Skip to main content

Passive Sorptionspumpen

  • Living reference work entry
  • First Online:
  • 360 Accesses

Part of the book series: Springer Reference Technik ((SRT))

Zusammenfassung

In diesem Kapitel werden die Pumpweise und Kenndaten von Adsorptionspumpen, Titansublimationspumpen, Getterpumpen und NEG-Pumpen beschrieben. Diese Pumpen gehören zu den sogennnaten passiven Sorptionspumpen, bei denen die auf sie auftreffenden Gasteilchen durch Physi- oder Chemisorption gebunden werden. Bei Volumengetter wird zusätzlich der Effekt der Diffusion in das Absorbermaterial genutzt.

This is a preview of subscription content, log in via an institution.

Literatur

  1. Grubner, D.M., et al.: Molekularsiebe. VEB Deutscher Verlag der Wissenschaften, Berlin (1968)

    Google Scholar 

  2. Dobrozemsky, R.: Vakuum-Technik 22, 41–48 (1973)

    Google Scholar 

  3. Visser, J., Scheer, J.J.: Ned. Tijdschrift Vac. Techn. 11, 17–25 (1973)

    Google Scholar 

  4. Turner, F.T., Feinleib, M.: Eighth National Vacuum Symposium and Second International Congress on Vacuum Congress. Pergamon Press, Oxford (1961)

    Google Scholar 

  5. Stern, S.A., Paolo, F.S.: J. Vac. Sci. Techn. 4, 347–355 (1967)

    Article  Google Scholar 

  6. Windsor, E.E.: Physik und Technik von Sorptions- und Desorptionsvorgängen bei niederen Drücken, S. 278–283. Rudolf A. Lang Verlag, Esch (1963)

    Google Scholar 

  7. Creek, D.M., et al.: J. Sci. Instr. (J. Phys. E) 2, 582–584 (1968)

    Article  Google Scholar 

  8. Miller, H.C.: Gas desorption temperatures of two molecular sieves. J. Vac. Sci. Techn. 10, 859–861 (1973)

    Article  Google Scholar 

  9. Sancrotti, M., Trezzi, G., Manini, P.: An x-ray photoemission spectroscopy investigation of thermal activation induced changes in surface composition and chemical bonds of two gettering alloys: Zr2Fe versus Zr57V36Fe7. J. Vac. Sci. Techn. A 9, 182 (1991). https://doi.org/10.1116/1.577518

    Article  Google Scholar 

  10. Ichimura, K., Matsuyama, M., Watanabe, K.: Alloying effect on the activation processes of Zr-alloy getters. J. Vac. Sci Techn. A 5(2), 220–225 (1987). https://doi.org/10.1116/1.574107

    Article  Google Scholar 

  11. Ferrario, B.: Getters and Getter pumps, Kapitel 5. In: Lafferty, J.M. (Hrsg.) Foundations of Vacuum Science and Technology, S. 261–315. Wiley, New York (1998)

    Google Scholar 

  12. Benvenuti, C., et al.: Vacuum properties of TiZrV non-evaporable getter films. Vacuum 60, 57–65 (2001). https://doi.org/10.1016/S0042-207X(00)00246-3

    Article  Google Scholar 

  13. Giannantonio, R., et al.: Design and characterization of high capacity nonevaporable getter pumps embedded inside the interaction regions of DAΦNE. J. Vac. Sci. Technol. A 17, 2093–2098 (1999). https://doi.org/10.1116/1.581731

    Article  Google Scholar 

  14. Luo, X., Bornschein, L., Day, C., Wolf, J.: KATRIN NEG pumping concept investigation. Vacuum 81, 777–781 (2007). https://doi.org/10.1016/j.vacuum.2005.11.053

    Article  Google Scholar 

  15. Boffito, C., et al.: An update of non-evaporable getters in electron tubes. Vakuum-Technik 35, 212–217 (1986)

    Google Scholar 

  16. Juhr, W.: Einsatz von Gettern zur Aufrechterhaltung von Vakua. In: Kerske, et al. (Hrsg.) Vakuumtechnik in der industriellen Praxis, S. 145–169. Expert Verlag, Ehningen (1987)

    Google Scholar 

  17. Sertore, D., et al.: Use of non evaporable getter pumps to ensure long term performances of high quantum efficiency photocathodes. J. Vac. Sci. Technol. A 32, 031602 (2014). https://doi.org/10.1116/1.4867488

    Article  Google Scholar 

  18. Manini, P. et al.: A novel approach in UHV pumping of accelerators, the NEXTorr pump. In: Proceedings of IPAC’11, San Sebastian, 04–09.09.2011, S. 1536. (2011)

    Google Scholar 

  19. Ao, H. et al.: Annular-ring coupled structure linac for the J-PARC linac energy upgrade. In: Proceedings of IPAC’13, Shanghai, 12–17.05.2013, S. 3845. (2013)

