Skip to main content

Geomathematics: Its Role, Its Aim, and Its Potential

  • Reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

During the last decades, geosciences and geoengineering were influenced by two essential scenarios: First, the technological progress has completely changed the observational and measurement techniques. Modern high-speed computers and satellite-based techniques are more and more entering all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, and its environment and about an expected shortage of natural resources. Obviously, both aspects, viz., efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne, as well as spaceborne data of better and better quality, explain the strong need of new mathematical structures, tools, and methods, i.e., geomathematics.

This paper deals with geomathematics, its role, its aim, and its potential. Moreover, the “circuit” geomathematics is exemplified by three problems involving the Earth’s structure, namely, gravity field determination from terrestrial deflections of the vertical, ocean flow modeling from satellite (altimeter measured) ocean topography, and reservoir detection from (acoustic) wave tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach JD (1973) Wave propagation in elastic solids. North Holland, New York

    MATH  Google Scholar 

  • Albertella A, Savcenko R, Bosch W, Rummel R (2008) Dynamic ocean topography – the geodetic approach. IAPG/FESG Mitteilungen, 27, TU München

    Google Scholar 

  • Ansorge R, Sonar T (2009) Mathematical models of fluid dynamics, 2nd updated edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Augustin M (2014) A method of fundamental solutions in poroelasticity to model the stress field in geothermal reservoirs. PhD-thesis, Geomathematics Group, University of Kaiserslautern

    MATH  Google Scholar 

  • Augustin M, Freeden W, Gerhards C, Möhringer S, Ostermann I (2012) Mathematische Methoden in der Geothermie. Math Semesterber 59:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Bach V, Fraunholz W, Freeden W, Hein F, Müller J, Müller V, Stoll H, von Weizsäcker H, Fischer H (2004) Curriculare Standards des Fachs Mathematik in Rheinland-Pfalz (Vorsitz: W. Freeden). Studie: Reform der Lehrerinnen- und Lehrerausbildung, MWWFK Rheinland-Pfalz

    Google Scholar 

  • Bauer M, Freeden W, Jacobi H, Neu T (eds) (2014) Handbuch Tiefe Geothermie. Springer, Heidelberg

    Google Scholar 

  • Baysal E, Kosloff DD, Sherwood JWC (1984) A two-way nonreflecting wave equation. Geophysics 49(2):132–141

    Article  Google Scholar 

  • Beutelspacher S (2001) In Mathe war ich immer schlecht. Vieweg, Wiesbaden

    Book  Google Scholar 

  • Biondi BL (2006) Three-dimensional seismic imaging. Society of Exploration Geophysicists, Tulsa

    Google Scholar 

  • Bruns EH (1878) Die Figur der Erde. Publikation Königl Preussisch Geodätisches Institut. P Stankiewicz, Berlin

    MATH  Google Scholar 

  • Claerbout J (2009) Basic earth imaging. Stanford University Press, Stanford

    Google Scholar 

  • Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, Princeton

    Google Scholar 

  • Emmermann R, Raiser B (1997) Das System Erde – Forschungsgegenstand des GFZ. Vorwort des GFZ-Jahresberichts 1996/1997, GeoForschungsZentrum, Potsdam

    Google Scholar 

  • Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer Academic, Dordrecht/Boston

    Book  MATH  Google Scholar 

  • Evans LD (2002) Partial differential equation, 3rd printing. American Mathematical Society, Providence

    Google Scholar 

  • Fehlinger T (2009) Multiscale formulations for the disturbing potential and the deflections of the vertical in locally reflected physical geodesy. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Dr. Hut, München

    Google Scholar 

  • Fengler MJ, Freeden W (2005) A non-linear Galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible Navier–Stokes equation on the sphere. SIAM J Sci Comput 27:967–994

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W (1998) The uncertainty principle and its role in physical geodesy. In: Progress in geodetic science at GW 98, pp 225–236, Shaker Verlag, Aachen

    Google Scholar 

  • Freeden W (1999) Multiscale modelling of spaceborne geodata. B.G. Teubner, Stuttgart/Leipzig

    MATH  Google Scholar 

  • Freeden W (2009) Geomathematik, was ist das überhaupt? Jahresbericht der Deutschen Mathematiker Vereinigung (DMV), Vieweg+Teubner, JB. 111, Heft, vol 3, pp 125–152

    MathSciNet  Google Scholar 

  • Freeden W (2011) Metaharmonic lattice point theory. CRC/Taylor & Francis, Boca Raton

    MATH  Google Scholar 

  • Freeden W, Blick C (2013) Signal decorrelation by means of multiscale methods. World Min 65(5):1–15

    Google Scholar 

  • Freeden W, Gerhards C (2010) Poloidal and toroidal fields in terms of locally supported vector wavelets. Math Geosci 42:817–838

