Skip to main content

Modeling of Fluid Transport in Geothermal Research

  • Reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

Extraction of heat stored in the rocks in Earth’s upper crust requires a fluid to which the heat can be transferred and that can migrate through the conduits in the rock. Flow of these fluids requires gradients in fluid pressure. Often, a linear relation between flow rate and pressure gradient offers a sufficiently precise description. Fluid pressure in turn couples the flow with the deformation of the solid host. We derive and analyze the governing equations underlying these hydro-mechanical, coupled problems. Our presentation addresses simple conduits and porous media. The latter are tackled from a continuum perspective, specifically mixture theory. Analytical and numerical solutions of the differential equations are analyzed for scenarios from well testing to propagation of elastic waves. Well testing constitutes the traditional tool for hydraulic characterization of geothermal reservoirs. Evaluation of attenuation of elastic waves may allow for hydraulic characterization and monitoring relying on surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achdou Y, Avellaneda M (1992) Influence of pore roughness and pore-size dispersion in estimating the permeability of a porous medium from electrical measurements. Phys Fluids A 4:2651–2673

    Article  MathSciNet  Google Scholar 

  • Al-Yaarubi AH, Pain CC, Grattoni CA, Zimmerman RW (2005) Navier-Stokes simulations of fluid flow through a rock fracture. In: Faybishenko B, Witherspoon P, Gale J (eds) Dynamics of fluids and transport in fractured rocks. Geophysical monograph, vol 162. American Geophysical Union, Washington, DC, pp 55–64

    Chapter  Google Scholar 

  • Amiri A, Vafai K (1994) Analysis of dispersion effects and non-thermal equilibrium, non-darcian, variable porosity incompressible flow through porous media. Int J Heat Transf 37(6):939–954

    Article  Google Scholar 

  • Andrade J, Almeida M, Filho JM, Havlin S, Suki B, Stanley H (1997) Fluid flow through porous media: the role of stagnant zones. Phys Rev Lett 82:3901–3904

    Article  Google Scholar 

  • Auradou H, Drazer G, Boschan A, Hulin J, Koplik J (2006) Flow channeling in a single fracture induced by shear displacement. Geothermics 35:576–588

    Article  Google Scholar 

  • Auriault J (1980) Dynamic behaviour of a porous medium saturated by a newtonian fluid. Int J Eng Sci 18:775–785

    Article  MATH  Google Scholar 

  • Auriault JL, Borne L, Chambon R (1985) Dynamics of porous saturated media, checking of the generalized law of darcy. J Acoust Soc Am 77(5):1641–1650

    Article  MATH  Google Scholar 

  • Avellaneda M, Torquato S (1991) Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media. Phys Fluids A 3:2529–2540

    Article  MathSciNet  MATH  Google Scholar 

  • Bandis S, Lumsden A, Barton N (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr 20(6):249–268

    Article  Google Scholar 

  • Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22(3):121–140

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier Publishing Co., New York. Reprinted by Dover, New York, 1988

    Google Scholar 

  • Berg SJ, Hsieh PA, Illman WA (2011) Estimating hydraulic parameters when poroelastic effects are significant. Ground Water. 49(6):815–29. doi: 10.1111/j.1745–6584.2010.00781.x

    Article  Google Scholar 

  • Berg SJ (2009) The Noordbergum effect and its impact on the estimation of hydraulic parameters. AGU spring meeting abstracts, pp 200–207

    Google Scholar 

  • Berkowitz B, Ewing R (1998) Percolation theory and network modeling – applications in soil physics. Surv Geophys 19:23–72

    Article  Google Scholar 

  • Bernabé Y (1987) The effective pressure law for permeability during pore pressure and confining pressure cycling of several crystalline rocks. J Geophys Res 92(B1):649–657

    Article  Google Scholar 

  • Bernabé Y (1995) The transport properties of networks of cracks and pores. J Geophys Res 10(B3):4231–4241. doi:10.1029/94JB02986

    Article  Google Scholar 

  • Bernabé Y (1997) The frequency dependence of harmonic fluid flow through networks of cracks and pores. Pure Appl Geophys 149:489–506

    Article  Google Scholar 

  • Bernabé Y (2009) Oscillating flow of a compressible fluid through deformable pipes and pipe networks: wave propagation phenomena. Pure Appl Geophys 166:1–26. doi:10.1007/s00024-009-0484-3

    Article  Google Scholar 

  • Bernabé Y, Bruderer C (1998) Effect of the variance of pore size distribution on the transport properties of heterogeneous networks. J Geophys Res 103(B1):513–525. doi:10.1029/97JB02486

    Article  Google Scholar 

  • Bernabé Y, Brace W, Evans B (1982) Permeability, porosity and pore geometry of hot-pressed calcite. Mech Mater 1:173–183

    Article  Google Scholar 

  • Bernabé Y, Mok U, Evans B (2003) Permeability-porosity relationships in rocks subjected to various evolution processes. Pure Appl Geophys 160:937–960

    Article  Google Scholar 

  • Bernabé Y, Li M, Maineult A (2010) Permeability and pore connectivity: a new model based on network simulations. J Geophys Res 115:B10203. doi:10.1029/2010JB007444

    Article  Google Scholar 

  • Bernabé Y, Zamora M, Li M, Maineult A, Tang Y (2011) Pore connectivity, permeability, and electrical formation factor: a new model and comparison to experimental data. J Geophys Res 116:B11204. doi:10.1029/2011JB008543

