Convection Structures of Binary Fluid Mixtures in Porous Media

  • Matthias AugustinEmail author
  • Rudolf Umla
  • Manfred Lücke
Reference work entry


The study of convection patterns of binary mixtures in a porous medium plays an important role for modeling geothermal reservoirs as well as for many more industrial applications. Making use of a global Galerkin method allows to numerically determine in an efficient way various convection structures. The aim of this chapter is to describe the structural properties of these flow patterns, their bifurcation behavior, and stability against infinitesimal perturbations. The Soret effect, i.e., the generation of concentration gradients by temperature gradients, is taken into account and leads to several patterns with distinct features. We focus on those patterns that are of primary importance near the onset of convection; these include roll, crossroll, and square convection as well as traveling waves of convection rolls.


Porous Medium Stability Boundary Concentration Field Lewis Number Lateral Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Augustin M, Umla R, Huke B, Lücke M (2010) Stationary and oscillatory convection of binary fluids in a porous medium. Phys Rev E 82:056303CrossRefzbMATHGoogle Scholar
  2. Barten W, Lücke M, Hort W, Kamps M (1989) Fully developed travelling-wave convection in binary fluid mixtures. Phys Rev Lett 63:376–379CrossRefGoogle Scholar
  3. Barten W, Lücke M, Kamps M, Schmitz R (1995) Convection in binary fluid mixtures. I. Extended traveling-wave and stationary states. Phys Rev E 51:5636–5661CrossRefGoogle Scholar
  4. Brand H, Steinberg V (1983) Nonlinear effects in the convective instability of a binary mixture in a porous medium near threshold. Phys Lett A 93:333–336CrossRefGoogle Scholar
  5. Charrier-Mojtabi M-C, Elhajjar B, Mojtabi A (2007) Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer. Phys Fluids 19:124104CrossRefzbMATHGoogle Scholar
  6. De La Torre Juárez M, Busse FH (1995) Stability of two-dimensional convection in a fluid-saturated porous medium. J Fluid Mech 292:305–323MathSciNetCrossRefzbMATHGoogle Scholar
  7. Elhajjar B, Charrier-Mojtabi M-C, Mojtabi A (2008) Separation of a binary fluid mixture in a porous horizontal cavity. Phys Rev E 77:026310CrossRefzbMATHGoogle Scholar
  8. Hollinger S, Lücke M (1998) Influence of the Soret effect on convection of binary fluids. Phys Rev E 57:4238–4249CrossRefGoogle Scholar
  9. Hollinger S, Büchel P, Lücke M (1997) Bistability of slow and fast traveling waves in fluid mixtures. Phys Rev Lett 78:235–238CrossRefGoogle Scholar
  10. Horton C, Rogers F (1945) Convection currents in a porous medium. J Appl Phys 16:367–370MathSciNetCrossRefzbMATHGoogle Scholar
  11. Howle LE, Behringer RP, Georgiadis JG (1997) Convection and flow in porous media. Part 2. Visualization by shadowgraph. J Fluid Mech 332:247–262Google Scholar
  12. Huke B, Lücke M, Büchel P, Jung C (2000) Stability boundaries of roll and square convection in binary fluid mixtures with positive separation ratio. J Fluid Mech 408:121–147MathSciNetCrossRefzbMATHGoogle Scholar
  13. Huke B, Pleiner H, Lücke M (2007) Convection patterns in colloidal solutions. Phys Rev E 75:036203CrossRefGoogle Scholar
  14. Jung D (2005) Ausgedehnte und lokalisierte Konvektion in zweikomponentigen Flüssigkeiten: Wellen, Fronten und Pulse. PhD thesis, Universität des SaarlandesGoogle Scholar
  15. Knobloch E (1986) Oscillatory convection in binary mixtures. Phys Rev A 34:1538–1549CrossRefGoogle Scholar
  16. Lapwood E (1948) Convection of a fluid in a porous medium. Proc Camb Philos Soc 44:508–521MathSciNetCrossRefzbMATHGoogle Scholar
  17. Linz SJ, Lücke M, Müller H, Niederländer J (1988) Convection in binary fluid mixtures: traveling waves and lateral currents. Phys Rev A 38:5727–5741CrossRefGoogle Scholar
  18. Lücke M, Barten W, Kamps M (1992) Convection in binary mixtures: the role of the concentration field. Phys Rev E 61:183–196zbMATHGoogle Scholar
  19. Müller HW, Lücke M (1988) Competition between roll and square convection patterns in binary mixtures. Phys Rev A 38:2965–2974CrossRefGoogle Scholar
  20. Nield DA, Bejan A (eds) (2006) Convection in porous media. Springer, New YorkzbMATHGoogle Scholar
  21. O’Sullivan MJ, Pruess K, Lippmann MJ (2001) State of the art of geothermal reservoir simulation. Geothermics 30:395–429CrossRefGoogle Scholar
  22. Platten JK (2006) The Soret–effect: a review of recent experimental results. J Appl Mech 73:5–15CrossRefzbMATHGoogle Scholar
  23. Pruess K (1990) Modeling of geothermal reservoirs: fundamental processes, computer simulation and field applications. Geothermics 19:3–15CrossRefGoogle Scholar
  24. Saravanan S, Kandaswamy P (2003) Convection currents in a porous layer with a gravity gradient. Heat Mass Trans 39:693–699CrossRefGoogle Scholar
  25. Shattuck MD, Behringer RP, Johnson GA, Georgiadis JG (1997) Convection and flow in porous media. Part 1. Visualization by magnetic resonance imaging. J Fluid Mech 332:215–245Google Scholar
  26. Sovran O, Charrier-Mojtabi M-C, Mojtabi A (2001) Naissance de la convection thermo-solutale en couche poreuse infinie avec effet Soret: onset on Soret-driven convection in an infinite porous layer. C R Acad Sci Ser IIb Mec 329:287–293zbMATHGoogle Scholar
  27. Straus JM (1974) Large amplitude convection in porous media. J Fluid Mech 64:51–63CrossRefzbMATHGoogle Scholar
  28. Thomas O (2007) Reservoir analysis based on compositional gradients. PhD thesis, Stanford UniversityGoogle Scholar
  29. Umla R, Augustin M, Huke B, Lücke M (2010) Roll convection of binary fluid mixtures in porous media. J Fluid Mech 649:165–186CrossRefzbMATHGoogle Scholar
  30. Umla R, Augustin M, Huke B, Lücke M (2011) Three-dimensional convection of binary mixtures in porous media. Phys Rev E 84:056326CrossRefzbMATHGoogle Scholar
  31. Vadasz P, Olek S (1999) Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media. Transp Porous Media 37:69–91MathSciNetCrossRefGoogle Scholar
  32. Vadasz P, Olek S (2000) Route to chaos for moderate Prandtl number convection in a porous layer heated from below. Transp Porous Media 41:211–239CrossRefGoogle Scholar
  33. Vafai K (ed) (2005) Handbook of porous media. Springer, New YorkzbMATHGoogle Scholar
  34. Veronis G (1966) Large-amplitude Bénard convection. J Fluid Mech 26:49–68MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Matthias Augustin
    • 1
    Email author
  • Rudolf Umla
    • 2
  • Manfred Lücke
    • 3
  1. 1.Geomathematics GroupUniversity of KaiserslauternKaiserslauternGermany
  2. 2.BP Exploration Operating Company LimitedSunbury on ThamesUK
  3. 3.Institut für Theoretische PhysikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations