Skip to main content

Efficient Modeling of Flow and Transport in Porous Media Using Multi-physics and Multi-scale Approaches

  • Reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

Flow and transport processes in porous media including multiple fluid phases are the governing processes in a large variety of geological and technical systems. In general, these systems include processes of different complexity occurring in different parts of the domain of interest. The different processes mostly also take place on different spatial and temporal scales. It is extremely challenging to model such systems in an adequate way accounting for the spatially varying and scale-dependent character of these processes. In this work, we give a brief overview of existing upscaling, multi-scale, and multi-physics methods, and we present mathematical models and model formulations for multiphase flow in porous media including compositional and non-isothermal flow. Finally, we show simulation results for two-phase flow using a multi-physics and a multi-scale method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarnes JE, Krogstad S, Lie K-A (2006) A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model Simul 5(2):337–363

    Article  MathSciNet  MATH  Google Scholar 

  • Aarnes JE, Krogstad S, Lie K-A (2008) Multiscale mixed/mimetic methods on corner-point grids. Comput Geosci 12(3):297–315

    Article  MathSciNet  MATH  Google Scholar 

  • Aavatsmark I (2002) An introduction to multipoint flux approximations for quadrilateral grids. Comput Geosci 6(3–4):405–432. Locally conservative numerical methods for flow in porous media

    Google Scholar 

  • Aavatsmark I, Eigestad GT, Mallison BT, Nordbotten JM (2008) A compact multipoint flux approximation method with improved robustness. Numer Methods Partial Differ Equ 24(5):1329–1360

    Article  MathSciNet  MATH  Google Scholar 

  • Ács G, Doleschall S, Farkas E (1985) General purpose compositional model. Soc Pet Eng J 25:543–553

    Article  Google Scholar 

  • Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Pure and applied mathematics (New York). Wiley-Interscience [Wiley], New York

    Google Scholar 

  • Albon C, Jaffre J, Roberts J, Wang X, Serres C (1999) Domain decompositioning for some transition problems in flow in porous media. In: Chen Z, Ewing R, Shi Z-C (eds) Numerical treatment of multiphase flow in porous media. Lecture notes in physics. Springer, Berlin/Heidelberg

    Google Scholar 

  • Allen MB, Ewing RE, Lu P (1992) Well-conditioned iterative schemes for mixed finite-element models of porous-media flows. SIAM J Sci Stat Comput 13(3):794–814

    Article  MathSciNet  MATH  Google Scholar 

  • Arbogast T (1989) Analysis of the simulation of single phase flow through a naturally fractured reservoir. SIAM J Numer Anal 26(1):12–29

    Article  MathSciNet  MATH  Google Scholar 

  • Arbogast T, Pencheva G, Wheeler MF, Yotov I (2007) A multiscale mortar mixed finite element method. Multiscale Model Simul 6(1):319–346

    Article  MathSciNet  MATH  Google Scholar 

  • Atkins P (1994) Physical chemistry, 5th edn. Oxford University Press, Oxford/New York

    Google Scholar 

  • Aziz K, Settari A (1979) Petroleum reservoir simulation. Elsevier Applied Science, London

    Google Scholar 

  • Aziz K, Wong T (1989) Considerations in the development of multipurpose reservoir simulation models. In: Proceedings first and second international forum on reservoir simulation, Alpbach. Steiner, P., pp 77–208

    Google Scholar 

  • Babuska I, Strouboulis T (2001) The finite element method and its reliability. Numerical mathematics and scientific computation. The Clarendon Press/Oxford University Press, New York

    Google Scholar 

  • Barker J, Thibeau S (1997) A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reserv Eng 12(2):138–143

    Article  Google Scholar 

  • Bastian P, Rivière B (2003) Superconvergence and H(div) projection for discontinuous Galerkin methods. Int J Numer Methods Fluids 42(10):1043–1057

    Article  MATH  Google Scholar 

  • Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207

    Article  Google Scholar 

  • Berndt M, Lipnikov K, Shashkov M, Wheeler MF, Yotov I (2005) Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J Numer Anal 43(4):1728–1749

