Advertisement

Turbulence Theory

  • Steffen Schön
  • Gaël Kermarrec
Reference work entry

Abstract

The word turbulence comes from late Latin “turbulentia” which means “full of commention.” It is defined as a “violent or unsteady movement of air or water, or of some other fluid” (Oxford Dictionary of English 2010). Thus, it is a process that dissipates or mixes. The antonyms are unity or homogeneity: they help us to understand more clearly what turbulence concretely means – turbulence mixes and disperses the medium in which it develops, and then it disappears once homogeneity returns.

Keywords

Structure Function Separation Distance Spectral Density Function Allan Variance Wavelet Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank FK Brunner for his introduction into turbulence theory. The stay at his institute at TU Graz, Austria, was funded by a Feodor Lynen Fellowship of Alexander von Humboldt Foundation, which is gratefully acknowledged. The first author thanks Dr. Markus Vennbusch for fruitful discussions and new development at IfE Hannover. The German Research Foundation (DFG) is thanked for the financial support to study the subject in the projects SCHO1314/1-1, 1-2 as well as SCHO1314/3-1.

References

  1. Abramowitz M, Segun IA (1972) Handbook of mathematical functions. Dover, New York editionzbMATHGoogle Scholar
  2. Abry P, Goncalves O, Flandrin P (1995) Wavelets, spectrum estimation and 1/f processes. In: Antoniadis A, Oppenheim G (eds) Wavelets and statistics. Lecture notes in statistics, vol 103. Springer, New York pp 15–30Google Scholar
  3. Allan DW (1987) Time and frequency (time domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans Ultrason Ferroelectr Freq Control UFFC-34(6):647–654MathSciNetCrossRefGoogle Scholar
  4. Armstrong JW Sramek RA (1982) Observations of tropospheric phase scintillations at 5 GHz on vertical paths. Radio Sci 17(6):1579–1586CrossRefGoogle Scholar
  5. Banta RM, Newsom RK, Lundquist JK (2002) Nocturnal low-level jet characteristics over Kansas during cases-99. Bound Layer Meteorol 105:221–252CrossRefGoogle Scholar
  6. Barnes J, Chi AR, Cutler LS, Healey DJ, Leeson DB, McGunigal TE, Mullen JA, Smith WL, Sydnor RL, Vessot RF, Winkler GM (1971) Characterization of frequency stability. IEEE Trans Instrum Meas 20:105120Google Scholar
  7. Beutler G, Bauersima I, Gurtner W, Rothacher M (1987) Correlations between simultaneous GPS double difference carrier phase observations in the multistation mode: implementation considerations and first experiences. Manisc Geod 12(1):40–44Google Scholar
  8. Bevis G, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol Climatol 33(3):379–386CrossRefGoogle Scholar
  9. Bischoff W, Heck B, Howind J, Teusch A (2005) A procedure for testing the assumption of homoscedasticity in least-squares residuals: a case study of GPS carrier phase observations. J Geod 78(7–8):397–404CrossRefzbMATHGoogle Scholar
  10. Boussinesq J (1877) Essai sur la theorie des eaux courantes, Memoires presentes par divers savants ‘a l’ Academie des Sciences XXIII, 1–680Google Scholar
  11. Brunner FK, Hartinger H, Troyer L (1999) GPS signal diffraction modelling: the stochastic SIGMA-Dmodel. J Geod 73(5):259–267CrossRefGoogle Scholar
  12. Coulman CE (1990) Atmospheric Structure, Turbulence and Radioastronomical “Seeing”. Proceedings URSI/IAU Symposium on Radio Astronomical Seeing Beijing/Oxford, International Academic Publishers/Pergamon Press, pp. 11–20Google Scholar
  13. Coulman CE, Vernin J (1991) Significance of anisotropy and the outer scale of turbulence for optical and radio seeing. Appl Opt 30(1):118–126CrossRefGoogle Scholar
  14. Cornish CR, Bretherton CS (2006) Maximal overlap wavelet statistical analysis with application to atmospheric turbulence. Bound Layer Meteorol 119(2):339–377CrossRefGoogle Scholar
  15. Cressie N (1993) Statistics for spatial data. Wiley, New York/Chichester/Toronto/Brisbane/ SingaporeGoogle Scholar
  16. Danielson EW, Levin J, Abrams E (2003) Meteorology, McGraw Hill, BostonGoogle Scholar
  17. Davis JL (2001) Atmospheric water-vapor signals in GPS data: synergies, correlations, signals and errors. Phys Chem Earth 26(6–8):513–522CrossRefGoogle Scholar
