Advertisement

Angeborene Gefäßanomalien

  • J. BreuerEmail author
  • D. Lang
Living reference work entry

Later version available View entry history

  • 101 Downloads
Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Es gibt zahlreiche Abweichungen von der normalen Entwicklung des Aortenbogens und der Pulmonalarterie, aber nur wenige sind bedeutsam. Die wichtigsten sind diejenigen, die den Ösophagus und die Trachea durch einen Gefäßring oder eine Schlinge einschnüren.

1 Vaskulärer Ring

Definition

Es gibt zahlreiche Abweichungen von der normalen Entwicklung des Aortenbogens und der Pulmonalarterie, aber nur wenige sind bedeutsam. Die wichtigsten sind diejenigen, die den Ösophagus und die Trachea durch einen Gefäßring oder eine Schlinge einschnüren. Dies sind:
  1. 1.

    der doppelte Aortenbogen ,

     
  2. 2.

    der rechte Aortenbogen mit aberrierender linker A. subclavia inklusive linkem Ductus arteriosus/Ligamentum arteriosum,

     
  3. 3.

    die anomale linke A. pulmonalis oder pulmonalarterielle Schlinge .

     

Anatomie

Beim doppelten Aortenbogen teilt sich die Aorta ascendens vor der Trachea in einen rechten und linken Bogen, die an beiden Seiten der Trachea vorbeiziehen. Gewöhnlich ist der rechte Bogen größer als der linke. Er zieht hinter dem Ösophagus zur linken Seite und konfluiert dort mit dem linken Bogen, der gelegentlich nur als bindegewebiger Strang ausgebildet ist, zur Aorta descendens. Auf diese Weise wird ein vollständiger Ring gebildet, in dem der meist linksseitige Ductus zwar kein essenzieller Bestandteil ist, jedoch je nach Länge die Konstriktion des Rings reguliert.

Beim rechten Aortenbogen mit Fehlabgang von linker A. subclavia und Ductus führt der Bogen rechts an der Trachea vorbei und deszendiert rechts der Wirbelsäule. Als erstes Gefäß vom Aortenbogen entspringt die linke A. carotis, als 4. Gefäß die linke A. subclavia zusammen mit dem Ductus/Ligamentum aus dem Kommerel-Divertikel von der Aorta descendens. Die linke A. subclavia zieht hinter dem Ösophagus zum linken Arm, der linke Ductus zur linken A. pulmonalis und schließt so den Ring um Trachea und Ösophagus, der nur dann Symptome verursacht, wenn der Ductus kurz ist.

Klinische Symptome

Bei Patienten mit doppeltem Aortenbogen treten durch Kompression der Trachea bereits im frühen Säuglingsalter schwerwiegende Symptome mit Stridor, Dyspnoe und bellendem Husten auf, die bei Fütterung, Anstrengung oder Infektion kritisch verstärkt werden. Eine Reflexapnoe kann durch Fütterung ausgelöst werden. Bei älteren Kindern können die Symptome als Asthma fehlgedeutet werden. Symptome von Seiten der Ösophaguskompression sind meist wenig ausgeprägt und uncharakteristich. Patienten mit rechtem Aortenbogen und anomalem Abgang der linken A. subclavia sind meist asymptomatisch. Treten jedoch bei kurzem Ductus Symptome auf, sind sie ähnlich wie beim doppelten Aortenbogen.

Diagnose

Mittels Bronchoskopie kann die Morphologie der Trachealstenose erfasst und im MRT bzw. CT die Gefäßanatomie und ihre räumliche Beziehung zur Trachea und zum Ösophagus dargestellt werden

Therapie

Eine Operation ist indiziert, wenn Symptome auftreten: Durchtrennung des kleineren, meist linken Bogens beim doppelten Aortenbogen, Dissektion des linken Ductus bzw. Ligamentum beim rechten Aortenbogen mit aberrierender linker A. subclavia. Bei asymptomatischen Patienten mit rechtem Bogen und aberrierender linker A. subclavia besteht kein Behandlungsbedarf. Die Operationsmortalität ist mit weniger als 1% gering, frühpostoperativ können infolge Tracheomalazie noch Symptome bestehen, die nach einigen Wochen verschwinden.