    Article  MathSciNet  MATH  Google Scholar 

  • Binning P, Celia MA (1999) Practical implementation of the fractional flow approach to multi-phase flow simulation. Adv Water Resour 22(5):461–478

    Article  Google Scholar 

  • Bramble JH (1993) Multigrid methods. Volume 294 of Pitman research notes in mathematics series. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Volume 15 of Springer series in computational Mathematics. Springer, New York

    MATH  Google Scholar 

  • Brezzi F, Lipnikov K, Shashkov M (2005a) Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J Numer Anal 43(5):1872–1896

    Article  MathSciNet  MATH  Google Scholar 

  • Brezzi F, Lipnikov K, Simoncini V (2005b) A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math Models Methods Appl Sci 15(10):1533–1551

    Article  MathSciNet  MATH  Google Scholar 

  • Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  • Calo V, Efendiev Y, Galvis J (2011) A note on variational multiscale methods for high-contrast heterogeneous porous media flows with rough source terms. Adv Water Resour 34(9): 1177–1185

    Article  Google Scholar 

  • Cao Y, Helmig R, Wohlmuth B (2008) The influence of the boundary discretization on the multipoint flux approximation L-method. In: Finite volumes for complex applications V. ISTE, London, pp 257–263

    Google Scholar 

  • Cattani C, Laserra E (2003) Wavelets in the transport theory of heterogeneous reacting solutes. Int J Fluid Mech Res 30(2):147–152

    Article  MathSciNet  Google Scholar 

  • Chavent G (1976) A new formulation of diphasic incompressible flows in porous media. Number 503 in Lecture notes in mechanics. Springer, Berlin, pp 258–270

    Google Scholar 

  • Chavent G, Jaffré J (1986) Mathematical models and finite elements for reservoir simulation. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Chen Y, Durlofsky LJ (2006) Adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp Porous Media 62(2):157–185

    Article  MathSciNet  Google Scholar 

  • Chen Y, Durlofsky LJ, Gerritsen M, Wen XH (2003) A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv Water Resour 26(10):1041–1060

    Article  Google Scholar 

  • Chen Y, Li Y (2009) Local-global two-phase upscaling of flow and transport in heterogeneous formations. Multiscale Model Simul 8:125–153

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y, Li Y, Efendiev Y (2013) Time-of-flight (TOF)-based two-phase upscaling for subsurface flow and transport. Adv Water Resour 54:119–132

    Article  Google Scholar 

  • Chen Z, Ewing RE, Jiang Q, Spagnuolo AM (2002) Degenerate two-phase incompressible flow. V. Characteristic finite element methods. J Numer Math 10(2):87–107

    MathSciNet  MATH  Google Scholar 

  • Chen Z, Hou TY (2002) A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math Comput 72(242):541–576

    Article  MathSciNet  Google Scholar 

  • Chen Z, Hou TY (2003) A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math Comput 72(242):541–576

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Z, Huan G, Ma Y (2006) Computational methods for multiphase flows in porous media. Computational science & engineering. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Christie MA, Blunt MJ (2001) Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv Eval Eng 4:308–317

    Article  Google Scholar 

  • Class H, Ebigbo A, Helmig R, Dahle H, Nordbotten J, Celia M, Audigane P, Darcis M, Ennis-King J, Fan Y, Flemisch B, Gasda S, Jin M, Krug S, Labregere D, Beni A, Pawar R, Sbai A, Thomas S, Trenty L, Wei L (2009) A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13(4):409–434

    Article  MATH  Google Scholar 

  • Coats KH (2003a) Impes stability: selection of stable timesteps. SPE J 8:181–187

    Article  Google Scholar 

  • Coats KH (2003b) Impes stability: the CFL limit. SPE J 8:291–297

    Article  Google Scholar 

  • Cockburn B, Lin SY, Shu C-W (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J Comput Phys 84(1):90–113

    MathSciNet  MATH  Google Scholar 

  • Cockburn B, Shu C-W (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math Comput 52(186):411–435

    MathSciNet  MATH  Google Scholar 

  • Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190(20–21):2681–2706

    Article  MathSciNet  MATH  Google Scholar 

  • Darman NH, Pickup GE, Sorbie KS (2002) A comparison of two-phase dynamic upscaling methods based on fluid potentials. Comput Geosci 6(1):5–27

    Article  MATH  Google Scholar 

  • Dawson CN, Russell TF, Wheeler MF (1989) Some improved error estimates for the modified method of characteristics. SIAM J Numer Anal 26(6):1487–1512

    Article  MathSciNet  MATH  Google Scholar 

  • Dennis JE Jr, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Volume 16 of Classics in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  • Dietrich P, Hemlig R, Sauter M, Hötzl H, Köngeter J, Teutsch G (eds) (2005) Flow and transport in fractured porous media. Springer, Berlin/New York

    Google Scholar 

  • Discacciati M, Miglio E, Quarteroni A (2002) Mathematical and numerical models for coupling surface and groundwater flows. Appl Numer Math 43:57–74

    Article  MathSciNet  MATH  Google Scholar 

  • Douglas J Jr, Huang C-S, Pereira F (1999) The modified method of characteristics with adjusted advection. Numer Math 83(3):353–369

    Article  MathSciNet  MATH  Google Scholar 

  • Durlofsky LJ (1991) Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour Res 27(5):699–708

    Article  MathSciNet  Google Scholar 

  • Efendiev Y, Durlofsky LJ (2002) Numerical modeling of subgrid heterogeneity in two phase flow simulations. Water Resour Res 38(8)

    Google Scholar 

  • Efendiev Y, Durlofsky LJ (2004) Accurate subgrid models for two-phase flow in heterogeneous reservoirs. SPE J 9:219–226

    Article  Google Scholar 

  • Efendiev Y, Durlofsky LJ, Lee SH (2000) Modeling of subgrid effects in coarse-scale simulations of transport in heterogeneous porous media. Water Resour Res 36(8):2031–2041

    Article  Google Scholar 

  • Efendiev Y, Hou T (2007) Multiscale finite element methods for porous media flows and their applications. Appl Numer Math 57(5–7):577–596

    Article  MathSciNet  MATH  Google Scholar 

  • Eigestad GT, Klausen RA (2005) On the convergence of the multi-point flux approximation O-method: numerical experiments for discontinuous permeability. Numer Methods Partial Differ Equ 21(6):1079–1098

    Article  MathSciNet  MATH  Google Scholar 

  • Ewing RE, Russell TF, Wheeler MF (1984) Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput Methods Appl Mech Eng 47(1–2):73–92

    Article  MathSciNet  MATH  Google Scholar 

  • Ewing RE, Wang H (1994) Eulerian-Lagrangian localized adjoint methods for variable-coefficient advective-diffusive-reactive equations in groundwater contaminant transport. In: Advances in optimization and numerical analysis (Oaxaca, 1992). Volume 275 of Mathematics and its applications. Kluwer Academic, Dordrecht, pp 185–205

    Google Scholar 

  • Ewing RE, Wang H (1996) An optimal-order estimate for Eulerian-Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems. SIAM J Numer Anal 33(1):318–348

    Article  MathSciNet  MATH  Google Scholar 

  • Eymard R, Gallouët T, Herbin R (2000) Finite volume methods. In: Handbook of numerical analysis, vol. VII. North-Holland, Amsterdam, pp 713–1020

    Google Scholar 

  • Faigle B, Helmig R, Aavatsmark I, Flemisch B (2013) Efficient multi-physics modelling with adaptive grid-refinement using a MPFA method. Comput Geosci (submitted)

    Google Scholar 

  • Flemisch B, Darcis M, Erbertseder K, Faigle B, Lauser A, Mosthaf K, Müthing S, Nuske P, Tatomir A, Wolff M, Helmig R (2011) DUMUX: DUNE for multi-{phase, component, scale, physics,…} flow and transport in porous media. Adv Water Resour 34(9):1102–1112

    Article  Google Scholar 

  • Fritz J, Flemisch B, Helmig R (2012) Decoupled and multiphysics models for non-isothermal compositional two-phase flow in porous media. Int J Numer Anal Model 9(1):17–28

    MathSciNet  MATH  Google Scholar 

  • Galvis J, Efendiev Y (2010) Domain decomposition preconditioners for multiscale flows in high contrast media. Multiscale Model Simul 8(4):1461–1483

    Article  MathSciNet  MATH  Google Scholar 

  • Gasda S, Nordbotten J, Celia M (2009) Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput Geosci 13(4):469–481

    Article  MATH  Google Scholar 

  • Gasda S, Nordbotten J, Celia M (2011) Vertically-averaged approaches to CO2 injection with solubility trapping. Water Resour Res 47:W05528

    Google Scholar 

  • Ghostine R, Kesserwani G, Mosé R, Vazquez J, Ghenaim A (2009) An improvement of classical slope limiters for high-order discontinuous Galerkin method. Int J Numer Methods Fluids 59(4):423–442

    Article  MATH  Google Scholar 

  • Giraud L, Langou J, Sylvand G (2006) On the parallel solution of large industrial wave propagation problems. J Comput Acoust 14(1):83–111

    Article  MathSciNet  MATH  Google Scholar 

  • Girault V, Rivière B (2009) Dg approximation of coupled navier-stokes and darcy equations by beaver-joseph-saffman interface condition. SIAM J Numer Anal 47:2052–2089

    Article  MathSciNet  MATH  Google Scholar 

  • Gray GW, Leijnse A, Kolar RL, Blain CA (1993) Mathematical tools for changing scale in the analysis of physical systems, 1st edn. CRC, Boca Raton

    Google Scholar 

  • Hajibeygi H, Bonfigli G, Hesse MA, Jenny P (2008) Iterative multiscale finite-volume method. J Comput Phys 227(19):8604–8621

    Article  MathSciNet  MATH  Google Scholar 

  • Hauke G, García-Olivares A (2001) Variational subgrid scale formulations for the advection-diffusion-reaction equation. Comput Methods Appl Mech Eng 190(51–52):6847–6865

    Article  MATH  Google Scholar 

  • He Y, Han B (2008) A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media. Appl Math Mech (English Ed.) 29(11):1495–1504

    Article  MathSciNet  MATH  Google Scholar 

  • Helmig R (1997) Multiphase flow and transport processes in the subsurface. Springer, Berlin/New York

    Book  Google Scholar 

  • Helmig R, Flemisch B, Wolff M, Ebigbo A, Class H (2012) Model coupling for multiphase flow in porous media. Adv Water Resour 51:52–66

    Article  Google Scholar 

  • Herrera I, Ewing RE, Celia MA, Russell TF (1993) Eulerian-Lagrangian localized adjoint method: the theoretical framework. Numer Methods Partial Differ Equ 9(4):431–457

    Article  MathSciNet  MATH  Google Scholar 

  • Hoteit H, Ackerer P, Mosé R, Erhel J, Philippe B (2004) New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. Int J Numer Methods Eng 61(14): 2566–2593

    Article  MATH  Google Scholar 

  • Hoteit H, Firoozabadi A (2008) Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Adv Water Resour 31(1):56–73

    Article  Google Scholar 

  • Hou TY, Wu X-H (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134(1):169–189

    Article  MathSciNet  MATH  Google Scholar 

  • Hristopulos D, Christakos G (1997) An analysis of hydraulic conductivity upscaling. Nonlinear Anal 30(8):4979–4984

    Article  MATH  Google Scholar 

  • Huang C-S (2000) Convergence analysis of a mass-conserving approximation of immiscible displacement in porous media by mixed finite elements and a modified method of characteristics with adjusted advection. Comput Geosci 4(2):165–184

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127(1–4):387–401

    Article  MATH  Google Scholar 

  • Hughes, TJR, Feijóo GR, Mazzei L, Quincy J-B (1998) The variational multiscale method – a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1–2):3–24