  18. De Moor G (2006) Couche Limite atmosphérique et turbulence, les bases de la micro météorologie dynamique. Météo-France, Cours et manuels n ̈16, ToulouseGoogle Scholar
  19. Domingues MO, Mendes O, Mendes da Costa A (2004) On wavelet techniques in atmospheric sciences. Adv Space Res 35(5):831–842CrossRefGoogle Scholar
  20. Dravskikh AF, Finkelstein AM (1979) Tropospheric limitations in phase and frequency coordinate measurements in astronomy. Astrophys Space Sci 60(2):251–265CrossRefGoogle Scholar
  21. Emardson TR, Jarlemark POJ (1999) Atmospheric modeling in GPS analysis and its effect on the estimated geodetic parameters. J Geod 73(6):322–331CrossRefGoogle Scholar
  22. El-Rabbany A (1994) The effect of physical correlations on the ambiguity resolution and accuracy estimation in GPS differential positioning. PhD thesis, Department of Geodesy and Geomatics Engineering, University of New BrunswickGoogle Scholar
  23. Farge M (1992) Wavelet transform and their applications to turbulence. Ann Rev Fluid Mech 4:395–457MathSciNetCrossRefGoogle Scholar
  24. Fried DL (1967) Propagation of a spherical wave in a turbulent medium. J Opt Soc Am 57(2):175–180CrossRefGoogle Scholar
  25. Gage KS (1979) Evidence for a k to the -5/3 law inertial range in mesoscale two-dimensional turbulence. J Atmos Sci 36:1950–1954CrossRefGoogle Scholar
  26. Hagelberg CR, Gamage NKK (1994) Structure-Preserving wavelet decompositions of intermittent turbulence. Bound Layer Meteorol 70:217–246CrossRefGoogle Scholar
  27. Hartinger H, Brunner FK (1999) Variances of GPS phase observations: the SIGMA-\(\varepsilon\) model. GPS Solut 2(4):35–43CrossRefGoogle Scholar
  28. Hogg DC, Guiraud FO, Sweezy WB (1981) The short-term temporal spectrum of precipitable water vapor. Science 213(4512):1112–1113CrossRefGoogle Scholar
  29. Howind J (2005) Analyse des stochastischen Modells von GPS-Trägerphasenbeobachtungen. Deutsche Geodätische Kommission, Munich Heft Nr. 584Google Scholar
  30. Howind J, Kutterer H, Heck B (1999) Impact of temporal correlations on GPS-derived relative point positions. J Geod 73(5):246–258CrossRefzbMATHGoogle Scholar
  31. Ishimaru A (1984) Wave propagation and scattering in random media, vol II. Academic, New YorkGoogle Scholar
  32. Jin SG, Luo O, Ren C (2010) Effects of physical correlations on long-distance GPS positioning and zenith tropospheric delay estimates. Adv Space Res 46(2):190–195CrossRefGoogle Scholar
  33. Kleijer F (2004) Tropospheric modeling and filtering for precise GPS leveling. PhD thesis, Netherlands Geodetic Commission, Publications on Geodesy 56Google Scholar
  34. Koch KR, Kuhlmann H, Schuh WD (2010) Approximating covariance matrices estimated in multivariate models by estimated auto- and cross-covariances. J Geod 84(6):383–397CrossRefGoogle Scholar
  35. Kolmogorov NA (1941) Dissipation of energy in the locally isotropic turbulence. Proc USSR Acad Sci 32:16–18. (Russian), translated into English by Kolmogorov, 8 July 1991. “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers”. Proc R Soc Lond Ser A Math Phys Sci 434(1980):15–17MathSciNetGoogle Scholar
  36. Kolmogorov NA (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. Journal of Fluid Mechanics, 13, pp 82–85MathSciNetCrossRefzbMATHGoogle Scholar
  37. Kraichnan RH (1967) Inertial ranges in two-dimensional turbulence. Phys Fluids 10:1417–1423CrossRefGoogle Scholar
  38. Laing D (1991) The earth system: an introduction to earth science, Wm. C. Brown Publishers, Dubuque University of CaliforniaGoogle Scholar
  39. Lay OP (1997) The temporal power spectrum of atmospheric fluctuations due to water vapor. Astron Astrophys Suppl Ser 122:535–545CrossRefGoogle Scholar
  40. Leandro R, Santos MC (2006) An Empirical Stochastic Model for GPS. International Association of Geodesy Symposia (Ed. C. Rizos), IAG, IAPSO and IABO Joint Assembly “Dynamic Planet”, Cairns, Australia, 22–26 August 2005, Springer, pp. 179–185.Google Scholar
  41. Lesieur M (2008) Turbulence in fluids, 4th edn. Springer, DordrechtCrossRefzbMATHGoogle Scholar