2 Gefäßschlinge

Definition

Die anomale linke Pulmonalarterie oder pulmonalarterielle Schlinge ist eine seltene kongenitale Anomalie, bei der die linke A. pulmonalis anomal von der rechten A. pulmonalis entspringt und hinter der Trachea und vor dem Ösophagus zur linken Lunge zieht (Abb. 1). Der Verlauf des anomalen Gefäßes verursacht eine Kompression des rechten Hauptbronchus und/oder der Trachea und eine Deviation der Trachea nach links. Assoziierte kongenitale kardiale Anomalien finden sich in der Hälfte der Patienten, extrakardiale Anomalien, vor allem der Lunge und der kartilaginären Anteile der Trachea und Bronchien bei über der Hälfte der Betroffenen.
Abb. 1

Herzschema einer Pulmonalarterienschlinge

Klinische Symptome und Diagnose

In- und exspiratorischer Stridor , Dyspnoe und häufige bronchopulmonale Infektionen treten bereits im frühen Säuglingsalter auf. Aufgrund der trachealen und/oder bronchialen Obstruktion findet man radiologisch eine Überblähung oder Atelektase der rechten oder der linken Lunge. Zur Sicherung der Diagnose und Darstellung begleitender kardialer Fehlbildungen bieten sich Echokardiografie, MRT und CT an. Außerdem ist eine Bronchoskopie indiziert.

Therapie

Das übliche Verfahren ist die Abtrennung der anomalen linken A. pulmonalis von der rechten und Reanastomosierung vor der Trachea. Gegebenenfalls müssen in gleicher Sitzung stenotische Trachealringe reseziert werden. Für den postoperativen Verlauf sind die tracheobronchialen Fehlbildungen von Bedeutung.

3 Abnormer Ursprung der linken Koronararterie aus der A. pulmonalis (Bland-White-Garland-Syndrom )

Epidemiologie

Mit einer Häufigkeit von weniger als 1% ist der abnorme Ursprung der linken Koronararterie aus der A. pulmonalis (Abb. 2) eine seltene Fehlbildung, für den Kinderarzt und Kinderkardiologen aber die wichtigste Koronaranomalie und ein bedeutsames Krankheitsbild in der Differenzialdiagnose myokardialer Erkrankungen.
Abb. 2

Herzschema eines Fehlabgangs der linken Koronararterie aus der A. pulmonalis

Pathophysiologie

Mit Abfall des Lungengefäßwiderstandes nach der Geburt und Absinken des Perfusionsdrucks in der anomalen linken Koronararterie übernehmen Kollateralen der rechten Koronararterie die Myokardperfusion des Versorgungsgebietes der linken. Kehrt sich schließlich der Fluss in der linken Koronarie um, kommt es zu einem Steal-Effekt mit inadäquater Myokardperfusion, die im EKG sichtbar wird. Das ischämische Myokard verliert seine Kontraktionskraft, und der linke Ventrikel dilatiert. Sind die linksseitigen Papillarmuskeln betroffen, kommt eine Mitralinsuffizienz hinzu. Manche Patienten entwickeln aufgrund guter Kollateralisation eine adäquate Myokardperfusion und werden erst im Kindesalter symptomatisch.

Klinische Symptome

Mehr als die Hälfte der Patienten fallen bereits in den ersten Lebenswochen durch eine Herzinsuffizienz auf und zeigen unspezifische Symptome, wie Unruhe, Blässe und Schreiattacken. Bei symptomatischen Patienten ist im EKG fast immer der Befund eines anterolateralen Myokardinfarkts zu erheben. Eine Kardiomegalie mit normaler Lungenperfusion im Thoraxröntgenbild weist auf eine primäre Myokarderkrankung hin. Als Faustregel gilt, dass bei allen Patienten mit unklarer Myokarderkrankung der Ursprung der Koronararterien geklärt werden muss. Dies gelingt in einem hohen Prozentsatz mittels zweidimensionaler Echokardiografie inklusive Farbdoppler, am sichersten jedoch angiokardiografisch. Nach Darstellung einer großen rechten Koronararterie füllt sich über Kollerateralgefäße die linke Koronararterie, die in die A. pulmonalis drainiert. Der linke Ventrikel ist dilatiert und kontrahiert schlecht, die Mitralklappe ist häufig insuffizient.

