Skip to main content

Fractional Diffusion and Wave Propagation

  • Reference work entry
  • First Online:
Handbook of Geomathematics
  • 4159 Accesses

Abstract

In this chapter, a short overview of the current research towards applications of the partial differential equations of an arbitrary (not necessarily integer) order for modeling of the anomalous transport processes (diffusion, heat transfer, and wave propagation) in the nonhomogeneous media is presented. On the microscopic level, these processes are described by the continuous time random walk (CTRW) model that is a starting point for derivation of some deterministic equations for the time- and space-averaged quantities that characterize the transport processes on the macroscopic level. In this work, the deterministic models are derived in the form of the partial differential equations of the fractional order. In particular, a generalized time-fractional diffusion equation and a time- and space-fractional wave equation are introduced and analyzed in detail. Finally, some open questions and directions for further work are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Refai M (2012) On the fractional derivatives at extreme points. Electron J Qual Theory Differ Equ 55:1–5

    Article  MathSciNet  MATH  Google Scholar 

  • Berkowitz B, Klafter J, Metzler R, Scher H (2002) Physical pictures of transport in heterogeneous media: advection-dispersion, random walk and fractional derivative formulations. Water Resour Res 38:1191–1203

    Article  Google Scholar 

  • Bloch SC (1977) Eighth velocity of light. Am J Phys 45:538–549

    Article  Google Scholar 

  • Buckwar E, Luchko Yu (1998) Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J Math Anal Appl 227:81–97

    Article  MathSciNet  MATH  Google Scholar 

  • Carcione JM, Gei D, Treitel S (2010) The velocity of energy through a dissipative medium. Geophysics 75:T37–T47

    Article  Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  • Emmanuel S, Berkowitz B (2007) Continuous time random walks and heat transfer in porous media. Transp Porous Media 67:413–430

    Article  MathSciNet  Google Scholar 

  • Feller W (1952) On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome suppl. dédié à M. Riesz: 73–81

    Google Scholar 

  • Fulger D, Scalas E, Germano G (2008) Monte Carlo simulation of uncoupled continuous time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys Rev E 77:021122

    Article  Google Scholar 

  • Geiger S, Emmanuel S (2010) Non-Fourier thermal transport in fractured geological media. Water Resour Res 46:W07504

    Google Scholar 

  • Germano G, Politi M, Scalas E, Schilling RL (2009) Stochastic calculus for uncoupled continuous-time random walks. Phys Rev E 79:066102

    Article  MathSciNet  Google Scholar 

  • Gorenflo R, Mainardi F (2001) Random walk models approximating symmetric space-fractional diffusion processes. In: Elschner J, Gohberg I, Silbermann B (eds) Problems in mathematical physics. Birkhäuser Verlag, Boston/Basel/Berlin

    Google Scholar 

  • Gorenflo R, Mainardi F (2009) Some recent advances in theory and simulation of fractional diffusion processes. J Comput Appl Math 229:400–415

    Article  MathSciNet  MATH  Google Scholar 

  • Gorenflo R, Iskenderov A, Luchko Yu (2000a) Mapping between solutions of fractional diffusion-wave equations. Fract Calc Appl Anal 3:75–86

    MathSciNet  MATH  Google Scholar 

  • Gorenflo R, Luchko Yu, Mainardi F (2000b) Wright functions as scale-invariant solutions of the diffusion-wave equation. J Comput Appl Math 118:175–191

    Article  MathSciNet  MATH  Google Scholar 

  • Gorenflo R, Loutchko J, Luchko Yu (2002) Computation of the Mittag-Leffler function and its derivatives. Fract Calc Appl Anal 5:491–518

    MathSciNet  MATH  Google Scholar 

  • Groesen E, Mainardi F (1989) Energy propagation in dissipative systems, Part I: centrovelocity for linear systems. Wave Motion 11:201–209

    Article  MathSciNet  MATH  Google Scholar 

  • Groesen E, Mainardi F (1990) Balance laws and centrovelocity in dissipative systems. J Math Phys 30:2136–2140

    Article  MATH  Google Scholar 

  • Gudehus G, Touplikiotis A (2012) Clasmatic seismodynamics – oxymoron or pleonasm? Soil Dyn Earthq Eng 38:1–14

    Article  Google Scholar 

  • Gurwich I (2001) On the pulse velocity in absorbing and nonlinear media and parallels with the quantum mechanics. Prog Electromagn Res 33:69–96

    Article  Google Scholar 

  • Hanyga A (2002) Multi-dimensional solutions of space-time-fractional diffusion equations. Proc R Soc Lond A 458:429-450

