1 (1961), Pergamon, New York, 443.

    Google Scholar 

  18. Repa, P.: The residual current of the modulated BA-gauge. Vacuum 36, 559–560 (1986)

    Article  Google Scholar 

  19. Chou, T.S., Tang, Z.Q.: Investigation on the low pressure limit of the Bayard-Alpert gauge. J. Vac. Sci. Technol. A 4, 2280–2283 (1986)

    Article  Google Scholar 

  20. Filipelli, A.R.: Residual currents in several commercial ultra high Bayard-Alpert gauges. J. Vac. Sci. Technol. A 5, 3234–3241 (1987)

    Article  Google Scholar 

  21. Berman, A.: Total pressure measurements in vacuum technology. Academic, New York (1985)

    Google Scholar 

  22. Grosse, G., et al.: Secondary electrons in ion gauges. J. Vac. Sci. Technol. A 5, 3242 (1987)

    Article  Google Scholar 

  23. Harten, U., et al.: Surface effects on the stability of hot cathode ionization gauges. Vacuum 38, 167–169 (1988)

    Article  Google Scholar 

  24. Redhead, P.A.: Electron stimulated desorption. Vacuum 12, 267 (1962)

    Article  Google Scholar 

  25. Redhead, P.A.: Modulated Bayard–Alpert gauge. Rev. Sci. Instrum. 31, 343 (1960)

    Article  Google Scholar 

  26. Hobson, J.P.: Measurements with a modulated Bayard–Alpert gauge in aluminosilicate glass at pressures below 10−12 Torr. J. Vac. Sci. Technol. A 81, 1 (1964)

    Google Scholar 

  27. Helmer, J.C., Hayward, W.D.: Ion gauge for vacuum pressure measurements below 1 × 10−10 Torr. Rev. Sci. Instrum. 37, 1652 (1966)

    Article  Google Scholar 

  28. Han, S.-W., et al.: Performance of the bent beam ionization gauge in ultrahigh vacuum measurements. Vacuum 38, 1079–1082 (1988)

    Article  Google Scholar 

  29. Watanabe, F.: Ion spectroscopy gauge: total pressure measurements down to 10–12 Pa with discrimination against electron-stimulated-desorption ions. J. Vac. Sci. Technol. A 10, 3333–3339 (1992)

    Article  Google Scholar 

  30. Craig, J.H., Hock, J.H.: Construction and performance characteristics of a low cost energy prefilter. J. Vac. Sci. Technol. 17, 1360–1363 (1980)

    Article  Google Scholar 

  31. Akimichi, H., et al.: Development of a new ionization gauge with Bessel box type energy analyser. Vacuum 46, 749–752 (1995)

    Article  Google Scholar 

  32. Katalog der ULVAC Cooperation, Japan, vom 4. September 2017. www.ulvac.co.jp/eng/

  33. Lafferty, J.M.: Hot-cathode magnetron ionization gauge for the measurement of ultrahigh vacua. J. Appl. Phys. 32, 424 (1961)

    Article  Google Scholar 

  34. Schuemann, W.C.: Ionization vacuum gauge with photocurrent suppression. Rev. Sci. Instrum. 34, 700 (1963)

    Article  Google Scholar 

  35. Messer, G.: Long term stability of various reference gauges over a three years period. Proc. 8th Int. Vacuum Congr. Cannes 2, 191–194 (1980)

    Google Scholar 

  36. Lafferty, J.M.: Trans. Am. Vac. Soc. Vac. Symp. 7, 97 (1960)

    Google Scholar 

  37. Chen, J.Z., et al.: An axial-emission ultra-high vacuum gauge. J. Vac. Sci. Technol. 20, 88–91 (1982)

    Article  Google Scholar 

  38. Chen, J.Z., et al.: Proc. 9. Int. Vac. Congr., Madrid, S. 99.(1983)

    Google Scholar 

  39. Ohsako, N.: A new wide-range B–A gauge from UHV to 10−1 Torr. J. Vac. Sei. Technol. 20, 1153–1155 (1982)

    Article  Google Scholar 

  40. Watanabe, F.: Point collector ionization gauge with spherical grid for measuring pressures below, 10–11 Pa. J. Vac. Sci. Technol. A 5, 242–248 (1987)