Therapie

Therapeutisches Ziel ist die chirurgische Korrektur mit Verpflanzung der linken Koronararterie in die Aorta, um eine antegrade Perfusion herzustellen. Eine Ligatur des Gefäßes zur Vermeidung eines Steal-Phänomens mag bei kleiner linker Koronararterie die einzige Option sein, sie stellt jedoch im Allgemeinen keine Alternative dar. Unbehandelt versterben 65–85% der Patienten vor Ablauf des 1. Lebensjahres an einer Herzinsuffizienz. Bei einigen Kindern entwickeln sich ausgeprägte interkoronare Kollateralen, die über eine verbesserte Myokardperfusion eine Abnahme der Herzinsuffizienz bewirken. Das Risiko eines plötzlichen Herztodes bleibt jedoch bestehen.

4 Abnormer Ursprung der linken Koronararterie aus dem rechten Sinus Valsalvae

Definition

Die linke Koronarartarie entspringt aus dem rechten Sinus Valsalvae und zieht zwischen Aorta und A. pulmonalis nach hinten und links. Auf diesem Weg wird sie von den beiden großen Gefäßen komprimiert, wodurch der Abgangswinkel verkleinert und das Lumen kritisch eingeengt wird. Patienten mit dieser seltenen Anomalie sind gefährdet, einen plötzlichen Tod zu erleiden.

Klinische Symptome

In der Regel sind die Patienten asymptomatisch, wenngleich unter körperlicher Anstrengung Angina-pectoris-ähnliche Symptome oder präsynkopale Zustände auftreten können.

Bei Patienten mit verdächtigen Symptomen ist eine diagnostische Evaluierung mit Belastungs-EKG, Echokardiografie und Koronarangiografie indiziert und, falls sich der Verdacht bestätigt, eine chirurgische Umverpflanzung der linken Koronararterie erforderlich, um einem plötzlichen Tod vorzubeugen, der besonders häufig bei jungen Sportlern auftritt.

5 Koronararterielle Fisteln

Definition und Epidemiologie

Koronararterielle Fisteln sind Verbindungen zwischen der rechten oder linken Koronararterie mit dem rechten oder linken Vorhof, dem rechten oder linken Ventrikel, der A. pulmonalis, der V. cava superior und dem Sinus coronarius. Ihre Prävalenz wird mit 0,2–0,4% aller angeborenen Herzfehler angenommen.

Anatomie

Die häufigste Verbindung ist die zum rechten Ventrikel, gefolgt vom rechten Vorhof, der in zwei Dritteln der Fälle mit der rechten Koronararterie kommuniziert. Die beteiligte Koronararterie ist gewöhnlich dilatiert, geschlängelt oder aneurysmatisch erweitert und hat eine oder mehrere Mündungen.

Klinische Symptome

Die Symptome sind abhängig von der Größe der Fistel und dem Shuntvolumen. Es können eine Herzinsuffizienz, eine belastungsabhängige Myokardischämie durch ein sog. Steal-Phänomen oder eine Endokarditis auftreten. Der Hauptbefund ist ein kontinuierliches systolisch-diastolisches Geräusch, wie beim offenen Ductus arteriosus, das im Gegensatz zu diesem am lautesten am rechten oder linken Sternalrand zu hören ist. Echokardiografie inklusive Farbdoppler lassen die Anomalie erkennen. Weitere anatomische Details liefert die Koronarangiografie. Wegen der Größenzunahme mit dem Alter ist ein operativer oder interventioneller Verschluss angezeigt. Bei größeren Fisteln ist ein interventioneller oder – seltener – chirurgischer Verschluss indiziert.

6 Angeborene Gefäßfisteln

Angeborene Gefäßfisteln sind Kurzschlüsse zwischen Arterien und Venen, die das Kapillarbett umgehen und im systemischen wie im pulmonalen Kreislauf vorkommen.

6.1 Systemische Fisteln

Die systemischen Fisteln sind meist intrakraniell, in der Leber, im Bereich der Extremitäten und nahe der Thoraxwand lokalisiert. Am häufigsten sind intrakranielle Fisteln mit Einschluss der V. cerebri magna (Galeni) und die arteriovenöse Fistel der Leber, die auch als Hämangiom oder Hämangioendotheliom beschrieben wird.

Physiologie und klinische Symptome

In der systemischen Zirkulation haben die arteriovenösen Fisteln einen Links-rechts-Shunt zur Konsequenz, der abhänging von der Größe der Fistel durch Volumenüberlastung zur Herzinsuffizienz führen kann, die sich bereits intrauterin als Hydrops fetalis oder unmittelbar nach der Geburt manifestiert. Weitere Symptome sind abhängig von der Lokalisation und Größe der beteiligten Gefäße.

Mithilfe der Echokardiografie und des farbcodierten Dopplers sind die Fisteln bereits intrauterin zu erkennen und hämodynamisch zu beurteilen, nach der Geburt kommen auch alle anderen bildgebenden Techniken zur Anwendung.

Je früher eine Herzinsuffizienz auftritt, umso schlechter ist die Prognose und die Aussicht, die zuführenden Gefäße chirurgisch oder interventionell zu verschließen. Fisteln der V. Galeni können durch Raumforderung auch zu einem späteren Zeitpunkt Probleme verursachen, hepatische Fisteln können sich mit der Zeit spontan oder unter dem Einfluss von Medikamenten zurückbilden.

6.2 Pulmonale Fisteln

Arteriovenöse Fisteln der Lunge kommen als Kurzschluss zwischen großen Gefäßen vor oder sind multiple, kleine Fisteln, die diffus über die gesamte Lunge verstreut sind. Letztere treten in Verbindung mit Teleangiektasien der Haut als Teil der Osler-Weber-Rendu-Krankheit auf, deren Ätiologie ungeklärt ist.

Pathophysiologie

Durch die Umgehung des Lungenkapillarbettes wird systemvenöses Blut oxygeniertem pulmonalvenösem Blut beigemischt und eine arterielle Untersättigung hervorgerufen. Darüber hinaus ergeben sich keine Konsequenzen für Herz und Kreislauf, wenn man von den Folgen der Untersättigung absieht.

Klinische Symptome und Therapie

Leitsymptom ist eine zentrale Zyanose, die von der Größe des intrapulmonalen Rechts-links-Shunts abhängt. Isolierte große Fisteln können ein kontinuierliches Geräusch verursachen und sich radiologisch als Transparenzminderung darstellen. Eine Herzkatheteruntersuchung mit Angiografie liefert die notwendigen anatomischen Details, um die Behandlung, in Form einer Lobektomie bei lokalisierten Läsionen oder in Form von interventionellen Verschlussmethoden mit Spiralen oder Verschlussstopfen bei multiplen Fisteln, durchzuführen. In den meisten Fällen ist eine elektive Behandlung jenseits des Säuglingsalters möglich.

Literatur

  1. Allen HD, Gutgesell HP, Clark EB, Driscoll DJ (2001) Moss and Adams‘ heart disease in infants children and adolescents, 6. Aufl. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. Alsoufi B, Bennetts J, Verma S, Caldarone CA (2007) New developments in the treatment of hypoplastic left heart syndrome. Pediatrics 119:109–117CrossRefPubMedGoogle Scholar
  3. Amark KM, Karamlou T, O’Carroll A et al (2006) Independent factors associated with mortality, reintervention, and achievement of complete repair in children with pulmonary atresia with ventricular septal defect. J Am Coll Cardiol 47:1448–1456CrossRefPubMedGoogle Scholar
  4. Anderson RH, Webb S, Brown NA (1998) Defective lateralisation in children with congenitally malformed hearts. Cardiol Young 8:512–531CrossRefPubMedGoogle Scholar
  5. Apitz J (2002) Pädiatrische Kardiologie, 2. Aufl. Steinkopff, DarmstadtCrossRefGoogle Scholar
  6. Bagtharia R, Trivedi KR, Burkhart HM, Willliams WG, Freedom RM, Van Arsdell GS, McCrindle BW (2004) Outcomes for patients with an aortopulmonary window, and impact of associated cardiovascular lesions. Cardiol Young 14:473–480CrossRefPubMedGoogle Scholar
  7. Balzer DT, Spray TL, McMullin D et al (1993) Endarteriitis associated with a clinically silent ductus arteriosus. Am Heart J 125:1192–1993CrossRefPubMedGoogle Scholar
  8. Bartz PJ, Driscoll DJ, Jearani JA et al (2006) Early and late results of the modified Fontan-operation for heterotaxy syndrome. J Am Coll Cardiol 48:2301–2305CrossRefPubMedGoogle Scholar
  9. Bol-Raap G, Weerheim J, Kappetein AP, Witsenburg M, Bogers AJ (2003) Follow-up after surgical closure of congenital ventricular septal defect. Eur J Cardiothorac Surg 24:511–515CrossRefPubMedGoogle Scholar
  10. Boughman JA, Berg KA, Astemborski JA et al (1987) Familial risks of congenital heart disease in a population based epidemiologic study. Am J Med Genet 26:839–850CrossRefPubMedGoogle Scholar
  11. Buheitel G, Böhm B, Koch A, Trusen B, Hofner G, Singer H (2001) Die Ballondilatation der Pulmonalklappe: Kurz-, mittel- und langfristige Ergebnisse. Z Kardiol 90:503–509CrossRefPubMedGoogle Scholar
  12. Calder L, van Praagh R, van Praagh S et al (1976) Truncus arteriosus communis. Clinical, angiographic and pathologic findings in 100 patients. Am Heart J 92:23–38CrossRefPubMedGoogle Scholar
  13. Castaneda AR, Jonas RA, Mayer JE, Hanley FL (1994) Cardiac surgery of the neonatate and infant. Saunders, PhiladelphiaGoogle Scholar
  14. Chang R-KR, Chen AY, Klitzner TS (2002) Clinical management of infants with hypoplastic left heart syndrome in the United States 1988–1997. Pediatrics 10:292–298CrossRefGoogle Scholar
  15. Chauvaud SM, Fuzellier JF, Houel R, Berrebi A, Mihaileanu S, Carpentier A (1998) Reconstructive surgery in congenital mitral insufficiency (Carpentier‘s technique): long term results. J Thorac Cardiovasc Surg 115:84–93CrossRefPubMedGoogle Scholar
  16. Dallapiccola B, Marino B, Digilio MC et al (1996) The mendelian basis of congenital heart defects. Cardiol Young 6:264–271CrossRefGoogle Scholar
  17. Daubeney PEF, Wang D, Keeton BR, Anderson RH, Slavik Z, Flather M, Webber SA (2005) Pulmonary atresia with intact ventricular septum: predictors of early and medium-term outcome in a population-based study. J Thorac Cardiovasc Surg 130:1071PubMedGoogle Scholar
  18. Deutsche Gesellschaft für Kinder- und Jugendmedizin (Hrsg) (2005) Leitlinien Kinderheilkunde und Jugendmedizin, M Kardiologie (Leitlinien der DGPK). Elsevier, Urban & Fischer, MünchenGoogle Scholar
  19. Devereux RBN (1995) Recent developments in the diagnosis and management of mitral valve prolapse. Curr Opin Cardiol 10:107–116CrossRefPubMedGoogle Scholar
  20. Du ZD, Hijazi ZM, Kleinman CS, Silverman NH, Larntz K, Amplatzer investigators (2002) Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: results of a multicenter nonrandomized trial. J Am Coll Cardiol 39:1836–1844CrossRefPubMedGoogle Scholar
