Multiresolution Analysis of Hydrology and Satellite Gravitational Data

  • Helga NutzEmail author
  • Kerstin Wolf
Reference work entry


We present a multiresolution analysis of temporal and spatial variations of the Earth’s gravitational potential by the use of tensor product wavelets which are built up by Legendre and spherical wavelets for the time and space domain, respectively. The multiresolution is performed for satellite and hydrological data, and based on these results we compute correlation coefficients between both data sets, which help us to develop a filter for the extraction of an improved hydrology model from the satellite data.


Spherical Harmonic Scaling Function Space Domain Multiresolution Analysis Terrestrial Water Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support by the German Ministry of Education and Research (BMBF) and German Research Foundation (DFG) within the R&D-Programme Geotechnologies Special Programme “Observation System Earth from Space”, 03F0424D, (publication number GEOTECH-317). We are also much obliged to GFZ Potsdam for providing us with all GRACE and WGHM data.


  1. Beth S, Viell M (1998) Uni- und multivariate Legendre-Wavelets und ihre Anwendung zur Bestimmung des Brechungsindexgradienten. In: Freeden W (ed) Progress in geodetic science at GW 98, Shaker, pp 25–33Google Scholar
  2. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134CrossRefGoogle Scholar
  3. Freeden W (1999) Multiscale modelling of spaceborne geodata. Teubner, Stuttgart/LeipzigzbMATHGoogle Scholar
  4. Freeden W, Schneider F (1998a) An integrated wavelet concept of physical geodesy. J Geod 72:259–281CrossRefzbMATHGoogle Scholar
  5. Freeden W, Schneider F (1998b) Regularization wavelets and multiresolution. Inverse Probl 14:225–243MathSciNetCrossRefzbMATHGoogle Scholar
  6. Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup. Springer, HeidelbergGoogle Scholar
  7. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geomathematics). Oxford Science Publication, Clarendon Press, OxfordzbMATHGoogle Scholar
  8. Freeden W, Nutz H, Wolf K (2010) Time-space multiscale analysis and its application to GRACE and hydrology data. In: Flechtner FM, Gruber Th, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System earth via geodetic-geophysical space techniques. Springer, Berlin/London, pp 387–397CrossRefGoogle Scholar
  9. Louis AK, Maaß P, Rieder A (1998) Wavelets: Theorie und Anwendungen. Teubner, StuttgartCrossRefzbMATHGoogle Scholar
  10. Maier T (2003) Multiscale geomagnetic field modelling from satellite data: theoretical aspects and numerical applications. PhD thesis, Geomathematics Group, University of KaiserslauternGoogle Scholar
  11. Mallat S (1989a) Multiresolution approximations and wavelet orthonormal bases of L 2(R). Trans Am Math Soc 315:69–87MathSciNetzbMATHGoogle Scholar
  12. Mallat S (1989b) A theory for multiresolution signal decompostion. IEEE Trans Pattern Anal Mach Intell 11:674–693CrossRefzbMATHGoogle Scholar
  13. Meyer Y (1992) Wavelets and operators. Cambridge University Press, Cambridge/New YorkzbMATHGoogle Scholar
  14. Müller C (1966) Spherical harmonics, vol 17. Springer, BerlinzbMATHGoogle Scholar
  15. Nutz H, Wolf K (2008) Time-space multiscale analysis by use of tensor product wavelets and its application to hydrology and GRACE data. Studia Geophysica et Geodaetica 52:321–339CrossRefGoogle Scholar
  16. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285Google Scholar
  17. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the gravity recovery and climate experiment (GRACE). Water Resour Res 39(8):1223. doi:10.1029/2002WR001808CrossRefGoogle Scholar
  18. Tapley BD, Reigber C (2001) The GRACE mission: status and future plans. EOS Trans AGU 82(47):Fall Meet Suppl G41, C-02Google Scholar
  19. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004a) GRACE measurements of mass variability in the earth system. Science 305:503–505CrossRefGoogle Scholar
  20. Tapley BD, Bettadpur S, Watkins MM, Reigber C (2004b) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920CrossRefGoogle Scholar
  21. Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179(3):1499–1515. doi:10.1111/j.1365-246X2009.04355.xCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Geomathematics GroupUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations