Skip to main content

Geodetic Boundary Value Problem

  • Reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

The paper starts with an introduction recalling the historical definitions of the geodetic boundary value problem to arrive at the foundation of the so-called Scalar Molodensky Boundary Value Problem, in its fully nonlinear form (SMP).

The problem is then linearized and slightly modified by introducing further data in terms of the first degrees of harmonic coefficients of the asymptotic expansion of the potential and a suitable set of unknowns, along with the idea of Hörmander’s analysis of the problem.

In Sect. 3 a simplified formulation of the Linear Scalar Molodensky Problem (LSMP) based on a spherical approximation is introduced, together with suitable topologies for data and unknowns.

Such simplified Molodensky Problem is then analyzed proving the existence, uniqueness, and stability of the solution. Finally the LSMP is analyzed too by a perturbation of the simplified version.

The geometric conditions that emerge from the above analysis show roughly that the basic theorem holds when the approximate telluroid \(\tilde{S}\) used for the linearization has a maximum inclination of 60 with respect to the vertical and the coefficients of the first 12 degrees are also provided as data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The gravity modulus is measured in Gal units (1 Gal = 1 cm s−2); in these units g and γ range around 103 Gal on S.

References

  • Cimmino G (1955) Spazi hilbertiani di funzioni armoniche e questioni connesse. In: Equazioni lineari alle derivate parziali. UMI Roma

    Google Scholar 

  • Freeden W, Gerhards C (2013) Geomathematically oriented potential theory. Chapman & Hall/CRC/Taylor Francis, Boca Raton

    MATH  Google Scholar 

  • Friedman A (1982) Variational principles and free boundary value problems. Wiley, New York

    Google Scholar 

  • Grothaus M, Raskop T (2010) Oblique stochastic boundary value problems. Handbook of GeoMath, Springer, pp 1052–1076

    Google Scholar 

  • Hörmander L (1976) The boundary value problems in physical geodesy. Arch Prot Mech Anal 62:51–52

    Google Scholar 

  • Jerison DS, Kenig C (1982) Boundary value problems on Lipschitz domains. MAA studies in mathematics, University of Pennsylvania, Minneapolis, vol 23, pp 1–68

    MathSciNet  Google Scholar 

  • McLean W (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Miranda C (2008) Partial differential equations of elliptic type. Springer, Berlin

    Google Scholar 

  • Molodensky MS, Eremeev VF, Yurkina MI (1960) Methods for the study of the gravitational field of the Earth. Russian Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Moser J (1966) A rapidly convergent iteration method and non-linear differential equations. Acc Sc Norm Sup Pisa 20:265–315

    MATH  Google Scholar 

  • Otero J, Sansò F (1999) An analysis of the scalar geodetic boundary value problems with natural regularity results. J Geod 73:437–435

    Article  Google Scholar 

  • Sacerdote F, Sansò F (1986) The scalar boundary value problem of physical geodesy. Man Geod 11:15–28

    MATH  Google Scholar 

  • Sansò F (1977) The geodetic boundary value problem in gravity space. Memorie Accademia nazionale dei Lincei, Rome, Italy, vol 14, ser 8, no 3

    Google Scholar 

  • Sansò F, Sideris M (2013) Geoid determination: theory and methods. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Sansò F, Venuti G (2008) On the explicit determination of stability constants for the linearized geodetic boundary value problems. J Geod 82:909–916

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sansò .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix we aim to prove the subsequent proposition.

Proposition 4.

Let \(u \in \overline{H}_{1}\) , namely,

$$\displaystyle\begin{array}{rcl} \parallel u \parallel _{1} = \left \{\int _{\tilde{S}}\vert \nabla u\vert ^{2}R_{\sigma }^{2}d\sigma \right \}^{\frac{1} {2} } < +\infty & &{}\end{array}$$
(129)

and

$$\displaystyle\begin{array}{rcl} & & <\psi _{jk},u > _{0} =\int u(\overline{R},\sigma )Y _{jk}(\sigma )d\sigma = 0 \\ & & 0 \leq j \leq L\,\ -j \leq k \leq j\; {}\end{array}$$
(130)

then

$$\displaystyle\begin{array}{rcl} \parallel u \parallel _{0} = \left \{\int u^{2}(R_{\sigma },\sigma )R_{\sigma }d\sigma \right \}^{\frac{1} {2} } \leq C_{OL} \parallel u \parallel _{1}& &{}\end{array}$$
(131)

where

$$\displaystyle\begin{array}{rcl} C_{OL} = \left ( \frac{\delta R} {R_{+}} + \frac{1} {L + 2}\right )J_{+}.& &{}\end{array}$$
(132)

Proof.