  21. EACTS Congenital Database: http://www.eactscongenitaldb.org/db/public-reports.py?fnc=r42&dbname=ecdb6y2005. Zugegriffen am 06.08.2012
  22. Edwards JE (1948) Anomalies of the derivatives of the aortic arch system. Med Clin North Am 32:925–949PubMedGoogle Scholar
  23. Ewert P, Kretschmar O, Peters B et al (2004) Interventioneller Verschluss angeborener Ventrikelseptumdefekte – Breitere Indikationsstellung dank neuer Implantate. Z Kardiol 93:147–155CrossRefPubMedGoogle Scholar
  24. Ferencz C, Rubin JD, McCarter RJ et al (1987) Cardiac and noncardiac malformations: observations in a population-based study. Teratology 35:367–378CrossRefPubMedGoogle Scholar
  25. Franklin R (1998) The Fontan circulation. In: Redington AN, Brawn WJ, Deanfield JE, Anderson RH (Hrsg) The right heart in congenital heart disease. Greenwich Med Media, London, S 137–144Google Scholar
  26. Friesen CLH, Zurakowski D, Thiagarajan RR, Forbess JM, del Nido PJ, Mayer JE, Jonas RA (2005) Total anomalous pulmonary venous connection: an analysis of current management strategies in a single institution. Ann Thorac Surg 79:596–606CrossRefGoogle Scholar
  27. Galal MO, Wobst A, Halees Z et al (1994) Peri-operative complications following surgical closure of atrial septal defect type II in 232 patients – a baseline study. Eur Heart J 15:1381–1384PubMedGoogle Scholar
  28. Galal MO, Schmaltz AA, Joufan M, Benson L, Samatou L, Halees Z (2003) Balloon dilatation of native aortic coarctation in infancy. Z Kardiol 92:735–741CrossRefPubMedGoogle Scholar
  29. Gilljam T, McCrindle BW, Smallhorn JF, Williams WG, Freedom RM (2002) Outcome of left atrial isomerism over a 28-year period at a single institution. J Am Coll Cardiol 36:908–916CrossRefGoogle Scholar
  30. Greil GF, Schöbinger M, Küttner A et al (2006) Imaging of aortopulmonary collateral arteries with high-resolutin multidetector CT. Pediatr Radiol 36:502–509CrossRefPubMedGoogle Scholar
  31. Griselli M, McGuirk SP, Winlaw DS et al (2004) The influence of pulmonary artery morphology on the results of operations for major aortopulmonary collateral arteries and complex congential heart defects. J Thorac Cardiovasc Surg 127:251–258CrossRefPubMedGoogle Scholar
  32. Hayek E, Gring CN, Griffin BP (2005) Mitral valve prolapse. Lancet 365:507–518CrossRefPubMedGoogle Scholar
  33. Hofbeck M, Rauch A, Leipold G, Singer H (1998) Diagnosis and treatment of pulmonary atresia and ventricular septal defect. Prog Pediatr Cardiol 9:113–118CrossRefGoogle Scholar
  34. Hofbeck M, Bartholomaeus G, Buheitel G et al (1999) Safety and efficacy of interventional occlusion of patent ductus arteriosus with detachable coils: a multicentre experience. Eur J Pediatr 159:331–337CrossRefGoogle Scholar
  35. Hoffman JIE (1995) Congenital anomalies of the coronary vessels and the aortic root. In: Emmanouillides GC, Riemenschneider TA, Allen HD, Gutgesell HP (Hrsg) Heart disease in infants, children and adolescents. Including the fetus and young adult, 5. Aufl. Williams & Wilkins, BaltimoreGoogle Scholar
  36. Jackson M, Walsh KP, Peart I et al (1996) Epidemiology of congenital heart disease in Merseyside – 1979 to 1988. Cardiol Young 6:272–280CrossRefGoogle Scholar
  37. Kaulitz R, Hofbeck M (2005) Current treatment and prognosis in children with functionally univentricular hearts. Arch Dis Child 90:757–762CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kirklin JW, Barrat-Boyes BG (1993) Cardiac surgery, 2. Aufl. Wiley, New YorkGoogle Scholar
  39. Kleinert S, Sano T, Weintraub RG et al (1997) Anatomic features and surgical strategies in double-outlet right ventricle. Circulation 96:1233–1239CrossRefPubMedGoogle Scholar
  40. Koch A, Singer H (2004) Fontan-Zirkulation bei Patienten mit funktionell univentrikulärem Herz. Herzmedizin 21:134–139Google Scholar
  41. Kouchoukos NT, Blackstone EH, Doty DB, Hanley FL, Karp RB (2003) Kirklin/Barrat-Boyes cardiac surgery, 3. Aufl. Elsevier, PhiladelphiaGoogle Scholar
  42. Lorier G, Kalil RAK, Barcellos C et al (2001) Valve repair in children with congenital mitral lesions: late clinical results. Pediatr Cardiol 22:44–52CrossRefPubMedGoogle Scholar
  43. Mahle WT, Visconti KJ, Freier MC et al (2006) Relationship of surgical approach to neurodevelopmental outcomes in hypoplastic left heart syndrome. Pediatrics 117:E90–E97CrossRefPubMedGoogle Scholar
  44. Masamichi O, Böthig D, Görler H, Lange M, Westhoff-Bleck M, Breymann T (2006) Clinical outcome of patients 20 years after Fontan-operation – effect of fenestration on late morbidity. Eur J Card-Thorac Surg 30:923–929CrossRefGoogle Scholar
  45. Mavroudis C, Backer CL (2003) Pediatric cardiac surgery, 3. Aufl. Mosby, St LouisGoogle Scholar
  46. McLean KM, Pearl JM (2006) Pulmonary atresia with intact ventricular septum: initial management. Ann Thorac Surg 82:2214–2220CrossRefPubMedGoogle Scholar
  47. Meisner H, Guenther T (1998) Atrioventriculer septal defect. Pediatr Cardiol 19:276–281CrossRefPubMedGoogle Scholar
  48. Mitchell ME, Ittenbach RF, Gaynor JW, Wernovsky G, Nicolson S, Spray TL (2006) Intermediate outcomes after the Fontan procedure in the current era. J Thorac Cardiovasc Surg 131:172–180CrossRefPubMedGoogle Scholar
  49. Mohammadi S, Belli E, Martinovic I et al (2005) Surgery for right ventricle to pulmonary artery conduit obstruction: risk factors for further reoperation. Eur J Cardiothorac Surg 28:217–222CrossRefPubMedGoogle Scholar
  50. Moore P, Adatia I, Spevak PJ, Keane JF, Perry SB, Castaneda AR, Lock JE (1994) Severe congenital mitral stenosis in infants. Circulation 89:2099–2106CrossRefPubMedGoogle Scholar
  51. Müller-Scholden J, Bürsch J, Wessel A et al (1993) Quantifizierung der postoperativen Pulmonalinsuffizienz: Schweregrad und klinische Symptomatik. Z Kardiol 82:692–699PubMedGoogle Scholar
  52. Neill CA, Zuckerberg AL (1995) Syndromes and congenital heart defects. In: Nichols DG, Cameron DE, Greeley WJ et al (Hrsg) Critical heart disease in infants and children. Mosby, St Louis, S 987–1012Google Scholar
  53. Nichols CA, Cameron DE, Greeley WJ et al (Hrsg) (1995) Critical heart disease in infants and childeren. Mosby, St LouisGoogle Scholar
  54. Nollert G, Fischlein T, Bouterwerk S et al (1997) Longterm survival in patients with repair of tetralogy of Fallot: 36-year follow-up of 490 survivors of the first year after surgical repair. J Am Coll Cardiol 30:1374–1383CrossRefPubMedGoogle Scholar
  55. Nora JJ, Nora AH (1994) From generational studies to a multilevel genetic-environmental interaction. J Am Coll Cardiol 23:1468–1471CrossRefPubMedGoogle Scholar
  56. Obeid AI, Carlson RJ (1995) Evaluation of pulmonary vein stenosis by transeophageal echocardiography. J Am Soc Echocardiogr 8:888–896CrossRefPubMedGoogle Scholar
  57. Ohara N, Mikajima T, Tagaki J, Kato H (1991) Mitral valve prolapse in childhood: the incidence and clinical presentations in different age groups. Acta Paediatr Jpn 33:467–475CrossRefPubMedGoogle Scholar
  58. Peterson C, Schilthuis JJ, Dodge-Khatami A, Hitchcock JF, Meijboom EJ, Bennonk GB (2003) Comparative longterm results of surgery versus balloon valvuloplasty for pulmonary stenosis in infants and children. Ann Thorac Surg 76:1078–1082CrossRefPubMedGoogle Scholar
  59. Reddy VM, McElhinney DB, Silverman NH, Hanley FL (1997) The double switch for anatomical repair of congenitally corrected transposition of the great arteris in infants and children. Eur Heart J 18:1470–1477CrossRefPubMedGoogle Scholar
  60. Reddy VM, McElhinney DB, Amin Z, Moore P, Parry AJ, Teitel DF, Hanley FL (2000) Early and intermediate outcomes after repair of pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries. Circulation 101:1826CrossRefPubMedGoogle Scholar
  61. Roos-Hesselink MFJ, Spitaels SEC et al (2003) Excellent survival and low incidence of arrhythmias, stroke and heart failure long-term after surgical ASD closure at young age. A prospective follow-up study of 21–33 years. Eur Heart J 24:190–197CrossRefPubMedGoogle Scholar