  42. Lin, CC (1953) On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equation. Q Appl Maths 10:295–306zbMATHGoogle Scholar
  43. Lindsey WC, Chi CM (1976) Theory of oscillator instability based upon structure functions. Proc IEEE 64(12):1652–1666MathSciNetCrossRefGoogle Scholar
  44. Luo X (2013) GPS stochastic modelling – signal quality measures and ARMA processes. Springer theses: recognizing outstanding Ph.D. research. Springer, Berlin/HeidelbergGoogle Scholar
  45. Mahrt L (1986) On the shallow motion approximations. J Atmos Sci 43:1036–1044CrossRefGoogle Scholar
  46. Mahrt L (1991) Eddy assymmetry in the sheared heated boundary layer. J Atmos Sci 48(3):472–492CrossRefGoogle Scholar
  47. Mathieu J, Scott J (2000) An introduction to turbulent flow. Cambridge University Press, CambridgezbMATHGoogle Scholar
  48. Monin AS, Yaglom AM (1975) Statistical fluid mechanics, vol 2. MIT, CambridgeGoogle Scholar
  49. Muzy JF, Bacry E, Arneodo A (1993) Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys Rev E 47(2):875–884CrossRefGoogle Scholar
  50. Naudet CJ (1996) Estimation of tropospheric fluctuations using GPS data. TDA progress report, pp 42–126Google Scholar
  51. Nastrom GD, Gage KS (1985) A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircrafts. J Atmos Sci 42(9):950–960CrossRefGoogle Scholar
  52. Nichols-Pagel GA, Percival DB, Reinhall PG, Riley JJ (2008) Should structure functions be used to estimate power laws in turbulence? A comparative study. Physica D Nonlinear Phenom 237(5):665–677MathSciNetCrossRefzbMATHGoogle Scholar
  53. Nilsson T, Haas R (2010) Impact of atmospheric turbulence on geodetic very long baseline interferometry. J Geophys Res 115:B03407Google Scholar
  54. Nilsson T, Haas R, Elgered G (2007) Simulations of atmospheric path delays using turbulence models. In: Böhm J, Pany A, Schuh H (eds) Proceedings of 18th European VLBI for Geodesy and Astrometry (EVGA) working meeting, Vienna University of Technology, Vienna, pp 175–180Google Scholar
  55. Oxford Dictionary of English (2010) Oxford University Press, Auflage, 2nd edn., revised (11 Aug 2010)Google Scholar
  56. Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  57. Reddi SS (1984) Eigenvector properties of Toeplitz matrices and their application to spectral analysis of time series. Signal Process 7:45–56MathSciNetCrossRefGoogle Scholar
  58. Riley WJ (2008) Handbook of frequency stability analysis. NIST special publication 1065Google Scholar
  59. Ripley BD (1981) Spatial Statistics. Wiley, pp. 252CrossRefzbMATHGoogle Scholar
  60. Rutman J (1978) Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress. Proc IEEE 66(9)1048–1075CrossRefGoogle Scholar
  61. Romero-Wolf A, Jacobs CS, Ratcli JT (2012) Effects of tropospheric spatio-temporal correlated noise on the Analysis of space geodetic data, IVS general meeting proceedings, Madrid, 5–8 Mar 2012Google Scholar
  62. Satirapod C, Ogaja C, Wang J, Rozos C (2001) GPS analysis with the aid of wavelets. In: 5th international symposium on satellite navigation technology and applications, Canberra, 24–27 July, paper 39Google Scholar
  63. Schön S, Brunner FK (2006) Modelling physical correlation of GPS phase observations: first results. Kahmen H, Chrzanowski A (eds) Proceedings of the 3rd IAG symposium on geodesy for geotechnical and structural engineering/12th FIG symposium on deformation measurements, Baden, 22–24 May 2006, pp PS-18.1–8Google Scholar
  64. Schön S, Brunner FK (2007) Treatment of refractivity fluctuations by fully populated variance-covariance matrices. In: Proceedings of the 1st colloquium scientific and fundamental aspects of the galileo programme, Toulouse OktGoogle Scholar
  65. Schön S, Brunner FK (2008a) Atmospheric turbulence theory applied to GPS carrier-phase data. J Geod 82(1):47–57CrossRefGoogle Scholar
  66. Schön S, Brunner FK (2008b) A proposal for modeling physical correlations of GPS phase observations. J Geod 82(10):601–612CrossRefGoogle Scholar
  67. Seeber G (2003) Satellite geodesy. de Gruyter, BerlinCrossRefGoogle Scholar
  68. Stotskii A (1973) Concerning the fluctuation of characteristics of the Earth’s troposphere. Radiophys Quantum Electron 16(5):620–622CrossRefGoogle Scholar