    Article  Google Scholar 

  41. Gentsch, H.: Inertes Ionisationsvakuummeter mit extrahiertem Kollektor (EXKOLL). Vak. Technol. 36, 67–74 (1987)

    Google Scholar 

  42. Redhead, P.A.: Ultrahigh vacuum pressure measurements: limiting processes. J. Vac. Sci. Technol. A 5, 3215–3223 (1987)

    Article  Google Scholar 

  43. Madey, T.E.: Surface phenomena and their influence on ultrahigh vacuum gauges. J. Technol. A 5, 3249 (1987) (Summary abstract)

    Google Scholar 

  44. Oshima, C., Otuko, A.: Performance of an ionization gauge with a large-angle ion deflector. I. Total pressure measurement in extreme high vacuum. J. Vac, Sci. Technol. A 12, 3233 (1994)

    Article  Google Scholar 

  45. Morrison, D.: Lethal voltages from ion/gas discharge interactions. Le Vide 41, 297–304 (1986)

    Google Scholar 

  46. Knauer, W.: Mechanism of the Penning discharge at low pressures. J. Appl. Phys. 33, 2093 (1962)

    Article  Google Scholar 

  47. Knauer, W., et al.: Instability of plasma sheath rotation and associated microwave generation in a Penning discharge. Appl. Phys. Lett. 3(1), 11 (1963)

    Article  Google Scholar 

  48. Bohm, D., et al.: Theoretical considerations regarding minimum pressure for stable arc operations. Natl. Nucl. Energy Ser. 1 5, 77 ff. (1949) und 173 ff.

    Google Scholar 

  49. Redhead, P.A.: The townsend discharge in a coaxial diode with axial magnetic field. Can. J. Phys. 37, 255 (1959)

    Article  MATH  Google Scholar 

  50. Hobson, J.P., Redhead, P.A.: Operation of an inverted meagnetron gauge in the pressure range 10−3 to 10−12 mm Hg. Can. J. Phys. 36, 271 (1958)

    Article  Google Scholar 

  51. Leck, J.H.: Sorption and desorption of gas in the cold-cathode ionization gauge. J. Sci. Instrum. 30, 271 (1953)

    Article  Google Scholar 

  52. Barnes, G., Gaines, J., Kees, J.: Relative sensitivity and pumping rate of the redhead magnetron gauge. Vacuum 12, 141 (1962)

    Article  Google Scholar 

  53. Rhodin, T.N., Rovner, L.H.: Gas-metal reactions in oxygen at low pressures. Trans. 7th Nat. Symp. Vac. Technol. 228 (1960)

    Google Scholar 

  54. Kornelsen, E.V.: A small ionic pump employing metal evaporation. Trans. 7th Nat. Symp. Vac. Technol. 29 (1960)

    Google Scholar 

  55. Li, D., Jousten, K.: Comparison of some metrological characteristics of hot and cold cathode ionization gauges. Vacuum 70, 531–541 (2003)

    Article  Google Scholar 

  56. Li, D., Jousten, K.: Comparison of the stability of hot and cold cathode ionization gauges. J. Vac. Sci. Technol. A 21, 937–946 (2003)

    Article  Google Scholar 

  57. Jousten, K.: Comparison of the sensitivities of ionization gauges to hydrogen and deuterium. Vacuum 46, 9–12 (1995)

    Article  Google Scholar 

  58. Jousten, K.: Temperature corrections for the calibration of vacuum gauges. Vacuum 49, 81–87 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Jousten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this entry

Cite this entry

Jousten, K. (2017). Ionisationsvakuummeter. In: Jousten, K. (eds) Handbuch Vakuumtechnik. Springer Reference Technik . Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-13403-7_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-13403-7_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-13403-7

  • Online ISBN: 978-3-658-13403-7

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics