Skip to main content

Robot Task Modeling

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Synonyms

Analysis; Robot plan modelling; Robot task plan representation; Supervision and control

Definitions

A robot task can be described as a piece of work the robot is in charge of and must carry out. In most cases, one assumes some representation of the state of the world (which is a conceptualization of reality, adequate for the task in hand, without adding unnecessary complexity), and the robot task consists of making the system evolve from the current world state to a desired goal state, by executing the appropriate actions. The sequence of actions carried out to execute a task is called a plan, and the actions can be further decomposed into sub-actions, and those into sub-sub-actions and so on, until one reaches an atomic action which is not further decomposable, often designated as primitive actions. There are no universally accepted standard definitions, for tasks, plans, actions and primitive actions. Different authors use different plan decompositions and names for the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Belta C, Bicchi A, Egerstedt M, Frazzoli E, Klavins E, Pappas G (2007) Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE Robot Autom Mag 14(1):61–70

    Article  Google Scholar 

  • Cassandras CG, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer

    Book  Google Scholar 

  • Chen Y, Tumová J, Belta C (2012) LTL robot motion control based on automata learning of environmental dynamics. In: Proceedings of ICRA’12: the 2012 IEEE international conference on robotics and automation. IEEE, St. Paul, pp 5177–5182

    Chapter  Google Scholar 

  • Cimatti A, Pistore M, Roveri M, Traverso P (2003) Weak, strong, and strong cyclic planning via symbolic model checking. Artif Intell 147(1–2):35–84

    Article  MathSciNet  Google Scholar 

  • Cizelj I, Belta C (2013) Control of noisy differential-drive vehicles from time-bounded temporal logic specifications. In: Procedings of ICRA’13: the 2013 IEEE international conference on robotics and automation, Karlsruhe

    Google Scholar 

  • Costelha H, Lima P (2007) Modeling, analysis and execution of robotic tasks using Petri nets. In: Proceedings of IROS 2007—IEEE international conference on intelligent robots and systems, San Diego, pp 1449–1454

    Google Scholar 

  • Costelha H, Lima PU (2012) Robot task plan representation by petri nets: modelling, identification, analysis and execution. Autonom Robot, 33(4):337–360

    Article  Google Scholar 

  • De Giacomo G, Vardi M.Y. Automata-theoretic approach to planning for temporally extended goals. European Conference on Planning. Springer, Berlin, Heidelberg, 1999.

    Google Scholar 

  • Espiau B, Kapellos K, Jourdan M, Simon D (1995) On the validation of robotics control systems part I: high level specification and formal verification. Technical Report 2719, INRIA

    Google Scholar 

  • Fainekos G, Kress-Gazit H, Pappas G (2005) Temporal logic motion planning for mobile robots. In: Proceedings of ICRA’05: the 2005 IEEE international conference on robotics and automation. IEEE, Barcelona, pp 2020–2025

    Chapter  Google Scholar 

  • Huth M, Ryan M (2006) Introduction to automata theory, languages, and computation, 3rd edn. Addison-Wesley Longman Publishing Co. Inc., Boston

    Google Scholar 

  • Johnson B, Havlak F, Campbell M, Kress-Gazit H (2012) Execution and analysis of high-level tasks with dynamic obstacle anticipation. In: Procedings of ICRA’12: the 2012 IEEE international conference on robotics and automation. IEEE, St. Paul, pp 330–337

    Chapter  Google Scholar 

  • Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in partially observable stochastic domains. Artif Intell 1(101):99–134

    Article  MathSciNet  Google Scholar 

  • Kim G, Chung W (2007) Navigation behavior selection using generalized stochastic Petri nets for a service robot. IEEE Trans Syst Man Cybern Part C: Appl Rev 37(4):494–503

    Article  Google Scholar 

  • King J, Pretty R, Gosine R (2003) Coordinated execution of tasks in a multiagent environment. IEEE Trans Syst Man Cybern Part A: Syst Humans 33(5):615–619

    Article  Google Scholar 

  • Kloetzer M, Belta C (2008a) Distributed implementations of global temporal logic motion specifications. In: ICRA’08: Proceedings of the 2008 IEEE international conference on robotics and automation, Pasadena, pp 393–398

    Google Scholar 

  • Kloetzer M, Belta C (2008b) A fully automated framework for control of linear systems from temporal logic specifications. IEEE Trans Autom Control 53(1): 287–297

    Article  MathSciNet  Google Scholar 

  • Kloetzer M, Mahulea C (2016) Multi-robot path planning for syntactically co-safe LTL specifications. In: 13th international workshop on discrete event systems, pp 452–458

    Google Scholar 

  • Kober J, Bagnell JA, Peters J (2009) Reinforcement learning in robotics: a survey. Int J Robot, 32(11):1238–1274

    Article  Google Scholar 

  • Košecká J (1996) A framework for modeling and verifying visually guided agents: design, analysis and experiments. PhD thesis, GRASP Laboratory, University of Pennsylvania

    Google Scholar 

  • Kosecka J, Bogoni L (1994) Application of discrete events systems for modeling and controlling robotic agents. In: Proceedings of ICRA’94: the IEEE international conference on robotics and automation. IEEE, pp 2557–2562

    Google Scholar 

  • Kress-Gazit H, Fainekos GE, Pappas GJ (2007) From structured english to robot motion. In: Proceedings of IROS’07: IEEE/RSJ international conference on intelligent robots and systems, San Diego, pp 2717–2722

    Google Scholar 

  • Kress-Gazit H, Fainekos GE, Pappas GJ (2009) Temporal logic-based reactive mission and motion planning. IEEE Trans Robot 25(6):1370–1381