    Article  MathSciNet  MATH  Google Scholar 

  • Haubold J, Mathai AM, Saxena RK (2011) Mittag-Leffler functions and their applications. J Appl Math 2011:298628

    Article  MathSciNet  MATH  Google Scholar 

  • Luchko Yu (1999) Operational method in fractional calculus. Fract Calc Appl Anal 2:463–489

    MathSciNet  MATH  Google Scholar 

  • Luchko Yu (2008) Algorithms for evaluation of the Wright function for the real arguments’ values. Fract Calc Appl Anal 11:57–75

    MathSciNet  Google Scholar 

  • Luchko Yu (2009a) Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract Calc Appl Anal 12:409–422

    MathSciNet  Google Scholar 

  • Luchko Yu (2009b) Maximum principle for the generalized time-fractional diffusion equation. J Math Anal Appl 351:218–223

    Article  MathSciNet  Google Scholar 

  • Luchko Yu (2010) Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput Math Appl 59:1766–1772

    Article  MathSciNet  MATH  Google Scholar 

  • Luchko Yu (2011a) Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J Math Anal Appl 374:538–548

    Article  MathSciNet  Google Scholar 

  • Luchko Yu (2011b) Maximum principle and its application for the time-fractional diffusion equations. Fract Calc Appl Anal 14:110–124

    MathSciNet  Google Scholar 

  • Luchko Yu (2012a) Anomalous diffusion: models, their analysis, and interpretation. In: Rogosin S, Koroleva A (eds) Advances in applied analysis. Series: trends in mathematics. Birkhäuser Verlag, Boston/Basel/Berlin

    Google Scholar 

  • Luchko Yu (2012b) Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract Calc Appl Anal 15:141–160

    MathSciNet  Google Scholar 

  • Luchko Yu (2013) Fractional wave equation and damped waves. J Math Phys 54:031505

    Article  MathSciNet  MATH  Google Scholar 

  • Luchko Yu, Gorenflo R (1998) Scale-invariant solutions of a partial differential equation of fractional order. Fract Calc Appl Anal 1: 63–78

    MathSciNet  MATH  Google Scholar 

  • Luchko Yu, Gorenflo R (1999) An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math Vietnam 24:207–233

    MathSciNet  MATH  Google Scholar 

  • Luchko Yu, Punzi A (2011) Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. Int J Geomath 1:257–276

    Article  MathSciNet  MATH  Google Scholar 

  • Luchko Yu, Mainardi F, Povstenko Yu (2013) Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput Math Appl 66:774–784

    Article  MathSciNet  Google Scholar 

  • Mainardi F (1994) On the initial-value problem for the fractional diffusion-wave equation. In: Rionero S, Ruggeri T (eds) Waves and stability in continuous media. World Scientific, Singapore

    Google Scholar 

  • Mainardi F (1996a) Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7:1461–1477

    Article  MathSciNet  MATH  Google Scholar 

  • Mainardi F (1996b) The fundamental solutions for the fractional diffusion-wave equation. Appl Math Lett 9:23–28

    Article  MathSciNet  MATH  Google Scholar 

  • Mainardi F, Luchko Yu, Pagnini G (2001) The fundamental solution of the space-time fractional diffusion equation. Fract Calc Appl Anal 4:153–192. E-print http://arxiv.org/abs/cond-mat/0702419

  • Marichev OI (1983) Handbook of integral transforms of higher transcendental functions, theory and algorithmic tables. Ellis Horwood, Chichester

    MATH  Google Scholar 

  • Matlab File Exchange (2005) Matlab-Code that calculates the Mittag-Leffler function with desired accuracy. Available for download at http://www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-function

  • Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A 37:161–208

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler R, Nonnenmacher TF (2002) Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem Phys 284: 67-90

    Article  Google Scholar 

  • Montroll E, Weiss, G (1965) Random walks on lattices. J Math Phys 6:167

    Article  MathSciNet  Google Scholar 

  • Näsholm SP, Holm S (2013) On a fractional Zener elastic wave equation. Fract Calc Appl Anal 16:26–50

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic, San Diego

    MATH  Google Scholar 

  • Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and series. Vol 1: Elementary functions. Gordon and Breach, New York

    MATH  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach, Yverdon

    MATH  Google Scholar 

  • Smith RL (1970) The velocities of light. Am J Phys 38:978–984

    Article  Google Scholar 

  • Szabo TL, Wu J (2000) A model for longitudinal and shear wave propagation in viscoelastic media. J Acoust Soc Am 107:2437–2446

    Article  Google Scholar 

  • Vladimirov VS (1971) Equations of the mathematical physics. Nauka, Moscow

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Luchko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Luchko, Y. (2015). Fractional Diffusion and Wave Propagation. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_60

Download citation

Publish with us

Policies and ethics