  62. Roos-Hesselink MFJ, Spitaels SEC et al (2004) Outcome of patients after surgical closure of ventricular septal defect at young age: longitudinal follow-up of 22–34 years. Eur Heart J 25:1057–1062CrossRefPubMedGoogle Scholar
  63. Samanek M, Slavik Z, Zborilova B et al (1989) Prevalence, treatment, and outcome of heart disease in live-born children: a prospective analysis of 91,823 live-born children. Pediatr Cardiol 10:205–211CrossRefPubMedGoogle Scholar
  64. Schmaltz AA, Reidemeister JC, Neudorf U, Doetsch N, Hentrich F (1994) Restshunts nach chirurgischer Ductusligatur. Z Herz Thorax Gefäßchir 8:91–94Google Scholar
  65. Schmaltz AA, Neudorf UE, Galal MO (2001) Dilatation von Klappen- und Gefäßstenosen. Monatsschr Kinderheilkd 149:1011–1017CrossRefGoogle Scholar
  66. Schwedler G, Lindinger A, Lange PE, participants of the PAN Study et al (2011) Frequency and spectrum of congenital heart defects among live births in Germany. Clin Res Cardiol 100:1111–1117CrossRefPubMedGoogle Scholar
  67. Shuler CO, Fyfe DA, Sade R, Crawford FA (1995) Transoesophageal echocardiographic evaluation of cor triatratum in children. Am Heart J 129:507–510CrossRefPubMedGoogle Scholar
  68. Sittiwangkul R, Ma RY, McCrindle BW, Codes JG, Smallhorn JF (2001) Echocardiographic assessment of obstructive lesions in atrioventricular septal defects. J Am Coll Cardiol 38:253–261CrossRefPubMedGoogle Scholar
  69. Stasik CN, Goldberg CS, Bove EL, Devaney EJ, Ohye RG (2006) Current outcomes and risk factors for the Norood procedure. J Thorac Cardiovasc Surg 131:411–417Google Scholar
  70. Stewart WJ (1994) Choosing the „golden moment“ for mitral valve repair. J Am Coll Cardiol 24:1544–1545CrossRefPubMedGoogle Scholar
  71. Thomson JDR (2005) Management of valvar aortic stenosis. Heart 90:5–6CrossRefGoogle Scholar
  72. Trowitzsch E, Braun W, Stute M, Pielemeier W (1990) Diagnosis, therapy, and outcome of ventricular septal defects in the first year of life: a two-dimensional colour-Doppler echocardiography study. Eur J Pediatr 149:758–761CrossRefPubMedGoogle Scholar
  73. Tulloh RMR, Bull C, Elliott MJ, Sullivan ID (1995) Supravalvar mitral stenosis: risk factors for recurrence or death after resection. Br Heart J 73:164–168CrossRefPubMedPubMedCentralGoogle Scholar
  74. Turner SW, Hornung T, Hunter S (2002) Closure of ventricular septal defects: a study of factors influencing spontaneous and surgical closure. Cardiol Young 12:357–363CrossRefPubMedGoogle Scholar
  75. van Son JAM, Danielson GK, Schaff HV, Puga FJ, Seward JB, Hagler DJ, Mair DD (1993) Cor triatriatum: diagnosis, operative approach, and late results. Mayo Clin Proc 68:854–859CrossRefPubMedGoogle Scholar
  76. Watson H (1974) Natural history of Ebstein’s anomaly of the tricuspid valve in childhood and adolescence. An international cooperative study of 505 cases. Br Heart J 36:417CrossRefPubMedPubMedCentralGoogle Scholar
  77. Weinberg PM (1995) Aortic arch anomalies. In: Emmanouillides GC, Riemenschneider TA, Allen HD, Gutgesell HP (Hrsg) Heart disease in infants, children and adolescents. Including the fetus and young adult, 5. Aufl. Williams & Wilkins, BaltimoreGoogle Scholar
  78. Wingen MJ, Günher RW (2001) Pulmonale arteriovenöse Fisteln. Diagnostik und interventionelle Therapie. Dtsch Ärzteblatt 98(20):A1326–A1330Google Scholar
  79. Wooley MM, Stanley P, Wesley JR (1977) Peripherically located congenital fistulae in infancy and childhood. J Pediatr Surg 12:165–176CrossRefGoogle Scholar
  80. Yoshimura N, Yamaguchi M, Oshima Y et al (1999) Surgery for mitral valve disease in the pediatric age group. J Thorac Cardiovasc Surg 118:99–106CrossRefPubMedGoogle Scholar
  81. Ziemer G, Haverich A (2010) Herzchirurgie, 3. Aufl. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Abt. für KinderkardiologieUniversitätsklinikum Bonn, Zentrum für KinderheilkundeBonnDeutschland
  2. 2.Klinik für Kinder- und JugendmedizinKlinikum StarnbergStarnbergDeutschland

Personalised recommendations