Skip to main content

Using B-Spline Expansions for Ionosphere Modeling

  • Reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

The knowledge of the electron density is the key point in correcting electromagnetic measurements for ionospheric disturbances. In the last 15 years, the space-geodetic observation techniques such as the Global Positioning System (GPS) or radar altimetry have become a promising tool for monitoring the electron distribution in the ionosphere.This chapter gives a detailed overview of the mathematical modeling of ionospheric parameters such as the electron density by means of B-spline expansions. B-splines – which are locally supported basis functions – allow for optimal handling of unevenly distributed observations and data gaps. By combining the one-dimensional basis functions by means of tensor products, multidimensional models can be constructed easily. The unknown model coefficients are estimated based on observations from a number of space-geodetic techniques. In addition to the mathematical model and the basis functions used, the estimation process including variance component estimation (VCE) and multi-scale representation (MSR) is introduced. The feasibility of the approach is shown for one example modeling the vertical total electron content (VTEC) for 24 h in South America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Institute of Aeronautics and Astronautics (2011) Guide to reference and standard ionosphere models. AIAA, Reston. ISBN:1-56347-347-X

    Google Scholar 

  • Aragón-Angel A, Hernández-Pajares M, Juan JM, Sanz J (2009) Obtaining more accurate density profiles from bending angle with GPS occultation data: FORMOSAT-3/COSMIC constellation. Adv Space Res 43(11):1694–1701

    Article  Google Scholar 

  • Azpilicueta F, Brunini C, Radicella SM (2006) Global ionospheric maps from GPS observations using modip latitude. J Adv Space Res 38:2324–2331

    Article  Google Scholar 

  • Bányai L (1997) Investigation of the single layer model of GPS ionospheric data processing using IRI-90 and the attached diffusive equilibrium model of plasmaspheric electron density. Ann Geophys 40(6):1471–1482. doi:10.4401/ag-3837

    Google Scholar 

  • Bassiri S, Hajj GA (1993) Higher-order ionopsheric effects on the global positioning system observables and means of modeling them. Manuscr Geodetica 18:280–289

    Google Scholar 

  • Bayer M, Freeden W, Maier T (2001) A vector wavelet approach in iono- and magnetospheric geomagnetic satellite data. J Atmos Solar Terr Phys 63:581–597

    Article  Google Scholar 

  • Bilitza D, Reinisch B (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42:599–609

    Article  Google Scholar 

  • Brunini C, Sánchez L (2013) Geodetic reference frame for the Americas. GIM Int 27(3):26–31

    Google Scholar 

  • Davies K (1990) Ionospheric radio. Peter Peregrinus, London

    Book  Google Scholar 

  • Dettmering D (2003) The use of GPS for three-dimensional ionosphere modelling (in German). PhD thesis, Department of Geodesy and Geoinformatic, University of Stuttgart, Stuttgart

    Google Scholar 

  • Dettmering D, Schmidt M, Heinkelmann R (2011a) Systematic differences between VTEC obtained by different space-geodetic techniques during CONT08. J Geod 85:443–451. doi:10.1007/s00190-011-0473-z

    Article  Google Scholar 

  • Dettmering D, Schmidt M, Heinkelmann R, Seitz M (2011b) Combination of different space-geodetic observations for regional ionosphere modeling. J Geod 85:989–998. doi:10.1007/s00190-010-0423-1

    Article  Google Scholar 

  • Dettmering D, Schmidt M, Limberger M (2013) Contributions of DORIS to ionosphere modeling. In: Proceedings of “20 years of Progress in Radar Altimetry”, IDS Workshop, Sept 2012, Venice, ESA SP-710, ESA/ESTEC

    Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of Global navigation satellite systems. J Geod 83:191–198

    Article  Google Scholar 

  • Fong C-J, Yen NL, Chu C-H, Yang S-K, Shiau W-T, Huang C-Y, Chi S, Chen S-S, Liou Y-A, Kuo Y-H (2009) FORMOSAT-3/COSMIC spacecraft constellation system, mission results, and prospect for follow-on mission. Terr Atmos Ocean Sci 20:1–19

    Article  Google Scholar 

  • Freeden W, Gerhards C (2010) Poloidal and toroidal modeling in terms of locally supported vector wavelets. Math Geosci 42:817–838

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W, Gerhards C (2013) Geomathematically oriented potential theory. Taylor and Francis, Boca Raton

    MATH  Google Scholar 

  • Geese A (2010) Earth’s magnetic field: observation and modelling from global to regional scales. Scientific technical report STR11/03, GFZ Potsdam, doi:10.2312/GFZ.b103-11036

    Google Scholar 

  • Heise S (2002) Reconstruction of three-dimensional electron density distributions based on CHAMP GPS measurements (in German). PhD thesis, Institute for Meteorology, FU Berlin, Berlin

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC map: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Aragón-Angel A, Garcia-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85:887–907

    Article  Google Scholar 

  • Heublein M (2011) Three-dimensional B-Spline models of VTEC from the combination of different geodetic observation methods. Bachelor thesis, Faculty of Geodesy and Geoinformation, Karlsruher Insitut für Technologie KIT

    Google Scholar 

  • Hong L, Chen G, Chui CK (1998) A filter-bank-based Kalman filtering technique for wavelet estimation and decomposition of random signals. IEEE Trans Circuits Syst 45(2):237–241

    Article  Google Scholar 

  • Iijima BA, Harris IL, Ho CM, Lindqwister UJ, Mannucci AJ, Pi X, Reyes MJ, Sparks LC, Wilson BD (1999) Automated daily process for global ionospheric total electron content maps and satellite ocean ionospheric calibration based on Global positioning system. J Atmos Solar Terr Phys 61(16):1205–1218

    Article  Google Scholar 

  • Jekeli C (2005) Spline representations of functions on a sphere for geophysical modeling. Geodetic and Geoinformation Science, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Report No. 475, Columbus

    Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Book  MATH  Google Scholar 

  • Koch KR (2007) Introduction to Bayesian statistics. Springer, Berlin

    MATH  Google Scholar 

  • Koch KR (2009) Identity of simultaneous estimates of control points and of their estimates by the lofting method for NURBS surface fitting. Int J Adv Manuf Technol. doi:10.1007/s00170-009-1934-x

    Google Scholar 

  • Koch KR (2011a) Data compression by multi-scale representation of signals. J Appl Geod 5:1–12. doi:10.1515/JAG.2011.001

    Article  Google Scholar 

  • Koch KR (2011b) Thresholds for data compression by multi-scale representation of signals. Allgemeine Vermessungs-Nachrichten 118:293–301

    Google Scholar 

  • Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76:259–268. doi:10.1007s00190-002-0245-x

    Article  MATH  Google Scholar 

  • Koch KR, Schmidt M (2011) Identity of simultaneous estimates of control points and of their estimates by the lofting method for NURBS surface fitting. Int J Adv Manuf Technol. doi:10.1007/s00170-009-1934-x

    Google Scholar 

  • Langley RB (1998) Propagation of the GPS signals. In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy. Springer, Berlin/Heidelberg

    Google Scholar 

  • Limberger M, Schmidt M, Dettmering D, Liang W, Hugentobler U (2013) Determination of F2 Chapman parameters by means of electron density profiles for regional ionosphere modeling. Ann Geophys 31(12):2215–2227. European Geoscience Union

    Article  Google Scholar 

  • Lyche T, Schumaker LL (2001) A multiresolution tensor spline method for fitting functions on the sphere. SIAM J Sci Comput 22(2):724–746

    Article  MathSciNet  MATH  Google Scholar 

  • Maier T (2005) Wavelet Mie-representations for solenoidal vector fields with applications to ionosperic magnetic modeling. SIAM J Appl Math 65:1888–1912

    Article  MathSciNet  MATH  Google Scholar 

  • Mayer C (2004) Wavelet modelling of the spherical inverse spource problem with application to geomagnetism. Inverse Probl 20:1713–1728

    Article  MATH  Google Scholar 

  • Mößmer M (2009) Globale drei-dimensionale Ionosphärenmodelle des VTEC (in German). Bachelor’s thesis, Technical University Munich

    Google Scholar 

  • Ogden RT (1997) Essential wavelets for statistical applications and data analysis. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Radicella SM (2009) The NeQuick model genesis, uses and evolution. Ann Geophys 52(3): 417–422

    Google Scholar 

  • Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global positioning system. Ph.D. dissertation, Astronomical Institute, University of Berne, Berne

    Google Scholar 

  • Schmidt M (2007) Wavelet modeling in support of IRI. Adv Space Res 39:932–940

    Article  Google Scholar 

  • Schmidt M (2012) Towards a multi-scale representation of multi-dimensional signals. In: Sneeuw N et al (eds) VII Hotine-Marussi symposium on mathematical geodesy, Rome. IGA symposia, vol 137, pp 119-127. doi:10.1007978-3-642-22078-4_18

    Google Scholar 

  • Schmidt M, Dettmering D, Mößmer M, Wang Y, Zang J (2011) Comparison of spherical harmonic and B spline models for the vertical electron content. Radio Sci 46:RS0D11. doi:10.1029/2010RS004609

    Google Scholar 

  • Schmidt M, Göttl F, Heinkelmann R (2013) Towards the combination of data sets from various observation techniques. In: Proceedings of the 1st international workshop on the quality of geodetic observation and monitoring system (QuGOMS) 2011, Munich

    Google Scholar 

  • Schumaker LL, Traas C (1991) Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines. Numer Math 60:133–144

    Article  MathSciNet  MATH  Google Scholar 

  • Schunk RW, Nagy AF (2000) Ionospheres: physics, plasma physics, and chemistry. Cambridge University Press, New York

    Book  Google Scholar 

  • Schunk RW et al (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci 39. doi:10.1029/2002RS002794

    Google Scholar 

  • Seeber G (2003) Satellite geodesy. Walter de Gruyter, Berlin/New York. ISBN:978-3110175493

    Google Scholar 

  • Stollnitz EJ, DeRose TD, Salesin DH (1995) Wavelets for computer graphics: a primer, part I. IEEE Comput Graphics Appl 15(3):76–84; part II, IEEE Comput Graphics Appl 15(4):75–85

    Article  Google Scholar 

  • Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2012) The international DORIS service (IDS): toward maturity. Adv Space Res 45(12):1408–1420

    Article  Google Scholar 

  • Zeilhofer C (2008) Multi-dimensional B-spline modeling of spatio-temporal ionospheric signals. German Geodetic Commission, Series A, 123, Munich

    Google Scholar 

  • Zeilhofer C, Schmidt M, Bilitza D, Shum CK (2009) Regional 4-D modeling of the ionospheric electron density from satellite data and IRI. Adv Space Res 43:1669–1675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schmidt, M., Dettmering, D., Seitz, F. (2015). Using B-Spline Expansions for Ionosphere Modeling. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_80

Download citation

Publish with us

Policies and ethics