Skip to main content

Model-Based Visualization of Instationary Geo-Data with Application to Volcano Ash Data

  • Reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

Driven by today’s supercomputers, larger and larger sets of data are created during numerical simulations of geoscientific applications. Such data often describes instationary processes in three-dimensional domains in terms of multi-dimensional data. Due to limited computer resources, it might be impossible or unpractical to store all data created during one simulation, which is why several data reduction techniques are often applied (e.g., only every nth time-step is stored). Intuitive scientific visualization techniques can help to better understand the structures described by transient data. Adequate reconstruction techniques for the time-dimension are needed since standard techniques (e.g., linear interpolation) are insufficient for many applications. We describe a general formalism for a wide class of reconstruction techniques and address aspects of quality characteristics. We propose an approach that is able to take arbitrary physical processes into account to enhance the quality of the reconstruction. For the eruption of the volcano Eyjafjallajökull in Iceland in the spring of 2010, we describe a suitable reduced model and use it for model-based visualization. The original data was created during a COSMO-ART simulation. We discuss the reconstruction errors, related computational costs, and possible extensions. A comparison with linear interpolation clearly motivates the proposed model-based reconstruction approach.

Martin Baumann, present affiliation: Heidelberg University Computing Centre (URZ), Heidelberg, GermanyVincent Heuveline, present affiliation: Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany

Jonas Kratzke, present affiliation: Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amira 5 User’s Guide. Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) and Visage Imaging (2009). http://www.amira.com

  • Athanasopoulou E, Vogel H, Vogel B, Tsimpidi AP, Pandis SN, Knote C, Fountoukis C (2013) Modeling the meteorological and chemical effects of secondary organic aerosols during an eucaari campaign. Atmos Chem Phys 13(2):625–645. doi:10.5194/acp-13-625-2013

    Article  Google Scholar 

  • Avila LS (2004) The VTK users’s guide. Kitware. ISBN:1-930934-13-0

    Google Scholar 

  • Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev. doi:10.1175/MWR-D-10-05013.1. e-View

    Google Scholar 

  • Bales P, Kolb O, Lang J (2009) Hierarchical modelling and model adaptivity for gas flow on networks. Volume 5544 of lecture notes in computer science. Springer, pp 337–346. ISBN:978-3-642-01969-2

    Google Scholar 

  • Bangert M, Nenes A, Vogel B, Vogel H, Barahona D, Karydis VA, Kumar P, Kottmeier C, Blahak U (2012) Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos Chem Phys 12(9):4045–4063. doi:10.5194/acp-12-4045-2012

    Article  Google Scholar 

  • Bonneau GP, Ertl T, Nielson G (2006) Scientific visualization: the visual extraction of knowledge from data. Mathematics and visualization. Springer, Heidelberg

    Book  Google Scholar 

  • Braack M, Ern A (2003) A posteriori control of modeling errors and discretization errors. Multiscale Model Simul 1(2):221–238

    Article  MathSciNet  MATH  Google Scholar 

  • EnSight User Manual. Computational Engineering International, Inc., 2166 N. Salem Street, Suite 101, Apex, NC 27523, (2006). http://www.ensight.com

  • Henderson A (2007) ParaView guide, a parallel visualization application. Kitware Inc. http://www.paraview.org/

  • Hindmarsh AC, Gresho PM, Griffiths DF (1984) The stability of explicit euler time-integration for certain finite difference approximations of the multi-dimensional advectiondiffusion equation. Int J Numer Methods Fluids 4(9):853–897. ISSN:1097-0363, doi:10.1002/fld.1650040905, http://dx.doi.org/10.1002/fld.1650040905

  • Introduction to GRIB. World Meteorological Organization, June 2003

    Google Scholar 

  • Knote C, Brunner D (2013) An advanced scheme for wet scavenging and liquid-phase chemistry in a regional online-coupled chemistry transport model. Atmos Chem Phys 13(3):1177–1192. doi:10.5194/acp-13-1177-2013

    Article  Google Scholar 

  • Kunisch K, Volkwein S (1999) Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition. J Optim Theory Appl 102(2):345–371 ISSN:0022-3239, doi:http://dx.doi.org/10.1023/A:1021732508059

  • Kunisch K, Volkwein S (2002) Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. J Numer Anal 40(2):492–515

    Article  MathSciNet  MATH  Google Scholar 

  • Kunisch K, Volkwein S (2008) Optimal snapshot location for computing pod basis functions. SFB-report, 2008-008

    Google Scholar 

  • Oden JT, Prudhomme S (2002) Estimation of modeling error in computational mechanics. J Comput Phys 182(2):496–515. ISSN:0021-9991, doi:10.1006/jcph.2002.7183, http://dx.doi.org/10.1006/jcph.2002.7183

  • Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325. doi:10.1175/1520-0493(1992)120¡0303:ACRSFN¿2.0.CO;2

    Article  Google Scholar 

  • Seifert A, Beheng KD (2006) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: model description. Meteorol Atmos Phys 92:45–66. ISSN:0177-7971, doi:10.1007/s00703-005-0112-4

    Google Scholar 

  • Steppeler J, Doms G, Schttler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82:75–96. ISSN:0177-7971, doi:10.1007/s00703-001-0592-9

    Google Scholar 

  • Vogel B, Vogel H, Bäumer D, Bangert M, Lundgren K, Rinke R, Stanelle T (2009) The comprehensive model system COSMO-ART – radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos Chem Phys 9(22):8661–8680. doi:10.5194/acp-9-8661-2009

    Article  Google Scholar 

  • Vogel H, Förstner J, Vogel B, Hanish Th, Mühr B, Schättler U, Schad T (2013, submitted) Simulation of the dispersion of the Eyjafjallajökull plume over Europe with COSMO-ART in the operational mode. Atmos Chem Phys Discuss 13(5):13439–13463

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Baumann .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Video 1

avi file: 12057 kb

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Baumann, M. et al. (2015). Model-Based Visualization of Instationary Geo-Data with Application to Volcano Ash Data. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_87

Download citation

Publish with us

Policies and ethics