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W, Gerhards C (2013) Geomathematically oriented potential theory. CRC/Taylor & Francis, Boca Raton

    MATH  Google Scholar 

  • Freeden W, Gutting M (2013) Special functions of mathematical (geo-)sciences. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  • Freeden W, Maier T (2002) Multiscale denoising of spherical functions: basic theory and numerical aspects. Electron Trans Numer Anal 14:40–62

    MathSciNet  MATH  Google Scholar 

  • Freeden W, Mayer T (2003) Wavelets generated by layer potentials. Appl Comput Harm Anal (ACHA) 14:195–237

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W, Michel V (2004) Multiscale potential theory (with applications to geoscience). Birkhäuser, Boston/Basel/Berlin

    Book  MATH  Google Scholar 

  • Freeden W, Nutz H (2014) Mathematische Methoden. In: Bauer M, Freeden W, Jacobi H, Neu T, Herausgeber, Handbuch Tiefe Geothermie. Springer, Heidelberg

    Book  Google Scholar 

  • Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences – a scalar, vectorial, and tensorial setup. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Freeden W, Wolf K (2008) Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math Semesterber 56:53–77

    Article  MathSciNet  Google Scholar 

  • Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geomathematics). Oxford/Clarendon, Oxford

    MATH  Google Scholar 

  • Freeden W, Michel D, Michel V (2005) Local multiscale approximations of geostrophic ocean flow: theoretical background and aspects of scientific computing. Mar Geod 28:313–329

    Article  Google Scholar 

  • Freeden W, Fehlinger T, Klug M, Mathar D, Wolf K (2009) Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J Geod 83:1171–1191

    Article  Google Scholar 

  • Gauss, C.F. (1863) Werke, Band 5, Dietrich Göttingen

    Google Scholar 

  • Gerhards C (2011) Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modelling. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Dr. Hut, München

    Google Scholar 

  • Grafarend EW (2001) The spherical horizontal and spherical vertical boundary value problem – vertical deflections and geoidal undulations – the completed Meissl diagram. J Geod 75:363–390

    Article  MATH  Google Scholar 

  • Groten E (1979) Geodesy and the Earth’s gravity field I+II. Dümmler, Bonn

    Google Scholar 

  • Gutting M (2007) Fast multipole methods for oblique derivative problems. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Shaker, Aachen

    MATH  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Company, San Francisco

    Google Scholar 

  • Haar A (1910) Zur Theorie der orthogonalen Funktionssysteme. Math Ann 69:331–371

    Article  MathSciNet  MATH  Google Scholar 

  • Helmert FR (1881) Die mathematischen und physikalischen Theorien der Höheren Geodäsie 1+2, B.G. Teubner, Leipzig

    MATH  Google Scholar 

  • Ilyasov M (2011) A tree algorithm for Helmholtz potential wavelets on non-smooth surfaces: theoretical background and application to seismic data processing. PhD-thesis, Geomathematics Group, University of Kaiserslautern

    Google Scholar 

  • Jakobs F, Meyer H (1992) Geophysik – Signale aus der Erde. Teubner, Leipzig

    Book  Google Scholar 

  • Kümmerer B (2002) Mathematik. Campus, Spektrum der Wissenschaftsverlagsgesellschaft, pp 1–15

    Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Shinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and NIMA geopotential model EGM96. NASA/TP-1998-206861, NASA Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Listing JB (1873) Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Dietrich, Göttingen

    Google Scholar 

  • Marks DL (2013) A family of approximations spanning the Born and Rytov scattering series. Opt Exp 14:8837–8848

    Article  Google Scholar 

  • Martin GS, Marfurt KJ, Larsen S (2002) Marmousi-2: an updated model for the investigation of AVO in structurally complex areas. In: Proceedings, SEG annual meeting, Salt Lake City

    Google Scholar 

  • Meissl P (1971) On the linearisation of the geodetic boundary value problem. Report No. 152, Department of Geodetic Science, The Ohio State University, Columbo, OH

    Google Scholar 

  • Michel V (2002) A multiscale approximation for operator equations in separable Hilbert spaces – case study: reconstruction and description of the Earth’s interior. Habilitation-thesis, Geomathematics Group, University of Kaiserslautern, Shaker, Aachen

    Google Scholar 

  • Michel V (2013) Lectures on constructive approximation – Fourier, spline, and wavelet methods on the real line, the sphere, and the ball. Birkhäuser, Boston

    MATH  Google Scholar 

  • Müller C (1969) Foundations of the mathematical theory of electromagnetic waves. Springer, Berlin/Heidelberg/New York

    Book  MATH  Google Scholar 

  • Nashed MZ (1981) Operator-theoretic and computational approaches to ill-posed problems with application to antenna theory. IEEE Trans Antennas Propag 29:220–231