    Article  Google Scholar 

  • Berryman J (1992) Effective stress for transport properties of inhomogeneous porous rock. J Geophys Res 97(B12):17409–17424

    Article  Google Scholar 

  • Berryman J (2003) Dynamic permeability in poroelasticity. Tech. rep., Stanford University, Stanford Exploration Project, Report 113

    Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 29:168–191

    Article  MathSciNet  Google Scholar 

  • Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High-frequency range. J Acoust Soc Am 29:168–191

    Article  MathSciNet  Google Scholar 

  • Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498

    Article  MathSciNet  MATH  Google Scholar 

  • Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601

    MathSciNet  Google Scholar 

  • Black JH, Kipp KL (1981) Determination of hydrogeological parameters using sinusoidal pressure test: a theoretical appraisal. Water Resour Res 17(3):686–692

    Article  Google Scholar 

  • Blair S, Berge P, Berryman J (1996) Using two-point correlation functions to characterize microgeometry and estimate permeabilities of sandstone and porous glass. J Geophys Res 101:20359–20375

    Article  Google Scholar 

  • Bokov P, Ionov A (2002) Tube-wave propagation in a fluid-filled borehole generated by a single point force applied to the surrounding formation. J Acoust Soc Am 112(6):2634–2644. doi:10.1121/1.1508781

    Article  Google Scholar 

  • Bourdarot G (1998) Well testing: interpretation methods. Editions Technip, Paris and Institut francais du pètrole, Rueil-Malmaison

    Google Scholar 

  • Bourdet D (2002) Well test analysis: the use of advanced interpretation models. Elsevier, Amsterdam

    Google Scholar 

  • Bourdet D, Ayoub J, Pirard Y (1989) Use of pressure derivative in well test interpretation. SPE Form Eval (12777):293–302

    Article  Google Scholar 

  • Boutin C, Geindreau C (2008) Estimates and bounds of dynamic permeability of granular media. J Acoust Soc Am 124(6):3576–3593. doi:10.1121/1.2999050

    Article  Google Scholar 

  • Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20:697–735

    Article  MATH  Google Scholar 

  • Bower AF (2010) Applied mechanics of solids. CRC/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Brace W (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min Sci 17:241–251

    Article  Google Scholar 

  • Brace W, Walsh J, Frangos W (1968) Permeability of granite under high pressure. J Geophys Res 73:2225–2236

    Article  Google Scholar 

  • Brodsky EE, Roeloffs E, Woodcock D, Gall I, Manga M (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J Geophys Res 108(2390). doi:10.1029/2002JB002321

    Google Scholar 

  • Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res 92(B2):1337–1347. doi:10.1029/JB092iB02p01337

    Article  Google Scholar 

  • Bruderer C, Bernabé Y (2001) Network modeling of dispersion: transition from Taylor dispersion in homogeneous networks to mechanical dispersion in very heterogeneous ones. Water Resour Res 37(4):897–908. doi:10.1029/2000WR900362

    Article  Google Scholar 

  • Brush D, Thomson N (2003) Fluid flow in synthetic rough-walled fractures: Navier-Stokes, Stokes, and local cubic law simulations. Water Resour Res 39:1085. doi:10.1029/2002WR001346

    Article  Google Scholar 

  • Butler JJ (1997) The design, performance, and analysis of slug tests. CRC/LLC, Boca Raton. Florida, US

    Google Scholar 

  • Cappa F, Rutqvist J (2011) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 5(2):336–346

    Article  Google Scholar 

  • Carcione JM, Cavallini F (1993) Energy balance and fundamental relations in anisotropic-viscoelastic media. Wave Motion 18:11–20

    Article  MathSciNet  MATH  Google Scholar 

  • Carcione J, Morency C, Santos J (2010) Computational poroelasticity – a review. Geophysics 75(5):75A229–75A243. doi:10.1190/1.3474602

    Google Scholar 

  • Cardenas M, Slottke D, Ketcham R, Sharp J (2009) Effects of inertia and directionality on flow and transport in a rough asymmetric fracture. J Geophys Res 114:B06204

    Google Scholar 

  • Chapman A, Higdon J (1992) Oscillatory Stokes flow in periodic porous media. Phys Fluids A 4:2099–2116. doi:10.1063/1.858507

    Article  MATH  Google Scholar 

  • Chapman M, Liu M, Li X (2006) The influence of fluid-sensitive dispersion and attenuation on AVO analysis. Geophys J Int 167:89–105

    Article  Google Scholar 

  • Charlaix E, Kushnik A, Stokes J (1988) Experimental study of dynamic permeability in porous media. Phys Rev Lett 61:1595–1598

    Article  Google Scholar 

  • Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flow. Ann Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  • Chen C, Jiao J (1999) Numerical simulation of pumping tests in multilayer wells with non-Darcian flow in the wellbore. Groundwater 37(3):465–474

    Article  MathSciNet  Google Scholar 

  • Cinco-Ley H, Samaniego-V F (1981) Transient pressure analysis for fractured wells. J Pet Tech 33(9):1749–1766, SPE 7490

    Google Scholar 

  • Cinco-Ley H, Samaniego VF, Dominguez AN (1978) Transient pressure behavior for a well with a finite-conductivity vertical fracture. Soc Pet Eng J 18(4):253–264, SPE 6014