  69. Stotskii A, Stotskaya IM (2001) Structure analysis of wet path delays in IRIS-S experiments. In: Behrend D, Rius A (eds) Proceedings of the 15th working meeting on European VLBI, Barcelona, 7–8 Sept 2001, p 154Google Scholar
  70. Stotskii A, Elgered KG, Stotskaya M (2006) Structure analysis of path delay variations in the neutral atmosphere. Astron Astrophys Trans J Eurasian Astron Soc 17(1):59–68CrossRefGoogle Scholar
  71. Stull RB (1988) An introduction to boundary layer meteorology. Springer, DordrechtCrossRefzbMATHGoogle Scholar
  72. Tatarskii VI (1971a) Wave propagation in a turbulent medium. McGraw-Hill, New YorkGoogle Scholar
  73. Tatarskii VI (1971b) The effects of the turbulent atmosphere on wave propagation. National Technical Information Service. Springfield VA VA22161Google Scholar
  74. Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond Ser A CLXIV:476–490Google Scholar
  75. Teunissen PJG, Kleusberg A (1998) GPS for Geodesy 2nd ed. Springer Verlag Berlin HeidelbergCrossRefGoogle Scholar
  76. Thomson MC Marler F, Allen K (1980) Measurement of the microwave structure constant profile. IEEE Trans Antennas Propag, 28(2):278–280CrossRefGoogle Scholar
  77. Thompson AR, Moran JM, Swenson GW (2004) Interferometry and synthesis in radio astronomy. Wiley, HobokenGoogle Scholar
  78. Tiberius C, Jonkman N, Kenselaar F (1999) The stochastics of GPS observables. GPS World 10(2):49–54Google Scholar
  79. Treuhaft RN, Lanyi GE (1987) The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci 22(2):251–265CrossRefGoogle Scholar
  80. Treuhaft RN, Lowe ST (1995) Vertical scales of turbulence at the Mt Wilson observatory. In: JPL TRS 1992+BEACON eSpace at Jet Propulsion Laboratory, California Institute of TechnologyGoogle Scholar
  81. Van der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14:160–164CrossRefGoogle Scholar
  82. Vennebusch M, Schön S (2012) Generation of slant tropospheric delay time series based on turbulence theory. In: Kenyon S, Pacino M, Morti U (eds): Proceedings of geodesy for planet earth – IAG 2009, Buenos Aires, International association of geodesy symposia, vol 136, pp 801–808. Springer, New York/Berlin Heidelberg.Google Scholar
  83. Vennebusch M, Schön S, Weinbach U (2011) Temporal and spatial stochastic behavior of high-frequency slant tropospheric delays from simulations and real GPS data. Adv Space Res 47(10):1681–1690CrossRefGoogle Scholar
  84. Vincent A, Meneguzzi M (1991) The spatial structure and statistical properties of homogeneous turbulence. J Fluid Mech 225:1–20CrossRefzbMATHGoogle Scholar
  85. Voitsekhovich VV (1995) Outer scale of turbulence: comparison of different models. J Opt Soc Am A 12(6):1346–1353MathSciNetCrossRefGoogle Scholar
  86. Wang J, Satirapod C, Rizos C (2002) Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. J Geod 76(2):95–104CrossRefzbMATHGoogle Scholar
  87. Wheelon AD (2001) Electromagnetic scintillation part I geometrical optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  88. Whichter B, Guttorp P, Percival D (2000) Wavelet analysis of covariance with application to atmospheric time series. J Geophys Res Atmos 105:14941–14962CrossRefGoogle Scholar
  89. Wieser A, Brunner FK (2000) An extended weight model for GPS phase observations. Earth Planet Space 52:777–782CrossRefGoogle Scholar
  90. Williams S (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76(9–10):483–494. OU 2002?Google Scholar
  91. Williams S, Bock Y, Fang P (1998) Integrated satellite interferometry: tropospheric noise, GPS estimates and implication for interferometric synthetic aperture radar products. J Geophys Res 103(B11):27051–27067CrossRefGoogle Scholar
  92. Wright MCH (1996) Atmospheric phase noise and aperture synthesis imaging at millimeter wavelengths. Publ Astron Soc Pac 108(724):520–534CrossRefGoogle Scholar
  93. Yaglom AM (1987) Correlation theory of stationary and related random functions I, II, 1st edn. Springer, New York/Berlin/HeilderbergGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für Erdmessung, Leibniz Universität HannoverHannoverGermany

Personalised recommendations