Skip to main content

Gravitational Viscoelastodynamics

  • Reference work entry
  • First Online:
Handbook of Geomathematics
  • 4112 Accesses

Abstract

We consider a compositionally and entropically stratified, compressible, rotating fluid earth and study gravitational-viscoelastic perturbations of its hydrostatic initial state. Using the Lagrangian representation and assuming infinitesimal perturbations, we deduce the incremental field equations and interface conditions of gravitational viscoelastodynamics (GVED) governing the perturbations. In particular, we distinguish the material, material-local, and local forms of the incremental equations. We also demonstrate that their short-time asymptotes correspond to generalizations of the incremental field equations and interface conditions of gravitational elastodynamics (GED), whereas the long-time asymptotes agree with the incremental field equations and interface conditions of gravitational viscodynamics (GVD). The incremental thermodynamic pressure appearing in the long-time asymptote to the incremental constitutive equation is shown to satisfy the appropriate incremental state equation. Finally, we derive approximate field theories applying to gravitational-viscoelastic perturbations of isocompositional, isentropic, and compressible or incompressible fluid domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amelung F, Wolf D (1994) Viscoelastic perturbations of the earth: significance of the incremental gravitational force in models of glacial isostasy. Geophys J Int 117:864–879

    Article  Google Scholar 

  • Backus GE (1967) Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys J R Astron Soc 13:71–101

    Article  MATH  Google Scholar 

  • Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Biot MA (1959) The influence of gravity on the folding of a layered viscoelastic medium under compression. J Franklin Inst 267:211–228

    Article  MathSciNet  Google Scholar 

  • Biot MA (1965) Mechanics of incremental deformations. Wiley, New York

    Google Scholar 

  • Bullen KE (1975) The Earth’s density. Chapman and Hall, London

    Book  Google Scholar 

  • Cathles LM (1975) The viscosity of the Earth’s mantle. Princeton University Press, Princeton

    Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Christensen RM (1982) Theory of viscoelasticity, 2nd edn. Academic, New York

    Google Scholar 

  • Corrieu V, Thoraval C, Ricard Y (1995) Mantle dynamics and geoid green functions. Geophys J Int 120:516–532

    Article  Google Scholar 

  • D’Agostino G, Spada G, Sabadini R (1997) Postglacial rebound and lateral viscosity variations: a semi-analytical approach based on a spherical model with Maxwell rheology. Geophys J Int 129:F9–F13

    Article  Google Scholar 

  • Dahlen FA (1972) Elastic dislocation theory for a self-gravitating elastic configuration with an initial static stress field. Geophys J R Astron Soc 28:357–383

    Article  MATH  Google Scholar 

  • Dahlen FA (1973) Elastic dislocation theory for a self-gravitating elastic configuration with an initial static stress field II: energy release. Geophys J R Astron Soc 31:469–484

    Article  MATH  Google Scholar 

  • Dahlen FA (1974) On the static deformation of an earth model with a fluid core. Geophys J R Astron Soc 36:461–485

    Article  Google Scholar 

  • Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, Princeton

    Google Scholar 

  • Darwin GH (1879) On the bodily tides of viscous and semi-elastic spheroids, and on the ocean tides upon a yielding nucleus. Philos Trans R Soc Lond Part 1 170:1–35

    Article  MATH  Google Scholar 

  • Dehant V, Wahr JM (1991) The response of a compressible, non-homogeneous earth to internal loading: theory. J Geomagn Geoelectr 43:157–178

    Article  Google Scholar 

  • Eringen AC (1989) Mechanics of continua, 2nd edn. R. E. Krieger, Malabar

    MATH  Google Scholar 

  • Golden JM, Graham GAC (1988) Boundary value problems in linear viscoelasticity. Springer, Berlin

    Book  MATH  Google Scholar 

  • Grafarend EW (1982) Six lectures on geodesy and global geodynamics. Mitt Geodät Inst Tech Univ Graz 41:531–685