    Article  MATH  Google Scholar 

  • Hyman J, Morel J, Shashkov M, Steinberg S (2002) Mimetic finite difference methods for diffusion equations. Comput Geosci 6(3–4):333–352 Locally conservative numerical methods for flow in porous media

    Google Scholar 

  • IPCC (2005) Carbon dioxide capture and storage. Special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jäger W, Mikelić A (2009) Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp Porous Media 78:489–508

    Article  MathSciNet  Google Scholar 

  • Jang G-W, Kim JE, Kim YY (2004) Multiscale Galerkin method using interpolation wavelets for two-dimensional elliptic problems in general domains. Int J Numer Methods Eng 59(2):225–253

    Article  MathSciNet  MATH  Google Scholar 

  • Jenny P, Lee SH, Tchelepi H (2003) Multi-scale finite-volume method for elliptic problems in subsurface flow simulations. J Comput Phys 187:47–67

    Article  MATH  Google Scholar 

  • Jenny P, Lee SH, Tchelepi HA (2006) Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media. J Comput Phys 217(2):627–641

    Article  MathSciNet  MATH  Google Scholar 

  • Juanes R (2005) A variational multiscale finite element method for multiphase flow in porous media. Finite Elem Anal Des 41(7–8):763–777

    Article  MathSciNet  Google Scholar 

  • Juanes R, Dub F-X (2008) A locally conservative variational multiscale method for the simulation of porous media flow with multiscale source terms. Comput Geosci 12:273–295

    Article  MathSciNet  MATH  Google Scholar 

  • Juanes R, Lie K-A (2008) Numerical modeling of multiphase first-contact miscible flows. II. Front-tracking/streamline simulation. Transp Porous Media 72(1):97–120

    Article  MathSciNet  Google Scholar 

  • Kees CE, Farthing M, Dawson CN (2008) Locally conservative, stabilized finite element methods for variably saturated flow. Computer Methods Appl Mech Eng 197(51–52):4610–4625

    Article  MATH  Google Scholar 

  • Kim M-Y, Park E-J, Thomas SG, Wheeler MF (2007) A multiscale mortar mixed finite element method for slightly compressible flows in porous media. J Korean Math Soc 44(5):1103–1119

    Article  MathSciNet  MATH  Google Scholar 

  • Kippe V, Aarnes JE, Lie K-A (2008) A comparison of multiscale methods for elliptic problems in porous media flow. Comput Geosci 12(3):377–398

    Article  MathSciNet  MATH  Google Scholar 

  • Klausen RA, Winther R (2006) Robust convergence of multi point flux approximation on rough grids. Numer Math 104(3):317–337

    Article  MathSciNet  MATH  Google Scholar 

  • Kyte JR, Berry DW (1975) New pseudo functions to control numerical dispersion. SPE J 15(4):269–276

    Article  Google Scholar 

  • Layton WJ, Schieweck F, Yotov I (2003) Coupling fluid flow with porous media flow. SIAM J Numer Anal 40:2195–2218

    Article  MathSciNet  MATH  Google Scholar 

  • Lee SH, Wolfsteiner C, Tchelepi HA (2008) Multiscale finite-volume formulation of multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity. Comput Geosci 12(3):351–366

    Article  MathSciNet  MATH  Google Scholar 

  • Lee SH, Zhou H, Tchelepi HA (2009) Adaptive multiscale finite-volume method for nonlinear multiphase transport in heterogeneous formations. J Comput Phys 228:9036–9058

    Article  MathSciNet  MATH  Google Scholar 

  • LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lüdecke C, Lüdecke D (2000) Thermodynamik Springer, Berlin

    Google Scholar 

  • Lunati I, Jenny P (2006) Multiscale finite-volume method for compressible multiphase flow in porous media. J Comput Phys 216(2):616–636

    Article  MathSciNet  MATH  Google Scholar 

  • Lunati I, Jenny P (2007) Treating highly anisotropic subsurface flow with the multiscale finite-volume method. Multiscale Model Simul 6(1):308–318

