Skip to main content

On High Reynolds Number Aerodynamics: Separated Flows

  • Reference work entry
  • First Online:
Handbook of Geomathematics
  • 4112 Accesses

Abstract

This treatise deals with the occurrence of locally separated, three-dimensional, unsteady high Reynolds number flows. As it is well established, such flows are governed by a triple-deck structure where the wall shear stress in the viscous sublayer of the (in general inviscid) boundary layer is utilized to describe the phenomenon of localized separation bubbles. It is then proved that the Cauchy problem for the local wall shear stress is, in general, ill-posed. Thus, regularization methods need to be applied to numerically compute the time evolution. The numerical scheme comprises a novel technique using rational Chebyshev polynomials. Finally, the breakdown of the triple-deck structure in the sense of a finite time blow-up scenario is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The author likes to thank Stefan Braun, Vienna University of Technology and the Austrian Science Fund FWF for supervising and funding this work.

References

  • Achleitner F, Hittmeir S, Schmeiser C (2011) On nonlinear conservation laws with a nonlocal diffusion term. J Differ Equ 250:2177–2196

    Article  MathSciNet  MATH  Google Scholar 

  • Aigner M (2012) On finite time singularities in unsteady marginally separated flows. Doctoral thesis, Vienna University of Technology

    Google Scholar 

  • Aigner M, Braun S (2015, to appear) On the self-similar blow-up in unsteady three-dimensional marginally separated flows

    Google Scholar 

  • Ball JM (1977) Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Q J Math 28:473–486

    Article  MathSciNet  MATH  Google Scholar 

  • Barenblatt GI (1979) Similarity, self-similarity, and intermediate asymptotics. Consultants Bureau, New York

    Book  MATH  Google Scholar 

  • Braun S, Kluwick A (2002) The effect of three-dimensional obstacles on marginally separated laminar boundary layer flows. J Fluid Mech 460:57–82

    Article  MathSciNet  MATH  Google Scholar 

  • Braun S, Kluwick A (2004) Unsteady three-dimensional marginal separation caused by surface-mounted obstacles and/or local suction. J Fluid Mech 514:121–152

    Article  MathSciNet  MATH  Google Scholar 

  • Brown SN, Stewartson K (1983) On an integral equation of marginal separation. SIAM J Appl Maths 43:1119–1126

    Article  MathSciNet  MATH  Google Scholar 

  • Droniou J, Gallouët T, Vovelle J (2002) Global solution and smoothing effect for a non-local regularization of a hyperbolic equation. J. Evol Equ 3:499–521

    Article  MathSciNet  MATH  Google Scholar 

  • Duck PW (1990) Unsteady three-dimensional marginal separation, including breakdown. J Fluid Mech 220:85–98

    Article  MathSciNet  MATH  Google Scholar 

  • Eckhaus W (1973) Matched asymptotic expansions and singular perturbations. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Eggers J, Fontelos MA (2009) The role of self-similarity in singularities of partial differential equations. Nonlinearity 22:R1–R44

    Article  MathSciNet  MATH  Google Scholar 

  • Engel K-J, Nagel R (2000) One-parameter semigroups for linear evolution equations. Springer, New York

    MATH  Google Scholar 

  • Fromme JA, Golberg MA (1979) Numerical solution of a class of integral equations arising in two-dimensional aerodynamics. In: Golberg MA (ed) Solution methods for integral equations. Plenum Press, New York, pp 109–146

    Chapter  Google Scholar 

  • Galaktionov VA, Vázquez JL (2002) The problem of blow-up in nonlinear parabolic equations. Discrete Contin Dyn Syst 8:399–433

    Article  MathSciNet  MATH  Google Scholar 

  • Golberg MA (1979) A survey of numerical methods for integral equations. In: Golberg MA (ed) Solution methods for integral equations. Plenum Press, New York, pp 1–58

    Chapter  Google Scholar 

  • Gorenflo R, Vessella S (1991) Abel integral equations. Lecture notes in mathematics. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Hadamard J (1923) Lectures on Cauchy’s problem in linear partial differential equations. Yale University Press, New Haven

    MATH  Google Scholar 

  • Louis AK (1989) Inverse und schlecht gestellte Probleme. Teubner, Stuttgart

    Book  MATH  Google Scholar 

  • Mikhlin SG (1936) Singular integral equations with two independent variables (in Russian). Mat Sbor 1 4(43):535–550

    MATH  Google Scholar 

  • Mikhlin SG (1965) Multidimensional singular integrals and integral equations. Pergamon Press, New York

    MATH  Google Scholar 

  • Ortega JM, Rheinboldt WC (1966) On discretization and differentiation of operators with application to newtons method. SIAM J Numer Anal 3:143–156

    Article  MathSciNet  MATH  Google Scholar 

  • Petrowsky IG (1937) Ãœber das Cauchysche Problem für Systeme von partiellen Differentialgleichungen. Mat. Sbor. 2(44):815–870

    MATH  Google Scholar 

  • Rodino L (1993) Linear partial differential operators in Gevrey spaces. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Ruban AI (1981) Asymptotic theory of short separation regions on the leading edge of a slender airfoil. Izv Akad Nauk SSSR Mekh Zhidk Gaza 1:42–51 (Engl. transl. Fluid Dyn 17:33–41)

    Google Scholar 

  • Ruban AI (2010) Asymptotic theory of separated flows. In: Steinrück H (ed) Asymptotic methods in fluid mechanics: survey and recent advances, CISM, vol 523. Springer, Wien/New York, pp 311–408

    Chapter  Google Scholar 

  • Scheichl S, Braun S, Kluwick A (2008) On a similarity solution in the theory of unsteady marginal separation. Acta Mech 201:153–170

    Article  MATH  Google Scholar 

  • Stein EM (1970) Singular integrals and differentiability properties of functions. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Stewartson K, Smith FT, Kaups K (1982) Marginal separation. Stud Appl Maths 67:45–61

    Article  MathSciNet  MATH  Google Scholar 

  • Sychev VV, Ruban AI, Sychev VV, Korolev GL (1998) Asymptotic theory of separated flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston & Sons, Washington, DC

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Aigner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Aigner, M. (2015). On High Reynolds Number Aerodynamics: Separated Flows. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_101

Download citation

Publish with us

Policies and ethics