Skip to main content

Classifying Tropical Forests

  • Reference work entry
Tropical Forestry Handbook

Abstract

Classifications of tropical forests are essential for production forestry, conservation planning, REDD, and ecological research. There is no single, agreed, pantropical classification system for forests, and a wide range of different characteristics have been used as a basis for classification, from floristic composition to physiognomy (appearance). Floristic composition predicts most other characteristics of interest, but the high diversity of tropical forests makes floristic classifications difficult. Classifications based on plant functional types can potentially be used at all spatial scales but are currently mostly used at the broadest scales. Climate, soils, altitude, inundation, and disturbance history are all useful at intermediate scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 3,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bach K, Gradstein SR (2011) A comparison of six methods to detect altitudinal belts of vegetation in tropical mountains. Ecotropica 17:1–13

    Google Scholar 

  • Betbeder J, Gond V, Frappart F, Baghdadi NN, Briant G, Bartholomé E (2014) Mapping of Central Africa forested wetlands using remote sensing. IEEE J Select Top Appl Earth Observ Remote Sens 7:531–542

    Article  Google Scholar 

  • Bischoff W, Newbery DA, Lingenfelder M, Schnaeckel R, Petol GH, Madani L, Ridsdale CE (2005) Secondary succession and dipterocarp recruitment in Bornean rain forest after logging. For Ecol Manage 218:174–192

    Article  Google Scholar 

  • Chambers JQ, Negron-Juarez RI, Marra DM et al (2013) The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proc Natl Acad Sci U S A 110:3949–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corlett RT (1991) Plant succession on degraded land in Singapore. J Trop Forest Sci 4:151–161

    Google Scholar 

  • Corlett RT, Primack RB (2011) Tropical rain forests: an ecological and biogeographical comparison. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Craine JM, Engelbrecht BMJ, Lusk CH, McDowell NG, Poorter H (2012) Resource limitation, tolerance, and the future of ecological plant classification. Front Plant Sci 3

    Google Scholar 

  • da Silva JF (2014) Species composition, diversity and structure of novel forests of Castilla in Puerto Rico. Trop Ecol 55:231–244

    Google Scholar 

  • Dengler J, Jansen F, Glöeckler F et al (2011) The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J Vegetat Sci 22:582–597

    Article  Google Scholar 

  • Edwards DP, Larsen TH, Docherty TDS et al (2011) Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc R Soc B Biol Sci 278:82–90

    Article  Google Scholar 

  • FAO (2007) World reference base for soil resources 2006. A framework for international classification, correlation and communication. First update 2007. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Figueiredo FOG, Costa FRC, Nelson BW, Pimentel TP (2014) Validating forest types based on geological and land-form features in central Amazonia. J Vegetat Sci 25:198–212

    Article  Google Scholar 

  • Gillison AN, Bignell DE, Brewer KRW et al (2013) Plant functional types and traits as biodiversity indicators for tropical forests: two biogeographically separated case studies including birds, mammals and termites. Biodivers Conserv 22:1909–1930

    Article  Google Scholar 

  • Hemp A (2006) Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol 184:27–42

    Article  Google Scholar 

  • Holdridge LR (1978) Life zone ecology. IICA, Costa Rica

    Google Scholar 

  • Imai N, Tanaka A, Samejima H, Sugau JB et al (2014) Tree community composition as an indicator in biodiversity monitoring of REDD+. For Ecol Manage 313:169–179

    Article  Google Scholar 

  • Jordan CF (1993) Ecology of tropical forests. In: Pancel L (ed) Tropical forestry handbook, 1st edn. Springer, Heidelberg, pp 164–197

    Google Scholar 

  • Junk WJ, Fernandez Piedade MT, Schöengart J, Cohn-Haft M, Adeney JM, Wittmann F (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640

    Article  Google Scholar 

  • Kessler M, Abrahamczyk S, Bos M et al (2011) Cost-effectiveness of plant and animal biodiversity indicators in tropical forest and agroforest habitats. J Appl Ecol 48:330–339

    Article  Google Scholar 

  • Raunkiær C (1904) Om biologiske Typer, med Hensyn til Planternes Tilpasninger til at overleve ugunstige Aarstider. Botanisk Tidsskrift 26:15 pp

    Google Scholar 

  • Ruokolainen K, Tuomisto H, Macía MJ, Higgins MA, Yli-Halla M (2007) Are floristic and edaphic patterns in Amazonian rain forests congruent for trees, pteridophytes and Melastomataceae? J Trop Ecol 23:13–25

    Article  Google Scholar 

  • Sandor ME, Chazdon RL (2014) Remnant trees affect species composition but not structure of tropical second-growth forest. PLoS One 9:e83284

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitt CB, Belokurov A, Besançon C et al (2009) Global ecological forest classification and forest protected area gap analysis, 2nd revised edn. Freiburg University Press, Freiburg

    Google Scholar 

  • Sirén A, Tuomisto H, Navarrete H (2013) Mapping environmental variation in lowland Amazonian rainforests using remote sensing and floristic data. Int J Remote Sens 34:1561–1575

    Article  Google Scholar 

  • Sukri RS, Wahab RA, Salim KA, Burslem DFRP (2012) Habitat associations and community structure of dipterocarps in response to environment and soil conditions in Brunei Darussalam, Northwest Borneo. Biotropica 44:595–605

    Article  Google Scholar 

  • Torello-Raventos M, Feldpausch TR, Veenendaal E et al (2013) On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecol Divers 6:101–137

    Article  Google Scholar 

  • UNESCO (1973) International classification and mapping of vegetation. United Nations Educational, Scientific and Cultural Organization, Paris

    Google Scholar 

  • USDA (2006) Keys to soil taxonomy, 10th edn. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Vlam M, Baker PJ, Bunyavejchewin S, Mohren GMJ, Zuidema PA (2014) Understanding recruitment failure in tropical tree species: insights from cross mark a tree-ring study. For Ecol Manage 312:108–116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Corlett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Corlett, R.T. (2016). Classifying Tropical Forests. In: Pancel, L., Köhl, M. (eds) Tropical Forestry Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54601-3_52

Download citation

Publish with us

Policies and ethics