    Google Scholar 

  • Cortis A, Smeulders DMJ, Guermond JL, Lafarge D (2003) Influence of pore roughness on high-frequency permeability. Phys Fluids 15:1766–1775

    Article  MathSciNet  MATH  Google Scholar 

  • Costa JAU, Almeida M, Makse H, Stanley H (1999) Inertial effects on fluid flow through disordered porous media. Phys Rev Lett 82(26):5249–5252. doi:10.1103/PhysRevLett.82.5249

    Article  Google Scholar 

  • Coussy O (1995) Mechanics of porous continua. Wiley, Chichester

    MATH  Google Scholar 

  • Cryer CW (1963) A comparison of the three-dimensinal consolidation theories of Biot and Terzaghi. Q J Mech Appl Math 16(4):401–412

    Article  MATH  Google Scholar 

  • Da Prat G (1990) Well test analysis for fractured reservoir evaluation. No. 27 in Developments in Petroleum Science. Elsevier, Amsterdam/New York

    Google Scholar 

  • Daniel D (1993) Geotechnical practice for waste disposal. Chapman & Hall, London/New York

    Book  Google Scholar 

  • de Boer R (2000) Theory of porous media. Springer, Berlin/New York

    Book  MATH  Google Scholar 

  • Detournay E, Cheng AD (1988) Poroelastic response of a borehole in a non-hydrostatic stress field. Int J Rock Mech Min Sci Geomech Abstr 25(3):171–182

    Article  Google Scholar 

  • Detournay E, Cheng AHD (1993) Fundamentals of poroelasticity. In: Fairhurst C (ed) Comprehensive rock engineering: principles, practice and projects. Analysis and design method, vol II. Pergamon, Oxford/New York, pp 113–171

    Google Scholar 

  • Doré A, Sinding-Larsen R (eds) (1996) Quantification and prediction of hydrocarbon resources. Norwegian petroleum society special publications, vol 6. Elsevier, Amsterdam/New York

    Google Scholar 

  • Dvorkin J, Nur A (1993) Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms. Geophysics 58:524–533

    Article  Google Scholar 

  • Dvorkin J, Mavko G, Nur A (1992) The dynamics of viscous compressible fluid in a fracture. Geophysics 57(5):720–726

    Article  Google Scholar 

  • Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous media: theory, experiments and numerical applications. Springer, Berlin, pp 3–86

    Chapter  Google Scholar 

  • Ehlers W, Bluhm J (eds) (2002) Porous media. Springer, Berlin

    MATH  Google Scholar 

  • Elkouh A (1975) Oscillating radial flow between parallel plates. Appl Sci Res 30:401–417

    Article  MATH  Google Scholar 

  • Ellsworth W (2013) Injection-induced earthquakes (Review). Science 341(6142). doi:10.1126/science.1225942

    Google Scholar 

  • Evans K, Zappone A, Kraft T, Deichmann N, Moia F (2012) A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics 41:30–54. doi:10.1016/j.geothermics.2011.08.002

    Article  Google Scholar 

  • Ferrazzini V, Aki K (1987) Slow waves trapped in a fluid-filled infinite crack: implications for volcanic tremor. J Geophys Res 92:9215–9223

    Article  Google Scholar 

  • Fischer G, Paterson M (1992) Measurement of permeability and storage capacity in rocks during deformation at high temperature and pressure. In: Evans B, Wong TF (eds) Fault mechanics and transport properties of rocks. Academic, London, pp 213–252

    Chapter  Google Scholar 

  • Fokker P, Renner J, Verga F (2012) Applications of harmonic pulse testing to field cases. SPE 154048–MS

    Google Scholar 

  • Fokker P, Renner J, Verga F (2013) Numerical modeling of periodic pumping tests in wells penetrating a heterogeneous aquifer. Am J Environ Sci 9:1–13

    Article  Google Scholar 

  • Gangi A (1978) Variation of whole and fractured porous rock permeability with confining pressure. Int J Rock Mech Min Sci 15:249–257

    Article  Google Scholar 

  • Garven G (1995) Continental-scale groundwater flow and geological processes. Ann Rev Earth Planet Sci 23:89–117

    Article  Google Scholar 

  • Gavrilenko P, Gueguen Y (1989) Pressure dependence of permeability: a model for cracked rocks. Geophys J Int 98:159–172. doi:10.1111/j.1365-246X.1989.tb05521.x

    Article  Google Scholar 

  • Geiger S, Emmanuel S (2010) Non-fourier thermal transport in fractured geological media. Water Resour Res 46:W07504. doi:10.1029/2009WR008671

    Google Scholar 

  • Gellasch C, Wang H, Bradbury K, Bahr J, Lande L (2013) Reverse water-level fluctuations associated with fracture connectivity. Groundwater Epub ahead of print:1–13. doi:10.1111/gwat.12040

    Google Scholar 

  • Giacomini A, Buzzi O, Ferrero A, Migliazza M, Giani G (2008) Numerical study of flow anisotropy within a single natural rock joint. Int J Rock Mech Min Sci 45:47–58

    Article  Google Scholar 

  • Gleeson T, Wada Y, Bierkens M, van Beek L (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200. doi:10.1038/nature11295

    Article  Google Scholar 

  • Gonzalez O, Stuart AM (2008) A first course in continuum mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Greenberg R, Brace W (1969) Archie’s law for rocks modeled by simple networks. J Geophys Res 74:2099–2102

    Article  Google Scholar 

  • Gubbins D (2001) The Rayleigh number for convection in the Earth’s core. Phys Earth Planet Inter 128:3–12

    Article  Google Scholar 

  • Gurevich B (2007) Comparison of the low-frequency predictions of Biot’s and de Boer’s poroelasticity theories with Gassmann’s equation. Appl Phys Lett 91:091919

    Article  Google Scholar 

  • Gutman R, Davidson J (1975) Darcy’s law for oscillatory flow. Chem Eng Sci 30(1):85–95

    Article  Google Scholar 

  • Hainzl S, Kraft T, Wassermann J, Igel H, Schmedes E (2006) Evidence for rainfall-triggered earthquake activity. Geophys Res Lett 33(L19303). doi:10.1029/2006GL027642

    Google Scholar 

  • Hassanizadeh SM, Gray WG (1979a) General conservation equations for multi-phase systems: 1. Averaging procedure. Adv Water Resour 2:131–144

    Article  Google Scholar 

  • Hassanizadeh SM, Gray WG (1979b) General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations. Adv Water Resour 2:191–203

    Article  Google Scholar 

  • Hassanizadeh SM, Gray WG (1987) High velocity flow in porous media. Transp Porous Med 2:521–531

    Google Scholar 

  • Haupt P (2000) Continuum mechanics and theory of materials. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hemker K, Bakker M (2006) Analytical solutions for whirling groundwater flow in two-dimensional heterogeneous anisotropic aquifers. Water Resour Res 42:W12419. doi:10.1029/2006WR004901

    Article  Google Scholar 

  • Hilfer R (2002) Review on scale dependent characterization of the microstructure of porous media. Transp Porous Media 46:373–390

    Article  MathSciNet  Google Scholar 

  • Hof B, van Doorne C, Nieuwstadt JWF, Faisst H, Eckhardt B, Wedin H, Kerswell R, Waleffe F (2004) Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305:1594–1598. doi:10.1126/science.1100393

    Article  Google Scholar 

  • Holzapfel GA (2005) Nonlinear solid mechanics. Wiley, Chichester/New York

    Google Scholar 

  • Horne RN (1996) Modern well test analysis: a computer-aided approach, 2nd edn. Petro Way, Palo Alto

    Google Scholar 

  • Houzé O, Viturat D, Fjaere OS (2007) Dynamic flow analysis – the theory and practice of pressure transient and production analysis and the use of data from permanent downhole gauges. V. 4.02. Available at http://www.kappaeng.com/

    Google Scholar 

  • Howes FA, Whitaker S (1985) The spatial averaging theorem revisited. J Chem Eng Sci 40:1387–1392

    Article  Google Scholar 

  • Hsieh PA (1996) Deformation-induced changes in hydraulic head during ground-water withdrawal. Ground Water 34(6):1082–1089

    Article  Google Scholar 

  • Hünges E, Erzinger J, Kück J, Engeser B, Kessels W (1997) The permeable crust: geohydraulic properties down to 9101 m depth. J Geophys Res 102(B8):18255–18265. doi:10.1029/96JB03442

    Article  Google Scholar 

  • Hunt A (2005) Percolation theory for flow in porous media. Lect Notes Phys 674:173–186

    Article  Google Scholar 

  • Hutter K, Jöhnk K (2004) Continuum methods and physical modeling. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hutter K, Schneider L (2009) Solid-fluid mixtures of frictional materials in geophysical and geotechnical context. Springer, Berlin

    Google Scholar 

  • Ingebritsen S, Manning C (1999) Geological implications of a permeability-depth curve for the continental crust. Geology 27:1107–1110

    Article  Google Scholar 

  • Ingebritsen SE, Manning CE (2003) Implications of crustal permeability for fluid movement between terrestrial fluid reservoirs. J Geochem Explor 78–79:1–6

    Article  Google Scholar 

  • Johnson C, Greenkorn R, Woods E (1966) Pulse-testing: a new method for describing reservoir flow properties between wells. J Pet Technol 18(12):1599–1604. doi:10.2118/1517-PA

    Article  Google Scholar 

  • Johnson D, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid saturated porous media. J Fluid Mech 176:379–402

    Article  MATH  Google Scholar 

  • Kim JM, Parizek RR (1997) Numerical simulation of the noordbergum effect resulting from groundwater pumping in a layered aquifer system. J Hydrol 202:231–243

    Article  Google Scholar 

  • Kirchhoff G (1868) Über den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Poggendorfer Annalen 134:177–193

    Article  Google Scholar 

  • Kohl T, Evans K, Hopkirk R, Jung R, Rybach L (1997) Observation and simulation of non-Darcian flow transients in fractured rock. Water Resour Res 33(3):407–418. doi:10.1029/96WR03495

    Article  Google Scholar 

  • Kolditz O (1995a) Modelling flow and heat transfer in fractured rocks: conceptual model of a 3-D deterministic fracture network. Geothermics 24(3):451–470. doi:10.1016/0375-6505(95)00020-Q

    Article  Google Scholar 

  • Kolditz O (1995b) Modelling flow and heat transfer in fractured rocks: dimensional effect of matrix heat diffusion. Geothermics 24(3):421–437. doi:10.1016/0375-6505(95)00018-L