    Article  MathSciNet  MATH  Google Scholar 

  • Nerem RS, Koblinski CJ (1994) The geoid and ocean circulation. In: Vanicek P, Christon NT (eds) Geoid and its geophysical interpretations. CRC, Boca Raton, pp 321–338

    Google Scholar 

  • Neumann F (1887) Vorlesungen über die Theorie des Potentials und der Kugelfunktionen. Teubner, Leipzig, pp 135–154

    Google Scholar 

  • Neunzert H, Rosenberger B (1991) Schlüssel zur Mathematik. Econ, Düsseldorf

    Google Scholar 

  • Nolet G (2008) Seismic tomography: imaging the interior of the Earth and Sun. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Nutz H (2002) A unified setup of gravitational observables. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Shaker, Aachen

    Google Scholar 

  • Ostermann I (2011) Modeling heat transport in deep geothermal systems by radial basis functions. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Dr. Hut, München

    Google Scholar 

  • Pedlovsky J (1979) Geophysical fluid dynamics. Springer, New York/Heidelberg/Berlin

    Book  Google Scholar 

  • Pesch HJ (2002) Schlüsseltechnologie Mathematik. Teubner, Stuttgart/Leipzig/Wiesbaden

    Book  Google Scholar 

  • Popov MM, Semtchenok NM, Popov, Verdel AR (2006) Gaussian beam migration of multi-valued zero-offset data. In: Proceedings, international conference, days on diffraction, St. Petersburg, pp 225–234

    Google Scholar 

  • Popov MM, Semtchenok NM, Popov PM, Verdel AR (2008) Reverse time migration with Gaussian beams and velocity analysis applications. In: Extended abstracts, 70th EAGE conference & exhibitions, Rome, F048

    Google Scholar 

  • Ritter JRR, Christensen UR (eds) (2007) Mantle plumes – a multidisciplinary approach. Springer, Heidelberg

    Google Scholar 

  • Rummel R (2002) Dynamik aus der Schwere – Globales Gravitationsfeld. An den Fronten der Forschung (Kosmos, Erde, Leben), Hrsg. R. Emmermann u.a., Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte, 122. Versammlung, Halle

    Google Scholar 

  • Rummel R, van Gelderen M (1995) Meissl scheme – spectral characteristics of physical geodesy. Manuscr Geod 20:379–385

    Google Scholar 

  • Skudrzyk E (1972) The foundations of acoustics. Springer, Heidelberg

    MATH  Google Scholar 

  • Snieder R (2002) The Perturbation method in elastic wave scattering and inverse scattering in pure and applied science, general theory of elastic wave. Academic, San Diego, pp 528–542

    Google Scholar 

  • Sonar T (2001) Angewandte Mathematik, Modellbildung und Informatik: Eine Einführung für Lehramtsstudenten, Lehrer und Schüler. Vieweg, Braunschweig, Wiesbaden

    Google Scholar 

  • Sonar T (2011) 3000 Jahre Analysis. Springer, Heidelberg/Dordrecht/London/New York

    Book  MATH  Google Scholar 

  • Stokes GG (1849) On the variation of gravity at the surface of the earth. Trans Camb Philos Soc 8:672–712; Mathematical and physical papers by George Gabriel Stokes, vol II. Johanson Reprint Corporation, New York, pp 131–171

    Google Scholar 

  • Tarantola A (1984) Inversion of seismic relation data in the acoustic approximation. Geophysics 49:1259–1266

    Article  Google Scholar 

  • Torge W (1991) Geodesy. Walter de Gruyter, Berlin

    Book  MATH  Google Scholar 

  • Weyl H (1916) Über die Gleichverteilung von Zahlen mod Eins. Math Ann 77:313–352

    Article  MathSciNet  MATH  Google Scholar 

  • Wolf K (2009) Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Dr. Hut, München

    Google Scholar 

  • Yilmaz O (1987) Seismic data analysis: processing, inversion and interpretation of seismic data. Society of Exploration Geophysicists, Tulsa

    Google Scholar 

Download references

Acknowledgements

This introductory chapter is based on the German note “W. Freeden (2009):Geomathematik, was ist das überhaupt?, Jahresbericht der DeutschenMathematiker Vereinigung (DMV), JB.111, Heft 3, 125–152.” I am obliged to thepublisher Vieweg+Teubner for giving the permission for an English translation ofessential parts of the original version.

Particular thanks go to Dr. Helga Nutz for reading an earlier version and eliminating some inconsistencies.

Furthermore, I would like to thank my Geomathematics Group, Kaiserslautern, for the assistance in numerical calculation as well as graphical illustration concerning the three exemplary circuits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Freeden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Freeden, W. (2015). Geomathematics: Its Role, Its Aim, and Its Potential. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_1

Download citation

Publish with us

Policies and ethics