    Article  MathSciNet  MATH  Google Scholar 

  • Lunati I, Jenny P (2008) Multiscale finite-volume method for density-driven flow in porous media. Comput Geosci 12(3):337–350

    Article  MathSciNet  MATH  Google Scholar 

  • Matringe SF, Juanes R, Tchelepi HA (2006) Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids. J Comput Phys 219(2):992–1012

    Article  MathSciNet  MATH  Google Scholar 

  • Mazzia A, Putti M (2006) Three-dimensional mixed finite element-finite volume approach for the solution of density-dependent flow in porous media. J Comput Appl Math 185(2):347–359

    Article  MathSciNet  MATH  Google Scholar 

  • Michelsen M, Mollerup J (2007) Thermodynamic models: fundamentals & computational aspects. Tie-Line Publications, Holte

    Google Scholar 

  • Müller S (2003) Adaptive multiscale schemes for conservation laws. Volume 27 of Lecture notes in computational science and engineering. Springer, Berlin

    MATH  Google Scholar 

  • Nghiem L, Li Y-K (1984) Computation of multiphase equilibrium phenomena with an equation of state. Fluid Phase Equilibria 17(1):77–95

    Article  Google Scholar 

  • Niessner J, Helmig R (2007) Multi-scale modeling of three-phase–three-component processes in heterogeneous porous media. Adv Water Resour 30(11):2309–2325

    Article  Google Scholar 

  • Nordbotten J (2009) Adaptive variational multiscale methods for multiphase flow in porous media. Multiscale Model Simul 7(3):1455

    Article  MathSciNet  MATH  Google Scholar 

  • Nordbotten JM, Bjørstad PE (2008) On the relationship between the multiscale finite-volume method and domain decomposition preconditioners. Comput Geosci 12(3):367–376

    Article  MathSciNet  MATH  Google Scholar 

  • Of G (2007) Fast multipole methods and applications. In: Boundary element analysis. Volume 29 of Lecture notes in applied and computational mechanics. Springer, Berlin, pp 135–160

    Google Scholar 

  • Oladyshkin S, Royer J-J, Panfilov M (2008) Effective solution through the streamline technique and HT-splitting for the 3D dynamic analysis of the compositional flows in oil reservoirs. Transp. Porous Media 74(3):311–329

    Article  MathSciNet  Google Scholar 

  • Panfilov M (2000) Macroscale models of flow through highly heterogeneous porous media. Kluwer Academic, Dordrecht/Boston

    Book  Google Scholar 

  • Pau GSH, Bell JB, Almgren AS, Fagnan KM, Lijewski MJ (2012) An adaptive mesh refinement algorithm for compressible two-phase flow in porous media. Comput Geosci 16(3):577–592

    Article  MathSciNet  Google Scholar 

  • Peszynska M, Lu Q, Wheeler M (2000) Multiphysics coupling of codes. In: Computational methods in water resources. A. A. Balkema, Rotterdam/Brookfield, pp 175–182

    Google Scholar 

  • Peszynska M, Wheeler MF, Yotov I (2002) Mortar upscaling for multiphase flow in porous media. Comput Geosci 6:73–100

    Article  MathSciNet  MATH  Google Scholar 

  • Pickup GE, Sorbie KS (1996) The scaleup of two-phase flow in porous media using phase permeability tensors. SPE J 1:369–382

    Article  Google Scholar 

  • Prausnitz JM, Lichtenthaler RN, Azevedo EG (1967) Molecular thermodynamics of fluid-phase equilibria. Prentice-Hall

    Google Scholar 

  • Pruess K (1985) A practical method for modeling fluid and heat flow in fractured porous media. SPE J 25(1):14–26

    Article  Google Scholar 

  • Quintard M, Whitaker S (1988) Two-phase flow in heterogeneous porous media: the method of large-scale averaging. Transp Porous Media 3(4):357–413

    Article  Google Scholar 

  • Renard P, de Marsily G (1997) Calculating effective permeability: a review. Adv Water Resour 20:253–278

    Article  Google Scholar 

  • Russell T (1989) Stability analysis and switching criteria for adaptive implicit methods based on the CFL condition. In: Proceedings of SPE symposium on reservoir simulation, Dallas. Society of Petroleum Engineers, pp 97–107

    Google Scholar 

  • Russell TF (1990) Eulerian-Lagrangian localized adjoint methods for advection-dominated problems. In: Numerical analysis 1989 (Dundee, 1989). Volume 228 of Pitman research notes in mathematics series. Longman Scientific & Technical, Harlow, pp 206–228

    Google Scholar 

  • Ryzhik V (2007) Spreading of a NAPL lens in a double-porosity medium. Comput Geosci 11(1): 1–8

    Article  MathSciNet  MATH  Google Scholar 

  • Sáez AE, Otero CJ, Rusinek I (1989) The effective homogeneous behavior of heterogeneous porous media. Transp Porous Media 4(3):213–238

    Article  Google Scholar 

  • Sandvin A, Nordbotten JM, Aavatsmark I (2011) Multiscale mass conservative domain decomposition preconditioners for elliptic problems on irregular grids. Comput Geosci 15(3):587–602

    Article  MATH  Google Scholar 

  • Scheidegger A (1974) The physics of flow through porous media, 3rd edn University of Toronto Press, Toronto/Buffalo

    Google Scholar 

  • Shashkov M (1996) Conservative finite-difference methods on general grids. Symbolic and numeric computation series. CRC, Boca Raton

    Google Scholar 

  • Sheldon JW, Cardwell WT (1959) One-dimensional, incompressible, noncapillary, two-phase fluid in a porous medium. Pet Trans AIME 216:290–296

    Google Scholar 

  • Sleep BE, Sykes JF (1993) Compositional simulation of groundwater contamination by organic-compounds. 1. Model development and verification. Water Resour Res 29(6):1697–1708

    Article  Google Scholar 

  • Smith EH, Seth MS (1999) Efficient solution for matrix-fracture flow with multiple interacting continua. Int J Numer Anal Methods Geomech 23(5):427–438

    Article  MATH  Google Scholar 

  • Srinivas C, Ramaswamy B, Wheeler MF (1992) Mixed finite element methods for flow through unsaturated porous media. In: Computational methods in water resources, IX, vol 1 (Denver, 1992). Computational Mechanics, Southampton, pp 239–246

    Google Scholar 

  • Stenby E, Wang P (1993) Noniterative phase equilibrium calculation in compositional reservoir simulation. SPE 26641

    Google Scholar 

  • Stone HL (1991) Rigorous black oil pseudo functions. In: SPE symposium on reservoir simulation, Anaheim, 17–20 Feb 1991

    Google Scholar 

  • Stone HL, Garder AO Jr (1961) Analysis of gas-cap or dissolved-gas reservoirs. Pet Trans AIME 222:92–104

    Google Scholar 

  • Stüben K (2001) A review of algebraic multigrid. J Comput Appl Math 128(1–2):281–309 Numerical analysis 2000, vol VII, Partial differential equations

    Google Scholar 

  • Suk H, Yeh G-T (2008) Multiphase flow modeling with general boundary conditions and automatic phase-configuration changes using a fractional-flow approach. Comput Geosci 12(4):541–571

    Article  MathSciNet  MATH  Google Scholar 

  • Tornberg A-K, Greengard L (2008) A fast multipole method for the three-dimensional Stokes equations. J Comput Phys 227(3):1613–1619

    Article  MathSciNet  MATH  Google Scholar 

  • Trangenstein J, Bell J (1989) Mathematical structure of compositional reservoir simulation. SIAM J Sci Stat Comput 10(5):817–845

    Article  MathSciNet  MATH  Google Scholar 

  • Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid Academic, San Diego

    Google Scholar 

  • Urban K (2009) Wavelet methods for elliptic partial differential equations. Numerical mathematics and scientific computation. Oxford University Press, Oxford