    MathSciNet  Google Scholar 

  • Hanyk L, Yuen DA, Matyska C (1996) Initial-value and modal approaches for transient viscoelastic responses with complex viscosity profiles. Geophys J Int 127:348–362

    Article  Google Scholar 

  • Hanyk L, Matyska C, Yuen DA (1999) Secular gravitational instability of a compressible viscoelastic sphere. Geophys Res Lett 26:557–560

    Article  Google Scholar 

  • Haskell NA (1935) The motion of a viscous fluid under a surface load. Physics 6:265–269

    Article  MATH  Google Scholar 

  • Haskell NA (1936) The motion of a viscous fluid under a surface load, 2. Physics 7:56–61

    Article  MATH  Google Scholar 

  • Jarvis GT, McKenzie DP (1980) Convection in a compressible fluid with infinite Prandtl number. J Fluid Mech 96:515–583

    Article  MathSciNet  MATH  Google Scholar 

  • Johnston P, Lambeck K, Wolf D (1997) Material versus isobaric internal boundaries in the earth and their influence on postglacial rebound. Geophys J Int 129:252–268

    Article  Google Scholar 

  • Kaufmann G, Wolf D (1999) Effects of lateral viscosity variations on postglacial rebound: an analytical approach. Geophys J Int 137:489–500

    Article  Google Scholar 

  • Krauss W (1973) Methods and results of theoretical oceanography, vol. 1: dynamics of the homogeneous and the quasihomogeneous ocean. Bornträger, Berlin

    Google Scholar 

  • LePage WR (1980) Complex variables and the Laplace transform for engineers. Dover, New York

    MATH  Google Scholar 

  • Li G, Yuen DA (1987) Viscous relaxation of a compressible spherical shell. Geophys Res Lett 14:1227–1230

    Article  Google Scholar 

  • Love AEH (1911) Some problems of geodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Martinec Z (1999) Spectral, initial value approach for viscoelastic relaxation of a spherical earth with three-dimensional viscosity-I. Theory. Geophys J Int 137:469–488

    Article  Google Scholar 

  • Martinec Z (2000) Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth. Geophys J Int 142:117–141

    Article  Google Scholar 

  • Martinec Z, Wolf D (1998) Explicit form of the propagator matrix for a multi-layered, incompressible viscoelastic sphere. Scientific technical report GFZ Potsdam, STR98/08, p 13

    Google Scholar 

  • Martinec Z, Wolf D (1999) Gravitational-viscoelastic relaxation of eccentrically nested spheres. Geophys J Int 138:45–66

    Article  Google Scholar 

  • Martinec Z, Thoma M, Wolf D (2001) Material versus local incompressibility and its influence on glacial-isostatic adjustment. Geophys J Int 144:136–156

    Article  Google Scholar 

  • Mitrovica JX, Davis JL, Shapiro II (1994) A spectral formalism for computing three-dimensional deformation due to surface loads 1. Theory. J Geophys Res 99:7057–7073

    Article  Google Scholar 

  • O’Connell RJ (1971) Pleistocene glaciation and the viscosity of the lower mantle. Geophys J R Astron Soc 23:299–327

    Article  Google Scholar 

  • Panasyuk SV, Hager BH, Forte AM (1996) Understanding the effects of mantle compressibility on geoid kernels. Geophys J Int 124:121–133

    Article  Google Scholar 

  • Parsons BE (1972) Changes in the Earth’s shape. Ph.D. thesis, Cambridge University, Cambridge

    Google Scholar 

  • Peltier WR (1974) The impulse response of a Maxwell earth. Rev Geophys Space Phys 12: 649–669

    Article  Google Scholar 

  • Peltier WR (ed) (1989) Mantle convection, plate tectonics and geodynamics. Gordon and Breach, New York

    Google Scholar 

  • Ramsey AS (1981) Newtonian attraction. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Rayleigh L (1906) On the dilatational stability of the earth. Proc R Soc Lond Ser A 77:486–499

    Article  MATH  Google Scholar 

  • Rümpker G, Wolf D (1996) Viscoelastic relaxation of a Burgers half space: implications for the interpretation of the Fennoscandian uplift. Geophys J Int 124:541–555

    Article  Google Scholar 

  • Sabadini R, Yuen DA, Boschi E (1982) Polar wandering and the forced responses of a rotating, multilayered, viscoelastic planet. J Geophys Res 87:2885–2903

    Article  Google Scholar 

  • Spada G, Sabadini R, Yuen DA, Ricard Y (1992) Effects on post-glacial rebound from the hard rheology in the transition zone. Geophys J Int 109:683–700

    Article  Google Scholar 

  • Tromp J, Mitrovica JX (1999a) Surface loading of a viscoelastic earth-I. General theory. Geophys J Int 137:847–855

    Article  Google Scholar 

  • Tromp J, Mitrovica JX (1999b) Surface loading of a viscoelastic earth-II. Spherical models. Geophys J Int 137:856–872

    Article  Google Scholar 

  • Tromp J, Mitrovica JX (2000) Surface loading of a viscoelastic planet-III. Aspherical models. Geophys J Int 140:425–441

    Article  Google Scholar 

  • Vermeersen LLA, Mitrovica JX (2000) Gravitational stability of spherical self-gravitating relaxation models. Geophys J Int 142:351–360

    Article  Google Scholar 

  • Vermeersen LLA, Sabadini R (1997) A new class of stratified viscoelastic models by analytical techniques. Geophys J Int 129:531–570

    Article  Google Scholar 

  • Vermeersen LLA, Vlaar NJ (1991) The gravito-elastodynamics of a pre-stressed elastic earth. Geophys J Int 104:555–563

    Article  Google Scholar 

  • Vermeersen LLA, Sabadini R, Spada G (1996) Compressible rotational deformation. Geophys J Int 126:735–761

    Article  Google Scholar 

  • Wieczerkowski K (1999) Gravito-Viskoelastodynamik für verallgemeinerte Rheologien mit Anwendungen auf den Jupitermond Io und die Erde. Publ Deutsch Geod Komm Ser C 515:130

    Google Scholar 

  • Williamson ED, Adams LH (1923) Density distribution in the earth. J Wash Acad Sci 13:413–428

    Google Scholar 

  • Wolf D (1984) The relaxation of spherical and flat Maxwell earth models and effects due to the presence of the lithosphere. J Geophys 56:24–33

    Google Scholar 

  • Wolf D (1985a) Thick-plate flexure re-examined. Geophys J R Astron Soc 80:265–273

    Article  Google Scholar 

  • Wolf D (1985b) On Boussinesq’s problem for Maxwell continua subject to an external gravity field. Geophys J R Astron Soc 80:275–279

    Article  Google Scholar 

  • Wolf D (1985c) The normal modes of a uniform, compressible Maxwell half-space. J Geophys 56:100–105

    Google Scholar 

  • Wolf D (1985d) The normal modes of a layered, incompressible Maxwell half-space. J Geophys 57:106–117

    Google Scholar 

  • Wolf D (1991a) Viscoelastodynamics of a stratified, compressible planet: incremental field equations and short- and long-time asymptotes. Geophys J Int 104:401–417

    Article  Google Scholar 

  • Wolf D (1991b) Boussinesq’s problem of viscoelasticity. Terra Nova 3:401–407

    Article  Google Scholar 

  • Wolf D (1994) Lamé’s problem of gravitational viscoelasticity: the isochemical, incompressible planet. Geophys J Int 116:321–348

    Article  Google Scholar 

  • Wolf D (1997) Gravitational viscoelastodynamics for a hydrostatic planet. Publ Deutsch Geod Komm Ser C 452:96

    Google Scholar 

  • Wolf D, Kaufmann G (2000) Effects due to compressional and compositional density stratification on load-induced Maxwell-viscoelastic perturbations. Geophys J Int 140:51–62

    Article  Google Scholar 

  • Wu P (1990) Deformation of internal boundaries in a viscoelastic earth and topographic coupling between the mantle and the core. Geophys J Int 101:213–231