Let us put

$$\displaystyle\begin{array}{rcl} u_{+}(\sigma ) = u(R_{+},\sigma )& &{}\end{array}$$
(133)

and observe that

$$\displaystyle\begin{array}{rcl} & & \parallel u \parallel _{0} \leq \parallel u - u_{+} \parallel _{0}+ \parallel u_{+} \parallel _{0} \equiv \\ & &\quad \equiv \left \{\int [u(R_{\sigma },\sigma ) - u(R_{+},\sigma )]^{2}R_{\sigma }d\sigma \right \}^{\frac{1} {2} } \\ & & \quad \quad + \left \{\int u(R_{+},\sigma )^{2}R_{\sigma }d\sigma \right \}^{\frac{1} {2} }. {}\end{array}$$
(134)

On the other hand, we can write

$$\displaystyle\begin{array}{rcl} \vert u - u_{+}\vert ^{2}& =& \left \vert \int _{ R_{\sigma }}^{R_{+} }u'dr\right \vert ^{2} \leq \int _{ R_{\sigma }}^{R_{+} }u^{{\prime}2}rdr\left ( \frac{1} {R_{\sigma }} - \frac{1} {R_{+}}\right ) {}\\ & & \leq \frac{\delta R} {R_{\sigma }R_{+}}\int _{R_{\sigma }}^{R_{+} }\vert \nabla u\vert ^{2}r^{2}dr\; {}\\ & & {}\\ \end{array}$$

therefore multiplying by R σ and integrating over the unit sphere, we get

$$\displaystyle\begin{array}{rcl} \parallel u - u_{+} \parallel _{0}^{2} \leq \frac{\delta R} {R_{+}}\int _{\varOmega \setminus \varOmega _{+}}\vert \nabla u\vert ^{2}d\varOmega & &{}\end{array}$$
(135)

where

$$\displaystyle\begin{array}{rcl} \varOmega _{+} \equiv \{ R_{+} \leq r\}& &{}\end{array}$$
(136)
$$\displaystyle\begin{array}{rcl} \varOmega \setminus \varOmega _{+} \equiv \{ R_{\sigma } \leq r \leq R_{+}\}.& &{}\end{array}$$
(137)

Furthermore, we can write

$$\displaystyle\begin{array}{rcl} \parallel u_{+} \parallel _{0}^{2} \leq R_{ +}4\pi \sum _{n,m=L+1}^{+\infty }u_{ nm}^{+^{2} } = R_{+}\int u(R_{+},\sigma )^{2}d\sigma \,& &{}\end{array}$$
(138)

with

$$\displaystyle\begin{array}{rcl} u_{nm}^{+} = \frac{1} {4\pi }\int u(R_{+},\sigma )Y _{nm}(\sigma )d\sigma.& &{}\end{array}$$
(139)

Therefore we can claim too that

$$\displaystyle\begin{array}{rcl} \parallel u_{+} \parallel _{0}^{2} \leq \frac{1} {L + 2}\left (R_{+}4\pi \sum _{n,m=L+1}^{+\infty }(n + 1)u_{ nm}^{+^{2} }\right ).& &{}\end{array}$$
(140)

On the other hand it is easy to verify that

$$\displaystyle\begin{array}{rcl} \int _{\varOmega _{+}}\vert \nabla u\vert ^{2}d\varOmega = -\int _{ S_{+}}uu'R_{+}^{2}d\sigma = R_{ +}4\pi \sum _{n,m=L+1}^{+\infty }(n + 1)u_{ nm}^{+^{2} }& & {}\\ \end{array}$$

so that (140) can be put into the form

$$\displaystyle\begin{array}{rcl} \parallel u_{+} \parallel _{0}^{2} \leq \frac{1} {L + 2}\int _{\varOmega _{+}}\vert \nabla u\vert ^{2}d\varOmega.& &{}\end{array}$$
(141)

Collecting (134)–(136) yields

$$\displaystyle\begin{array}{rcl} \parallel u \parallel _{0}& \leq & \sqrt{ \frac{\delta R} {R_{+}}}\sqrt{ \int _{\delta \varOmega }\vert \nabla u\vert ^{2}d\varOmega } + \frac{1} {\sqrt{L + 2}}\sqrt{\int _{\varOmega _{+ } } \vert \nabla u\vert ^{2 } d\varOmega } {}\\ & \leq & \sqrt{ \frac{\delta R} {R_{+}} + \frac{1} {L + 2}}\sqrt{ \int _{\varOmega }\vert \nabla u\vert ^{2}d\varOmega }. {}\\ \end{array}$$

So, by applying the Gauss theorem,

$$\displaystyle\begin{array}{rcl} \parallel u \parallel _{0}^{2}& \leq & \left ( \frac{\delta R} {R_{+}} + \frac{1} {L + 2}\right )\left (-\int _{S}uu_{n}R_{\sigma }^{2}Jd\sigma \right ) \\ & \leq & C_{OL} \parallel u \parallel _{0} \parallel u_{n}R_{\sigma } \parallel _{0} \\ & \leq & C_{OL} \parallel u \parallel _{0} \parallel u \parallel _{1}. {}\end{array}$$
(142)

Dividing both members of (142) by \(\parallel u \parallel _{0}\), we get (131). □

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sansò, F. (2015). Geodetic Boundary Value Problem. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_74

Download citation

Publish with us

Policies and ethics