    Google Scholar 

  • van Odyck DEA, Bell JB, Monmont F, Nikiforakis N (2008) The mathematical structure of multiphase thermal models of flow in porous media. Proc R Soc A Math Phys Eng Sci 465(2102):523–549

    Article  Google Scholar 

  • Wallstrom TC, Christie MA, Durlofsky LJ, Sharp DH (2002a) Effective flux boundary conditions for upscaling porous media equations. Transp Porous Media 46(2):139–153

    Article  MathSciNet  Google Scholar 

  • Wallstrom TC, Hou S, Christie MA, Durlofsky LJ, Sharp DH, Zou Q (2002b) Application of effective flux boundary conditions to two-phase upscaling in porous media. Transp Porous Media 46(2):155–178

    Article  MathSciNet  Google Scholar 

  • Wang H, Liang D, Ewing RE, Lyons SL, Qin G (2002) An ELLAM approximation for highly compressible multicomponent flows in porous media. Comput Geosci 6(3–4):227–251. Locally conservative numerical methods for flow in porous media

    Google Scholar 

  • Wang P, Barker J (1995) Comparison of flash calculations in compositional reservoir simulation. SPE 30787

    Book  Google Scholar 

  • Weinan E, Engquist B (2003a) The heterogeneous multiscale methods. Commun Math Sci 1(1):87–132

    Article  MathSciNet  MATH  Google Scholar 

  • Weinan E, Engquist B (2003b) Multiscale modeling and computation. Not Am Math Soc 50(9):1062–1070

    MATH  Google Scholar 

  • Weinan E, Engquist B, Huang Z (2003) Heterogeneous multiscale method: a general methodology for multiscale modeling. Phys Rev 67

    Google Scholar 

  • Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3):367–450

    MathSciNet  MATH  Google Scholar 

  • Wen XH, Durlofsky LJ, Edwards MG (2003) Use of border regions for improved permeability upscaling. Math Geol 35(5):521–547

    Article  MATH  Google Scholar 

  • Wheeler M, Arbogast T, Bryant S, Eaton J, Lu Q, Peszynska M, Yotov I (1999) A parallel multiblock/multidomain approach to reservoir simulation. In: Fifteenth SPE symposium on reservoir simulation, Houston. Society of Petroleum Engineers, pp 51–62. SPE 51884

    Google Scholar 

  • Wheeler MF, Peszyska M (2002) Computational engineering and science methodologies for modeling and simulation of subsurface applications. Adv Water Resour 25(812):1147–1173

    Article  Google Scholar 

  • Whitaker S (1998) The method of volume averaging. Kluwer Academic, Norwell

    Google Scholar 

  • White F (2003) Fluid mechanics. McGraw-Hill, Boston

    Google Scholar 

  • Wolff M, Cao Y, Flemisch B, Helmig R, Wohlmuth B (2013a) Multi-point flux approximation L-method in 3D: numerical convergence and application to two-phase flow through porous media. In: Bastian P, Kraus J, Scheichl R, Wheeler M (eds) Simulation of flow in porous media – applications in energy and environment. De Gruyter, Berlin

    Google Scholar 

  • Wolff M, Flemisch B, Helmig R (2013b) An adaptive multi-scale approach for modeling two-phase flow in porous media including capillary pressure. Water Resour Res (submitted)

    Google Scholar 

  • Yao Z-H, Wang H-T, Wang P-B, Lei T (2008) Investigations on fast multipole BEM in solid mechanics. J Univ Sci Technol China 38(1):1–17

    MathSciNet  Google Scholar 

  • Yotov I (2002) Advanced techniques and algorithms for reservoir simulation IV. Multiblock solvers and preconditioners. In: Chadam J, Cunningham A, Ewing RE, Ortoleva P Wheeler MF (eds) IMA volumes in mathematics and its applications. Volume 131: resource recovery, confinement, and remediation of environmental hazards. Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Helmig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Helmig, R., Flemisch, B., Wolff, M., Faigle, B. (2015). Efficient Modeling of Flow and Transport in Porous Media Using Multi-physics and Multi-scale Approaches. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_15

Download citation

Publish with us

Policies and ethics