    Article  Google Scholar 

  • Korneev V (2008) Slow waves in fractures filled with viscous fluid. Geophysics 73(1):N1–N7. doi:10.1190/1.2802174

    Article  Google Scholar 

  • Korneev V (2010) Low-frequency fluid waves in fractures and pipes. Geophysics 75(6):N97–N107. doi:10.1190/1.3484155

    Article  Google Scholar 

  • Korneev V (2011) Krauklis wave in a stack of alternating fluid-elastic layers. Geophysics 76(6):N47–N53. doi:10.1190/GEO2011-0086.1

    Article  Google Scholar 

  • Kranz R, Saltzman J, Blacic J (1990) Hydraulic diffusivity measurements on laboratory rock samples using an oscillating pore pressure method. Int J Rock Mech Min Sci Geomech Abstr 27:345–352

    Article  Google Scholar 

  • Kümpel HJ (1991) Poroelasticity: parameters reviewed. Geophys J Int 105:783–799

    Article  Google Scholar 

  • Kümpel HJ (ed) (2003) Thermo-hydro-mechanical coupling in fractured rock. Topical volume of pure applied geophysics. Birkhäuser, Basel/Boston. Reprinted from vol 160, no 5–6

    Google Scholar 

  • Kuo C (1972) Determination of reservoir properties from sinusoidal and multirate flow tests in one or more wells. SPE J 12:499–507. doi:10.2118/3632-PA

    Article  Google Scholar 

  • Kurzeja P, Steeb H, Renner J (2013) The critical frequency in biphasic media: beyond Biot’s approach. Poromechanics V:2361–2370. doi:10.1061/9780784412992.276

    Google Scholar 

  • Madden T (1976) Random networks and mixing laws. Geophysics 41:1104–1125

    Article  Google Scholar 

  • Majer EL, Baria R, Stark M, Oates S, Bommer J, Smith B, Asanuma H (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics 36(3):185–222

    Article  Google Scholar 

  • Mandel J (1953) Consolidation des sols. Géotechnique 7:287–299

    Article  Google Scholar 

  • Marschall P, Barczewski B (1989) The analysis of slug tests in the frequency domain. Water Resour Res 25(11):2388–2396. doi:10.1029/WR025i011p02388

    Article  Google Scholar 

  • Martys N, Garboczi E (1992) Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media. Phys Rev B 46(10):6080–6090

    Article  Google Scholar 

  • Masson YJ, Pride SR (2007) Poroelastic finite difference modeling of seismic attenuation and dispersion due to mesoscopic-scale heterogeneity. J Geophys Res 112:B03204

    Google Scholar 

  • Masson Y, Pride S (2010) Finite-difference modeling of Biot’s poroelastic equations across all frequencies. Geophysics 75(2):N33–N41. doi:10.1190/1.3332589

    Article  Google Scholar 

  • Matthews C, Russell DG (1967) Pressure buildup and flow tests in wells. SPE monograph series, vol 1. Society of petroleum engineers of AIME, New York

    Google Scholar 

  • Matthews G, Moss A, Spearing M, Voland F (1993) Network calculation of mercury intrusion and absolute permeability in sandstone and other porous media. Powder Technol 76:95–107

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2003) The rock physics handbook. Tools for seismic analysis in porous media. Cambridge University Press, Cambridge

    Google Scholar 

  • May L (2010) Water resources engineering, 2nd edn. Wiley, New York

    Google Scholar 

  • McDermott C, Walsh R, Mettier R, Kosakowski G, Kolditz O (2009) Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion. Comput Geosci 13(3):349–361

    Article  MATH  Google Scholar 

  • McGarr A, Simpson D, Seeber L (2002) 40 case histories of induced and triggered seismicity. In: Lee WHK, Hiroo Kanamori PCJ, Kisslinger C (eds) International handbook of earthquake and engineering seismology. International geophysics, vol 81, part A. Academic, Amsterdam/Boston, pp 647–661. doi:10.1016/S0074-6142(02)80243-1

    Google Scholar 

  • Mehrabian A, Abousleiman YN (2009) The dilative intake of poroelastic inclusions an alternative to the mandel-cryer effect. Acta Geotech 4:249–259

    Article  Google Scholar 

  • Mohais R, Xu C, Dowd P (2011) Fluid flow and heat transfer within a single horizontal fracture in an enhanced geothermal system. J Heat Transf 133(11):112603. doi:10.1115/1.4004369

    Article  Google Scholar 

  • Mok U, Bernabé Y, Evans B (2002) Permeability, porosity and pore geometry of chemically altered porous silica glass. J Geophys Res 107(B1):2015. doi:10.1029/2001JB000247

    Article  Google Scholar 

  • Munson B, Young D, Okiishi T (2006) Fundamentals of fluid mechanics. Wiley, New York

    MATH  Google Scholar 

  • Müntener O (2011) Serpentine and serpentinization: a link between planet formation and life. Geology 38:959–960. doi:10.1130/focus102010.1

    Article  Google Scholar 

  • Murdoch LC, Germanovich LN (2006) Analysis of a deformable fracture in permeable material. Int J Numer Anal Methods Geomech 30:529–561

    Article  MATH  Google Scholar 

  • Murdoch L, Germanovich L (2012) Storage change in a flat-lying fracture during well tests. Water Resour Res 48:W12528. doi:10.1029/2011WR011571

    Article  Google Scholar 

  • Nazridoust K, Ahmadi G, Smith D (2006) A new friction factor correlation for laminar, single-phase flows through rock fractures. J Hydrol 329:315–328. doi:10.1016/j.jhydrol.2006.02.032

    Article  Google Scholar 

  • Neuman S (2008) Multiscale relationships between fracture length, aperture, density and permeability. Geophys Res Lett 35:L22402. doi:10.1029/2008GL035622

    Article  Google Scholar 

  • Neuman S, Zhang YK (1990) A quasi-linear theory of non-Fickian and Fickian subsurface dispersion: 1. Theoretical analysis with application to isotropic media. Water Resour Res 26(5):887–902. doi:10.1029/WR026i005p00887

    Google Scholar 

  • Neuman S, Guadagnini A, Riva M (2004) Type-curve estimation of statistical heterogeneity. Water Resour Res 40:W04201. doi:10.1029/2003WR002405

    Article  Google Scholar 

  • Nolte D, Pyrak-Nolte L, Cook N (1992) The fractal geometry of flow paths in natural fractures in rock and the approach to percolation. Pure Appl Geophys 131:111–138

    Article  Google Scholar 

  • Norris A (1989) The tube wave as a Biot slow wave. Geophysics 52:694–696

    Article  Google Scholar 

  • Olsson W, Brown S (1993) Hydromechanical response of a fracture undergoing compression and shear. Int J Rock Mech Min Sci 30(7):845–851. doi:10.1016/0148-9062(93)90034-B

    Article  Google Scholar 

  • Ortiz A, Renner J, Jung R (2011) Hydromechanical analyses of the hydraulic stimulation of borehole Basel 1. Geophys J Int 185:1266–1287. doi:10.1111/j.1365-246X.2011.05005.x

    Article  Google Scholar 

  • Ortiz A, Renner J, Jung R (2013) Two-dimensional numerical investigations on the termination of bilinear flow in fractures. Solid Earth 4:331–345. doi:10.5194/se-4-331-2013

    Article  Google Scholar 

  • Phipps L (1981) On transitions in radial flow between closely-spaced parallel plates. J Phys D Appl Phys 14:L197–L201

    Article  Google Scholar 

  • Piggott A, Elsworth D (1992) Analytical models for flow through obstructed domains. J Geophys Res 97(B2):2085–2093

    Article  Google Scholar 

  • Poe BD, Economides MJ (2000) Post-treatment evaluation and fractured well performance. In: Economides MJ, Nolte KG (eds) Reservoir stimulation, chap 12. Wiley, Chichester/New York

    Google Scholar 

  • Pride SR (2005) Relationships between seismic and hydrological properties. In: Rubin Y, Hubbard S (eds) Hydrogeophysics, chap 9. Springer, Dordrecht

    Google Scholar 

  • Pride S, Harris J, Johnson DL, Mateeva A, Nihei K, Nowack R, Rector J, Spetzler H, Wu R, Yamomoto T, Berryman J, Fehler M (2003) Permeability dependence of seismic amplitudes. Lead Edge 2(6):518–525

    Article  Google Scholar 

  • Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res 109:B01201. doi:10.1029/2003JB002639

    Google Scholar 

  • Pyrak-Nolte LJ, Morris JP (2000) Single fractures under normal stress: the relation between fracture specific stiffness and fluid flow. Int J Rock Mech Min Sci 37:245–262

    Article  Google Scholar 

  • Qian J, ZChen, Zhan H, Luo S (2011) Solute transport in a filled single fracture under non-Darcian flow. Int J Rock Mech Min Sci 48:132–140

    Google Scholar 

  • Quintal B, Steeb H, Frehner M, Schmalholz S (2011) Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media. J Geophys Res 116:B01201

    Google Scholar 

  • Quintal B, Steeb H, Frehner M, Schmalholz S, Saenger E (2012) Pore fluid effects on s-wave attenuation caused by wave-induced fluid flow. Geophysics 77:L13–L23

    Article  Google Scholar 

  • Rasmussen T, Haborak K, Young M (2003) Estimating aquifer hydraulic properties using sinusoidal pumping at the Savannah River site, South Carolina, USA. Hydrogeol J 11:466–482

    Article  Google Scholar 

  • Rayleigh L (1896) Theory of sound, vol II. Macmillan, London

    MATH  Google Scholar 

  • Read T, Bour O, Bense V, Borgne TL, Goderniaux P, Klepikova M, Hochreutener R, Lavenant N, Boschero V (2013) Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing. Geophys Res Lett 40:2055–2059. doi:10.1002/grl.50397

    Article  Google Scholar 

  • Rehbinder G (1989) Darcyan flow with relaxation effect. Appl Sci Res 46:45–72

    Article  MathSciNet  MATH  Google Scholar 

  • Rehbinder G (1992) Measurement of the relaxation time in Darcy flow. Transp Porous Media 8(3):263–275

    Article  Google Scholar 

  • Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20(5–6):253–278

    Article  Google Scholar 

  • Renner J, Messar M (2006) Periodic pumping tests. Geophys J Int 167:479–493

    Article  Google Scholar 

  • Renner J, Hettkamp T, Rummel F (2000) Rock mechanical characterization of an argillaceous host rock of a potential radioactive waste repository. Rock Mech Rock Eng 33(3):153–178

    Article  Google Scholar 

  • Renshaw C (1995) On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J Geophys Res 100(B12):24629–24636

    Article  Google Scholar 

  • Revil A, Cathles LM (1999) Permeability of shaly sands. Water Resour Res 35(3):651–662

    Article  Google Scholar 

  • Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14:227–241

    Article  Google Scholar 

  • Rink M, Schopper JR (1968) Computations of network models of porous media. Geophys Prospect 16:277–294

    Article  Google Scholar 

  • Rodrigues JD (1983) The Noordbergum effect and characterization of aquitards at the Rio Maior mining project. Ground Water 21(2):200–207

    Article  Google Scholar 

  • Roeloffs E (1998) Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J Geophys Res 103:869–889

    Article  Google Scholar 

  • Rojstaczer S, Agnew D (1989) The influence of formation properties on the response of water levels in wells to earth tides and atmospheric loading. J Geophys Res 94:12403–12411

    Article  Google Scholar 

  • Schopper J (1982) Porosity and permeability. In: Angenheister G (ed) Landolt-Börnstein: Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, vol V, 1a. Springer, Berlin, pp 184–304

    Google Scholar 

  • Sen Z (1987) Non-Darcian flow in fractured rocks with a linear flow pattern. J Hydrol 92:43–57

    Article  Google Scholar 

  • Sen Z (1989) Non-linear flow toward wells. J Hydrol Eng 115(2):193–209

    Article  Google Scholar 

  • Shapiro S, Dinske C (2009) Fluid-induced seismicity: pressure diffusion and hydraulic fracturing. Geophys Prospect 57(2):301–310

    Article  Google Scholar 

  • Shapiro SA, Müller TM (1999) Seismic signatures of permeability in heterogeneous porous media. Geophysics 64:99–103

    Article  Google Scholar 

  • Sheng P, Zhou MY (1988) Dynamic permeability in porous media. Phys Rev Lett 61(14):1591–1594. doi:10.1103/PhysRevLett.61.1591

    Article  Google Scholar 

  • Sibson R, Moore J, Rankin A (1975) Seismic pumping – a hydrothermal fluid transport mechanism. J Geol Soc Lond 131:653–659

    Article  Google Scholar 

  • Simon BR, Zienkiewicz OC, Paul DK (1984) An analytical solution for the transient response of saturated porous elastic solids. Int J Numer Anal Met 8:381–398

    Article  MATH  Google Scholar 

  • Simpson DW, Leith WS, Scholz CH (1988) Two types of reservoir-induced seismicity. Bull Seism Soc Am 178(6):2025–2040

    Google Scholar 

  • Sisavath S, Al-Yaarubi A, Pain C, Zimmerman R (2003) A simple model for deviations from the cubic law for a fracture undergoing dilation or closure. Pure Appl Geophys 160:1009–1022

    Article  Google Scholar 

  • Skjetne E, Auriault J (1999) New insights on steady, non-linear flow in porous media. Eur J Mech B/Fluids 13(1):131–145

    Article  MathSciNet  MATH  Google Scholar 

  • Skjetne E, Hansen A, Gudmundsson J (1999) High-velocity flow in a rough fracture. J Fluid Mech 383:1–28. doi:10.1017/S0022112098002444

    Article  MATH  Google Scholar 

  • Slack T, Murdoch L, Germanovich L, Hisz D (2013) Reverse water-level change during interference slug tests in fractured rock. Water Resour Res 49:1552–1567. doi:10.1002/wrcr.20095

    Article  Google Scholar 

  • Smeulders D, Eggels R, van Dongen M (1992) Dynamic permeability: reformulation of theory and new experimental and numerical data. J Fluid Mech 245:211–227. doi:10.1111/j.1365-246X.2007.03339.x

    Article  MATH  Google Scholar 

  • Smeulders DMJ (2005) Experimental evidence for slow compressional waves. J Eng Meth-ASCE 131:908–917

    Article  MATH  Google Scholar 

  • Smits A, Marusic I (2013) Wall-bounded turbulence. Phys Today 66(9):25–30. doi:10.1063/PT.3.2114

    Article  Google Scholar 

  • Sneddon IN (1995) Fourier transforms. Dover, New York

    MATH  Google Scholar 

  • Song I, Renner J (2006) Experimental investigation into the scale dependence of fluid transport in heterogeneous rocks. Pure Appl Geophys 163:2103–2123. doi:10.1007/s00024-006-0121-3

    Article  Google Scholar 

  • Song I, Renner J (2007) Analysis of oscillatory fluid flow through rock samples. Geophys J Int 175:195–204. doi:10.1111/j.1365-246X.2007.03339.x

    Article  Google Scholar 

  • Song I, Renner J (2008) Hydromechanical properties of Fontainebleau sandstone: Experimental determination and micromechanical modeling. J Geophys Res 113:B09211. doi:10.1029/ 2007JB005055

    Google Scholar 

  • Spanos TJT (2010) The thermophysics of porous media. Taylor & Francis, Boca Raton

    MATH  Google Scholar 

  • Steeb H (2010) Ultrasound propagation in cancellous bone. Arch Appl Mech 80:489–502

    Article  MATH  Google Scholar 

  • Stein C, Stein S (1994) Constraints on hydrothermal flux through the oceanic lithosphere from global heat flow. J Geophys Res 99:3081–3095

    Article  Google Scholar 

  • Stein C, Stein S, Pelayo A (1995) Heat flow and hydrothermal circulation. In: Humphris S, Mullineaux L, Zierenberg R, Thomson R (eds) Physical, chemical, biological and geological interactions within hydrothermal systems. AGU monographs. American Geophysical Union, Washington, DC, pp 425–445

    Chapter  Google Scholar 

  • Stoll RD (1989) Sediment acoustics. Lecture notes in earth sciences. Springer, Berlin

    Google Scholar 

  • Terzaghi K (1923) Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydromechanischen Spannungserscheinungen. Sitzungsberichte der Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse 132:125–138

    Google Scholar 

  • Tidwell V, Wilson J (1999) Permeability upscaling measured on a block of Berea sandstone: Results and interpretation. Math Geol 31(7):749–786

    Article  Google Scholar 

  • Tijdeman L (1975) On the propagation of sound waves in cylindrical tubes. J Sound Vib 39(1):1–33

    Article  MATH  Google Scholar 

  • Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties, vol 16. Springer, New York

    MATH  Google Scholar 

  • Townend J, Zoback M (2000) How faulting keeps the crust strong. Geology 28(5):399–402

    Article  Google Scholar 

  • Truckenbrodt EA (1996) Fluidmechanik: Band 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide (German Edition). Springer, Berlin

    MATH  Google Scholar 

  • Valko P, Economides M (1995) Hydraulic fracture mechanics. Wiley, Chichester

    Google Scholar 

  • Verruijt A (2010) An introduction to soil dynamics. Springer, Berlin

    Book  Google Scholar 

  • Vinci C, Renner J, Steeb H (2013) A hybrid-dimensional approach for an efficient numerical modeling of the hydro-mechanics of fractures. Water Resour Res 50: 1616–1635. doi:10.1002/2013WR014154

    Article  Google Scholar 

  • Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton/Oxford

    Google Scholar 

  • Weir G (1999) Single-phase flow regimes in a discrete fracture model. Water Resour Res 35:65–73

    Article  Google Scholar 

  • Wen Z, Huang G, Zhan H (2006) Non-Darcian flow in a single confined vertical fracture toward a well. J Hydrol 330:698–708

    Article  Google Scholar 

  • White J (1965) Seismic waves: radiation, transmission, and attenuation. McGraw-Hill, New York

    Google Scholar 

  • White JE, Mikhaylova NG, Lyakhovitskiy FM (1975) Low-frequency seismic waves in fluid-saturated layered rocks. Earth Phys 10:44–52

    Google Scholar 

  • Wilmański K (1998) A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp Porous Med 32:21–47

    Article  Google Scholar 

  • Wilmański K (2006) A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dyn Earthq Eng 26:509–536

    Article  Google Scholar 

  • Witherspoon P, Wang J, Iwai K, Gale J (1980) Validity of cubic law for fluid-flow in a deformable rock fracture. Water Resour Res 16:1016–1024

    Article  Google Scholar 

  • Womersley G (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127(3):553–563

    Article  Google Scholar 

  • Xiang Y, Zhang Y (2012) Two-dimensional integral equation solution of advective-conductive heat transfer in sparsely fractured water-saturated rocks with heat source. Int J Geomech 12(2):168–175

    Article  Google Scholar 

  • Yeo I, de Freitas M, Zimmerman R (1998) Effect of shear displacement on the aperture and permeability of a rock fracture. Int J Rock Mech Min Sci 35:1051–1070

    Article  Google Scholar 

  • Yeung K, Chakrabarty C, Zhang X (1993) An approximate analytical study of aquifers with pressure-sensitive formation permeability. Water Resour Res 29(10):3495–3501

    Article  Google Scholar 

  • Yilmaz O, Nolen-Hoeksema R, Nur A (1994) Pore pressure profiles in fractured and compliant rocks. Geophys Prospect 42:693–714

    Article  Google Scholar 

  • Zamir M (2000) The physics of pulsatile flow. Springer, New York

    Book  MATH  Google Scholar 

  • Zhou MY, Sheng P (1989) First-principles calculations of dynamic permeability in porous media. Phys Rev B 39(16):12027–12039. doi:10.1103/PhysRevB.39.12027

    Article  Google Scholar 

  • Zienkiewicz OC, Shiomi T (1984) Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. Int J Numer Anal Met 8:71–96

    Article  MATH  Google Scholar 

  • Zienkiewicz OC, Chan HC, Pastor M, Schrefler BA, Shiomin T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Zimmerman R, Somerton W, King M (1986) Compressibility of porous rocks. J Geophys Res 91:12765–12777

    Article  Google Scholar 

  • Zimmerman R, Chen D, Cook N (1992) The effect of contact area on the permeability of fractures. J Hydrol 139:79–96

    Article  Google Scholar 

  • Zimmerman R, Al-Yaarubi A, Pain C, Grattoni C (2005) Nonlinear regimes of fluid flow in rock fractures. Int J Rock Mech Min Sci 41:1A27

    Google Scholar 

  • Zoback MD, Harjes H (1997) Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. J Geophys Res 102:18477–18492

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Renner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Renner, J., Steeb, H. (2015). Modeling of Fluid Transport in Geothermal Research. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_81

Download citation

Publish with us

Policies and ethics