    Google Scholar 

  20. Hsiung, G.Y., et al.: Vacuum systems for the TPS accelerator. Vacuum 121, 245 (2015)

    Article  Google Scholar 

  21. Bizen, T. et al.: The present status of vacuum system of XFEL in SPring-8. In: Proceedings of IPAC’11, San Sebastian, 04–09.09.2011, S. 1542. (2011)

    Google Scholar 

  22. Garion, C.: Simulations and vacuum tests of a CLIC accelerating structure In: Proceedings of IPAC’11, San Sebastian, 04–09.09.2011, S. 1569. (2011)

    Google Scholar 

  23. Kasuya, K., et al.: Stabilization of a tungsten <310>cold field emitter. J. Vac. Sci. Technol. B 28, L55 (2010)

    Article  Google Scholar 

  24. Manini, P., et al.: A novel route to compact, high performance pumping in UHV-XHV vacuum systems. Vacuum 94, 26–29 (2013)

    Article  Google Scholar 

  25. Maccallini, E., et al.: New Approach to meet vacuum requirements in UHV/XHV systems by Non Evaporable Getter Technology. J. Phys. Conf. Ser. 390, 012006 (2012)

    Article  Google Scholar 

  26. US patent 8,287,247 B (Oct. 212)

    Google Scholar 

  27. Ciovati, G., et al.: Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump. Nucl. Inst. Methods Phys. Res. A 842, 92–96 (2017)

    Article  Google Scholar 

  28. Kienel, G., Lorenz, A.: Eine Getterpumpe für technische Verwendungszwecke. Vakuum-Technik 9, 1–6 (1960)

    Google Scholar 

  29. Gupta, A.K., Leck, J.H.: An evaluation of the titanium sublimation pump. Vacuum 25, 362–372 (1975)

    Article  Google Scholar 

  30. Eisworth, L., Holland, L., Laurensen, L.: The sorption of N2, H2 and D2 on titanium films at 20°C and −190°C. Vacuum 15, 337–345 (1965)

    Article  Google Scholar 

  31. Wagener, S.: Z. angew. Physik 6, 433–442 (1954)

    Google Scholar 

  32. Lückert, J.: Untersuchung zur Gasaufnahme durch aufgedampfte Titanschichten. Vakuum-Technik 10, 1 und 40 (1961)

    Google Scholar 

  33. Ehrke, L.F., Slack, C.M.: An Investigation into the gettering powers of various metals for the gases hydrogen, oxygen, nitrogen, carbon dioxide and air. J. Appl. Phys. 11, 129 (1940)

    Article  Google Scholar 

  34. Strubin, P.: Study of a new method to control precisely the evaporation rate of titanium sublimation pumps. J. Vac. Sci. Techn. 17, 1216–1220 (1980)

    Article  Google Scholar 

  35. McCracken, A.M., Pashley, N.A.: Titanium filaments for sublimation pumps. J. Vac. Sci. Techn. 3, 96–98 (1966)

    Article  Google Scholar 

  36. Blechschmidt, D., Unterlechner, W.: Prototyp Vakuum-Sektor für das große Speicherring-Projekt des CERN. Vakuum-Technik 28, 130–135 (1979)

    Google Scholar 

  37. Sweetman, D.R.: The achievement of very high pumping speeds in the UHV region. Nucl. Instr. Meth. 13, 317 (1961)

    Article  Google Scholar 

  38. Grigorov, G.I., Tzatzov, K.K.: Theory of getter pump evaluation. Sticking coefficients of common gases on continuously deposited getter films. Vacuum 33, 139 (1983)

    Article  Google Scholar 

  39. Grigorov, G.I.: Apparent and real values of common gas sticking coefficients on titanium films and application to getter pump devices with periodic active films renovation. Vacuum 34, 513 (1984)

    Article  Google Scholar 

Weiterführende Literatur

  1. Ferrario, B., et al.: A new generation of porous non-evaporable getters. Vacuum 35, 13 (1985)

    Article  Google Scholar 

  2. Benvenuti, C., Francia, F.: Room-temperature pumping characteristics of a Zr-Al non-evaporable getter for individual gases. J. Vac. Sci. Techn. A 6(4), 2528–2534 (1988)

    Article  Google Scholar 

  3. Boffito, C., et al.: Gettering in cryogenic applications. J. Vac. Sci. Techn. A 5(4), 3442–3445 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Jousten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this entry

Cite this entry

Jousten, K., Manini, P. (2017). Passive Sorptionspumpen. In: Jousten, K. (eds) Handbuch Vakuumtechnik. Springer Reference Technik . Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-13403-7_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-13403-7_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-13403-7

  • Online ISBN: 978-3-658-13403-7

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics