Advertisement

Mikroströmungen

  • Peter Ehrhard
Living reference work entry
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Das Kapitel Mikroströmungen behandelt Strömungen durch sehr kleine Kanäle und um sehr kleine Objekte und ist Teil des Lehrbuches und Nachschlagewerkes H. Oertel jr. Prandtl-Führer durch die Strömungslehre. Nach einigen exemplarischen Anwendungen der Mikroströmungen, werden für Gase und Flüssigkeiten separat die Grenzen der kontinuumsmechanischen Behandlung diskutiert. Molekulare und Kontinuums-Modelle werden zusammen mit den adäquaten Randbedingungen für Mikroströmungen erläutert.Weitergehend werden aus einer Ähnlichkeitsdiskussion die Konsequenzen der Verkleinerung abgeleitet und spezielle Effekte wie die Elektrokinetik, die (dynamische) Benetzung und dünne Filme abgehandelt. Schließlich wird der Stand der Literatur zum Druckverlust, zur laminar-turbulenten Transition und zum Wärmeübergang in Mikrorohren dargestellt.

Literatur

Auswahl an Literatur

  1. Abraham, F.F.: The interfacial density profile of a lennard-jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: a Monte Carlo simulation. J. Chem. Phys. 68, 3713 (1978)CrossRefGoogle Scholar
  2. Adams, T.M., Abdel-Khalik, S.I., Jeter, S.M., Qureshi, Z.H.: An experimental investigation of single-phase forced convection in microchannels. Int. J. Heat Mass Transf. 41, 851–857 (1998)CrossRefGoogle Scholar
  3. Barz, D.P.J.: Ein Beitrag zur Modellierung und Simulation elektrokinetischer Transportprozesse in mikrofluidischen Einheiten. Dissertation, Universität Karlsruhe (2005)Google Scholar
  4. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar
  5. Bird, G.A.: Molecular Gas Dynamics. Claredon Press, Oxford (1976)Google Scholar
  6. Brutin, D., Topin, F., Tadrist, L.: Transient method for the liquid laminar flow friction factor in microtubes. AIChE J. 49, 2759–2767 (2003)CrossRefGoogle Scholar
  7. Burgreen, D., Nakache, F.: Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68, 1084–1091 (1964)CrossRefGoogle Scholar
  8. Chan, D.Y.C., Horn, R.G.: The drainage of thin liquid films between solid surfaces. J. Chem. Phys. 83, 5311–5324 (1985)CrossRefGoogle Scholar
  9. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)MATHGoogle Scholar
  10. Celata, G.P., Cumo, M., Marconi, V., McPhail, S.J., Zummo, G.: Microtube liquid single-phase heat transfer in laminar flow. Int. J. Heat Mass Transf. 49, 3538–3546 (2006)CrossRefGoogle Scholar
  11. Celata, G.P., Cumo, M., McPhail, S.J., Zummo, G.: Single-phase laminar and turbulent heat transfer in smooth and rough microtubes. Microfluid Nanofluid 3, 697–707 (2007)CrossRefGoogle Scholar
  12. Choi, S.B., Barron, R.F., Warrington, R.O.: Fluid flow and heat transfer in microtubes. ASME AMD-DSC 32, 123–134 (1991)Google Scholar
  13. Craig, V.S.J., Neto, C., Williams, D.R.M.: Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett. 87(5), 054504 (2001)CrossRefGoogle Scholar
  14. de Gennes, P.G.: Wetting: Statistics and dynamics. Rev. Mod. Phys. 57, 827 (1985)CrossRefGoogle Scholar
  15. Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Z. 24, 185–206 (1923)MATHGoogle Scholar
  16. Derzko, N.A.: Review of Monte Carlo methods in kinetic theory. UTIAS Review 35, University of Toronto (1972)Google Scholar
  17. Dongqing, Li: Electrokinetics in Microfluidics. Elsevier, London (2004)Google Scholar
  18. Dussan, E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11, 371 (1979)CrossRefGoogle Scholar
  19. Dussan, E.B., Davis, S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 50, 977 (1974)MATHGoogle Scholar
  20. Fritz, G.: Über den dynamischen Randwinkel im Fall der vollständigen Benetzung. Z. Angew. Physik 19, 374 (1965)Google Scholar
  21. Gad-el-Hak, M.: The fluid mechanics of microdevices – the Freeman scholar lecture. J. Fluids Engineering 121, 5–33 (1999)CrossRefGoogle Scholar
  22. Gad-el-Hak, M.: Flow physics. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006)Google Scholar
  23. Gee, M.L., McGuiggan, P.M., Israelachvili, J.N., Homola, A.M.: Liquid to solidlike transition of molecularly thin films under shear. J. Chem. Phys. 93, 1895–1906 (1990)CrossRefGoogle Scholar
  24. Green, H.: The Structure of Liquids. S. Flügge, (Hrsg.), Handbuch der Physik, Bd. 10. Springer, Berlin (2002)Google Scholar
  25. Herwig, H.: Flow and heat transfer in micro systems: is everything different or just smaller? Z. Angew. Math. Mech. 82, 579–586 (2002)MathSciNetCrossRefMATHGoogle Scholar
  26. Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P.: Fluid flow in micro-channels. Int. J. Heat Mass Transf. 48, 1982–1998 (2005a)CrossRefGoogle Scholar
  27. Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P.: Heat transfer in micro-channels: comparison of experiments with theory and numerical results. Int. J. Heat Mass Transf. 48, 5580–5601 (2005b)CrossRefGoogle Scholar
  28. Hoffman, R.L.: A study of the advancing interface. I. Interface shape in liquid-gas system. J. Colloid Interface Sci. 50, 228 (1975)CrossRefGoogle Scholar
  29. Hunter, R.J.: Zeta Potential in Colloid Science: Principles and Applications. Accademic, London (1981)Google Scholar
  30. Ivanov, M.S., Rogasinsky, S.V.: Theoretical analysis of traditional and modern schemes of the DSMC method. In: Proceedings of the 17th RGD Symposium, Bd. 1, Verlag Chemie, Aachen (1991)Google Scholar
  31. Joseph, P., Tabeling, P.: Direct measurement of the apparent slip length. Phys. Rev. E 71, 035303 (2005)CrossRefGoogle Scholar
  32. Judy, J., Maynes, D., Webb, B.W.: Characterization of frictional pressure drop for liquid flows through microchannels. Int. J. Heat Mass Transf. 45, 3477–3489 (2002)CrossRefGoogle Scholar
  33. Karniadakis, G.E., Beskok, A.: Micro Flows. Fundamentals and Simulation. Springer, New York (2004)MATHGoogle Scholar
  34. Koplik, P.J., Banavar, J.R.: Continuum deductions from molecular hydrodynamics. Ann. Rev. Fluid Mech. 27, 257–292 (1995)CrossRefGoogle Scholar
  35. Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. Lond. 43, 461 (1931)CrossRefGoogle Scholar
  36. Li, Z.X., Du, D.X., Guo, Z.Y.: Experimental study on flow characteristics of liquid in circular micro-tubes. Microscale Thermophys. Eng. 7(3), 253–265 (2003)CrossRefGoogle Scholar
  37. Li, H., Yoda, M.: An experimental study of slip considering the effects of non-uniform colloidal tracer distributions. J. Fluid Mech. 662, 269–287 (2010)CrossRefMATHGoogle Scholar
  38. Lin, T.-Y., Yang, C.-Y.: An experimental investigation on forced convection heat transfer performance in micro tubes by the method of liquid crystal thermography. Int. J. Heat Mass Transf. 50, 4736–4742 (2007)CrossRefGoogle Scholar
  39. Löfdahl, L., Gad-el-Hak, M.: Sensors and actuators for turbulent flows. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Applications, 2. CRC, Boca Raton (2006)Google Scholar
  40. Loose, W., Hess, S.: Rheology of dense model fluids via nonequilibrium molecular dynamics: shear thinning and ordering transition. Rheologica Acta 28, 91–101 (1989)CrossRefGoogle Scholar
  41. Maier, C.: Techniken der Hochgeschwindigkeitsmikrokinematographie zur Bewertung von Mikrodosiersystemen und Mikrotropfen. Fortschritts-Bericht 1037, VDI (2004). Dissertation Universität UlmGoogle Scholar
  42. Manz, A., Becker, H.: Microsystem Technology in Chemistry and Life Sciences. Springer, Berlin (1999)Google Scholar
  43. Maxwell, J.: On stresses in rarefied gases arising from inequalities of temperature. Philos. Trans. R. Soc. 170(1), 231–256 (1879)CrossRefMATHGoogle Scholar
  44. Meisel, I., Ehrhard, P.: Electrically-excited (electroosmotic) flows in microchannels for mixing applications. Eur. J. Mech. B: Fluids 25, 491–504 (2006)MathSciNetCrossRefMATHGoogle Scholar
  45. Moss, J.N., Bird, G.A.: Direct simulation of transitional flow for hypersonic reentry conditions. 84-0223, AIAA (1984)Google Scholar
  46. Nanbu, K.: Numerical simulation of Boltzmann flows of real gases – accuracy of models used in the Monte Carlo method. Rep. Inst. Fluid Science 4, Tohoku University, Sendai (1992)Google Scholar
  47. Oertel, H., jr.: Aerothermodynamik. Springer, Berlin/Heidelberg (1994). Universitätsverlag, Karlsruhe (2005)Google Scholar
  48. Oron, A.: Physics of thin liquid films. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006)Google Scholar
  49. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Modern Phys. 69, 931–980 (1997)CrossRefGoogle Scholar
  50. Overbeek, J.T.G.: Electrokinetic phenomena. In: Kruyt, H.R. (Hrsg.) Colloid Science, Bd. 1. Elsevier, Amsterdam (1952)Google Scholar
  51. Probstein, R.F.: Physicochemical Hydrodynamics. Wiley, New York (1994)CrossRefGoogle Scholar
  52. Ramos, A., Morgan, H., Green, N.G., Castellanos, A.: AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 31, 2338–2353 (1998)CrossRefGoogle Scholar
  53. Rice, C.L., Whitehead, R.: Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69, 4017–4024 (1965)CrossRefGoogle Scholar
  54. Rose, W., Heins, R.W.: Moving interfaces and contact angle rate-dependency. J. Colloid Sci. 17, 39 (1962)CrossRefGoogle Scholar
  55. Schaaf, S.A., Chambré, P.L.: Flow of Rarefied Gases. Princeton University Press, Princeton (1961)MATHGoogle Scholar
  56. Schubert, K., Brandner, J.J., Fichtner, M., Linder, G., Schygulla, U., Wenka, A.: Microstructure devices for applications in thermal and chemical process engineering. J. Microscale Thermophys. Eng. 5, 17–39 (2001)CrossRefGoogle Scholar
  57. Schwartz, A.M., Tajeda, S.B.: Studies of dynamic contact angles on solids. J. Colloid Interface Sci. 38, 359 (1972)CrossRefGoogle Scholar
  58. Sharp, K.V., Adrian, R.J.: Transition from laminar to turbulent flow in liquid filled microtubes. Exp. Fluids 36, 741–747 (2004)CrossRefGoogle Scholar
  59. Sharp, K.V., Adrian, R.J., Santiago, J.G., Molho, J.I.: Liquid flows in microchannels. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006)Google Scholar
  60. Shih, J.C., Ho, C.-M., Liu, J., Tai, Y.-C.: Non-linear pressure distribution in uniform microchannels. ASME AMD-MD, 238 (1995)Google Scholar
  61. Sobhan, C., Garimella, S.V.: A comparative analysis of studies on heat transfer and fluid flow in microchannels. J. Microscale Thermophys. Eng. 5, 293–311 (2001)CrossRefGoogle Scholar
  62. Tanner, L.H.: The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 1473 (1979)CrossRefGoogle Scholar
  63. Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)CrossRefGoogle Scholar
  64. Tretheway, D.C., Meinhart, C.D.: Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9–L12 (2002)CrossRefGoogle Scholar
  65. Vallet, M., Berge, B., Vovelle, L.: Electrowetting of water and aqueous solutions on Polyethylene Terephthalate insulating films. Polymer 37, 2465–2470 (1996)CrossRefGoogle Scholar
  66. Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  67. Yu, D., Warrington, R., Barron, R., Anieel, T.: An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. In: Proceedings of the ASME/JSME Thermal Engineering Conference, Hawaii, Bd. 1, 523–530 (1995)Google Scholar
  68. Zheng, S., Tai, Y.C.: Streamline based design of a MEMS device for continuous blood cell separation. In: Twelth Hilton Head Workshop on the Science and Technology of Solid-state Sensors, Actuators, and Microsystems, Hilton Head, Bd. 1 (2006)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.Bio- u. ChemieingenieurwesenTechnische Universität DortmundDortmundDeutschland

Personalised recommendations