    Article  Google Scholar 

  • Wu P (1992) Viscoelastic versus viscous deformation and the advection of prestress. Geophys J Int 108:136–142

    Article  Google Scholar 

  • Wu P, Ni Z (1996) Some analytical solutions for the viscoelastic gravitational relaxation of a two-layer non-self-gravitating incompressible spherical earth. Geophys J Int 126:413–436

    Article  Google Scholar 

  • Wu P, Peltier WR (1982) Viscous gravitational relaxation. Geophys J R Astron Soc 70:435–485

    Article  MATH  Google Scholar 

  • Wu J, Yuen DA (1991) Post-glacial relaxation of a viscously stratified compressible mantle. Geophys J Int 104:331–349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Wolf .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Laplace Transform

The Laplace transform, â„“[f(t)], of a function, f(t), is defined by

$$\displaystyle{ \mathcal{L}[f(t)] =\int _{ 0}^{\infty }f(t)e^{-st}\ \mathrm{d}t,\quad s \in \mathcal{S}, }$$
(207)

where s is the inverse Laplace time and \(\mathcal{S}\) is the complex s domain (e.g., LePage 1980). We assume here that f(t) is continuous for all \(t \in \mathcal{T}\) and of exponential order as t → ∞, which are sufficient conditions for the convergence of the Laplace integral in Eq. 207 for Re s larger than some value, s R . Defining \(\mathcal{L}[f(t)] =\tilde{ f}(s)\) and assuming the same properties for g(t), elementary consequences are then

$$\displaystyle{ \mathcal{L}[a\;f(t) + b\;g(t)] = a\tilde{f}(s) + b\tilde{g}(s),\quad a,b = \mbox{ constant}, }$$
(208)
$$\displaystyle{ \mathcal{L}[d_{t}f(t)] = s\tilde{f}(s) - f(0), }$$
(209)
$$\displaystyle{ \mathcal{L}\left [\int _{0}^{t}f(t^{{\prime}})\ \mathrm{d}t^{{\prime}}\right ] = \frac{\tilde{f}(s)} {s}, }$$
(210)
$$\displaystyle{ \mathcal{L}\left [\int _{0}^{t}f(t - t^{{\prime}})g(t^{{\prime}})\ \mathrm{d}t^{{\prime}}\right ] =\tilde{ f}(s)\tilde{g}(s), }$$
(211)
$$\displaystyle{ \mathcal{L}[1] = \frac{1} {s}, }$$
(212)
$$\displaystyle{ \mathcal{L}[e^{-s_{0}t}] = \frac{1} {s + s_{0}},\quad s_{0} = \mbox{ constant}. }$$
(213)

If \(\mathcal{L}[f(t)]\) is the forward Laplace transform of f(t), then f(t) is called inverse Laplace transform of \(\mathcal{L}[f(t)]\). This is written as \(\mathcal{L}^{-1}\{\mathcal{L}[f(t)]\} = f(t)\). Since \(\mathcal{L}[f(t)] =\tilde{ f}(s)\), it follows that

$$\displaystyle{ \mathcal{L}^{-1}[\tilde{f}(s)] = f(t),\qquad t \in \mathcal{T}, }$$
(214)

which admits the immediate inversion of the forward transforms listed above.

1.1 Generalized Initial- and Final-Value Theorems

Some useful consequences of Eqs. 207 and 214 are the generalized initial- and final-value theorems. Assuming that the appropriate limits exist, the first theorem states that an asymptotic approximation, p(t) to f(t) for small t, corresponds to an asymptotic approximation, \(\tilde{p}(s)\) to \(\tilde{f}(s)\) for large s. Similarly, according to the second theorem, an asymptotic approximation, q(t) to f(t) for large t, corresponds to an asymptotic approximation, \(\tilde{q}(s)\) to \(\tilde{f}(s)\) for small s.

Appendix 2: List of Important Symbols

Table 1

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Wolf, D. (2015). Gravitational Viscoelastodynamics. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_10

Download citation

Publish with us

Policies and ethics