Skip to main content

Tropical Forest Ecosystem Ecology: Water, Energy, Carbon, and Nutrients

  • Reference work entry
Tropical Forestry Handbook

Abstract

Tropical forests are a major component of global terrestrial water and carbon cycles, while their productivity is limited by the supply of nutrients from the soil. Transpiration by tropical trees has a large influence on local temperatures and regional rainfall, and much of the tropics would be warmer and drier without forests. Of the total carbon (or energy) fixed in forests by photosynthesis (GPP), more than half is respired by the plants themselves, leaving 30–40% (NPP) which is divided roughly equally between the canopy, wood, and fine roots. Timber makes up around 25% of NPP. Variation in the turnover rate means there is no simple relationship between productivity and biomass. Even old-growth forests appear to be carbon sinks currently, possibly due to fertilization by rising carbon dioxide levels. Forest growth depends on the efficient recycling of nutrients. Tropical forests on old, highly weathered soils may often be phosphorus limited, although nitrogen may be limiting during early secondary succession and in montane forests, and other nutrients may be limiting on particular soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 3,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Clare S, Mack MC, Brooks M (2013) A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94:1540–1551

    Article  CAS  PubMed  Google Scholar 

  • Anderson-Teixeira KJ, Snyder PK, Twine TE, Cuadra S, Costa MH, DeLucia E (2012) Climate regulation services of natural and agricultural ecoregions of the Americas. Nat Clim Chang 2:177–181

    Article  Google Scholar 

  • Aragão LOC (2012) The rainforest’s water pump. Nature 489:217–218

    PubMed  Google Scholar 

  • Banin L, Lewis SL, Lopez-Gonzalez G et al (2014) Tropical forest wood production: a cross-continental comparison. J Ecol 102:1025–1037

    Article  Google Scholar 

  • Batterman SA, Hedin LO, van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:224

    Article  CAS  PubMed  Google Scholar 

  • Biudes MS, Souza MC, Machado NG et al (2014) Modelling gross primary production of a tropical semi-deciduous forest in the southern Amazon Basin. Int J Remote Sensing 35:1540–1562

    Google Scholar 

  • Boyce CK, Lee J-E (2010) An exceptional role for flowering plant physiology in the expansion of tropical rainforest and biodiversity. Proc R Soc B 277:3437–3443

    Article  PubMed  PubMed Central  Google Scholar 

  • Cernusak LA, Winter K, Dalling JW et al (2013) Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Funct Plant Biol 40:531–551

    Article  CAS  Google Scholar 

  • Chambers JQ, Negron-Juarez RI, Marra DM et al (2013) The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proc Natl Acad Sci USA 110:3949–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapin FS, Matson P, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Dieleman WIJ, Venter M, Ramachandra A, Krockenberger AK, Bird MI (2013) Soil carbon stocks vary predictably with altitude in tropical forests: implications for soil carbon storage. Geoderma 204:59–67

    Article  Google Scholar 

  • Fisher JB, Badgley G, Blyth E (2012) Global nutrient limitation in terrestrial vegetation. Global Biogeochem Cycles 26:GB307

    Google Scholar 

  • Galbraith D, Malhi Y, Affum-Baffoe et al (2013) Residence times of woody biomass in tropical forests. Plant Ecol Divers 6:139–157

    Google Scholar 

  • Huntingford C, Zelazowski P, Galbraith D et al (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6:268–273

    Article  CAS  Google Scholar 

  • Jordan CF (1993) Ecology of tropical forests. In: Pancel L (ed) Tropical forestry handbook, 1st edn. Springer, Heidelberg, pp 164–197

    Google Scholar 

  • Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43

    PubMed  Google Scholar 

  • Keller AB, Reed SC, Townsend AR, Cleveland CC (2013) Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest. Soil Biol Biochem 58:61–69

    Article  CAS  Google Scholar 

  • Kitayama K, Aiba SI (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51

    Article  Google Scholar 

  • Luizão FJ, Luizão RCC, Proctor J (2007) Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecol 192:209–224

    Article  Google Scholar 

  • Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75

    Article  CAS  Google Scholar 

  • Malhi Y, Doughty C, Galbraith D (2011) The allocation of ecosystem net primary productivity in tropical forests. Philos Trans R Soc B Biol Sci 366:3225–3245

    Article  CAS  Google Scholar 

  • Metcalfe DB, Asner GP, Martin RE et al (2014) Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol Lett 17:324–332

    Article  PubMed  Google Scholar 

  • Miyamoto K, Rahajoe JS, Kohyama T, Mirmanto E (2007) Forest structure and primary productivity in a Bornean heath forest. Biotropica 39:35–42

    Article  Google Scholar 

  • Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Chang Biol 17:2211–2226

    Article  Google Scholar 

  • Oliveira RS, Eller CB, Bittencourt P, Mulligan M (2014) The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann Bot 113:909–920

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622

    Article  Google Scholar 

  • Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM (2006) Temperature influences carbon accumulation in moist tropical forests. Ecology 87:76–87

    Article  PubMed  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2013) Relationships among phosphorus, molybdenum and free-living nitrogen fixation in tropical rain forests: results from observational and experimental analyses. Biogeochemistry 114:135–147

    Article  CAS  Google Scholar 

  • Restrepo-Coupe N, da Rocha HR, Hutyra LR et al (2013) What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agr Forest Meteorol 182:128–144

    Article  Google Scholar 

  • Rowland L, Hill TC, Stahl C et al (2014) Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest. Glob Chang Biol 20:979–991

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlesinger WH, Jasechko S (2014) Transpiration in the global water cycle. Agr Forest Meteorol 189–190:115–117

    Article  Google Scholar 

  • Schreeg LA, Mack MC, Turner BL (2013) Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology 94:94–105

    Article  PubMed  Google Scholar 

  • Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282–285

    Article  CAS  PubMed  Google Scholar 

  • Townsend AR, Asner GP (2013) Multiple dimensions of resource limitation in tropical forests. Proc Natl Acad Sci USA 110:4864–4865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007) Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–118

    Article  PubMed  Google Scholar 

  • Whitmore TC, Burslem DFRP (1998) Major disturbances in tropical rain forests. In: Newbery DM, Prins HHT, Brown N (eds) Dynamics of tropical communities. Blackwell Science, Oxford, UK, pp 549–565

    Google Scholar 

  • Wilcke W, Leimer S, Peters T et al (2013) The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Global Biogeochem Cycles 27:1194–1204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Corlett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Corlett, R.T. (2016). Tropical Forest Ecosystem Ecology: Water, Energy, Carbon, and Nutrients. In: Pancel, L., Köhl, M. (eds) Tropical Forestry Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54601-3_53

Download citation

Publish with us

Policies and ethics