    Article  Google Scholar 

  • Lacerda B, Lima PU (2011) Designing Petri net supervisors for from LTL specifications. In: Proceedings of RSS VII—the 2011 robotics: science and systems conference, Los Angeles

    Google Scholar 

  • Lahijanian M, Andersson S, Belta C (2009) A probabilistic approach for control of a stochastic system from LTL specifications. In: Proceedings of CDC’09: the 48th IEEE conference on decision and control. IEEE, Shanghai, pp 2236–2241

    Google Scholar 

  • Lee JS, Zhou MC, Hsu PL (2005) An application of Petri nets to supervisory control for human-computer interactive systems. IEEE Trans Ind Electron 52(5):1220–1226

    Article  Google Scholar 

  • Loizou S, Kyriakopoulos K (2004) Automatic synthesis of multi-agent motion tasks based on LTL specifications. In: Proceedings of CDC’04: the 43rd IEEE conference on decision and control. IEEE, Paradise Island, pp 153–158

    Google Scholar 

  • Messias JV, Spaan MT, Lima PU (2013) Multiagent pomdps with asynchronous execution. In: Proceedings of the 2013 international conference on autonomous agents and multi-agent systems. International foundation for autonomous agents and multiagent systems

    Google Scholar 

  • Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580

    Article  Google Scholar 

  • Petri CA (1966) Kommunikation mit automaten. Technical report. Institut für Instrumentelle Mathematik, Bonn. English translation

    Google Scholar 

  • Pistore M, Traverso P (2001) Planning as model checking extended goals in non-deterministic domains. In: Proceedings of IJCAI’01: the 17th international joint conference on artificial intelligence, Seattle, pp 479–484

    Google Scholar 

  • Ramadge PG, Wonham W (1989) The control of discrete event systems. Proc IEEE 77(1):81–98

    Article  Google Scholar 

  • Raman V, Kress-Gazit H (2012) Automated feedback for unachievable high-level robot behaviors. In: Procedings of ICRA’12: the 2012 IEEE international conference on robotics and automation. IEEE, St. Paul, pp 5156–5162

    Chapter  Google Scholar 

  • Raman V, Kress-Gazit H (2013) Explaining impossible high-level robot behaviors. IEEE Trans Robot 29(1):94–104

    Article  Google Scholar 

  • Ricker S, Sarkar N, Rudiet K (1996) A discrete-event systems approach to modeling dextrous manipulation. Robotica 14(05):515–525

    Article  Google Scholar 

  • Russell SJ, Norvig P (2014) Artificial intelligence: a modern approach, 3rd edn. Pearson Education

    MATH  Google Scholar 

  • Sarid S, Xu B, Kress-Gazit H (2012) Guaranteeing high-level behaviors while exploring partially known maps. In: Proceedings of robotics: science and systems, Sydney

    Google Scholar 

  • Schaft AJVD, Schumacher JM (2000) An introduction to hybrid dynamical systems, vol 251. Springer, London

    Book  Google Scholar 

  • Smith S, Tůmová J, Belta C, Rus D (2011) Optimal path planning for surveillance with temporal-logic constraints. Int J Robot Res 30(14):1695–1708

    Article  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: an introduction, 1st edn. MIT press, Cambridge

    MATH  Google Scholar 

  • Thabet M, Montebelli A, Kyrki V (2016) Learning movement synchronization in multi-component robotic systems. In: 2016 IEEE international conference on robotics and automation (ICRA). https://doi.org/10.1109/ICRA.2016.7487141

  • Ulusoy A, Smith S, Belta C (2012a) Optimal multi-robot path planning with LTL constraints: guaranteeing correctness through synchronization. In: Proceedings of DARS: 2012 international symposium on distributed autonomous robotic systems, Baltimore

    Google Scholar 

  • Ulusoy A, Smith S, Ding X, Belta C (2012b) Robust multi-robot optimal path planning with temporal logic constraints. In: Proceedings of ICRA’12: the 2012 IEEE international conference on robotics and automation. IEEE, St. Paul, pp 4693–4698

    Chapter  Google Scholar 

  • Ulusoy A, Wongpiromsarn T, Belta C (2012c) Incremental control synthesis in probabilistic environments with temporal logic constraints. In: Proceedings of CDC: the 2012 IEEE conference on decision and control, Maui

    Google Scholar 

  • Veiga T, Miraldo P, Ventura R, Lima PU (2016) Efficient object search for mobile robots in dynamic environments: semantic map as an input for the decision maker. In: Proceedings of IROS 2016—IEEE/RSJ international conference on intelligent robots and systems, Daejeon

    Google Scholar 

  • Viswanadham N, Narahari Y (1992) Performance modeling of automated manufacturing systems. Prentice Hall

    MATH  Google Scholar 

  • Wang F, Kyriakopoulos K, Tsolkas A, Saridis G (1991) A Petri-net coordination model for an intelligent mobile robot. Trans IEEE Syst Man Cybern Soc 21(4)

    Google Scholar 

  • Wolff E, Topcu U, Murray R (2012) Optimal control with weighted average costs and temporal logic specifications. In: Proceedings of RSS VIII—the 2012 robotics: science and systems conference, Sydney

    Google Scholar 

  • Zhou M, Venkatesh K (1999) Modeling, simulation and control of flexible manufacturing systems. World Scientific Publishing

    Book  Google Scholar 

  • Ziparo VA, Iocchi L (2006) Petri net plans. In: Proceedings of the fourth international workshop on modelling of objects, components, and agents (MOCA’06). University of Hamburg, pp 267–290

    Google Scholar 

  • Ziparo VA, Iocchi L, Lima PU, Nardi D, Palamara PF (2011) Petri net plans: a framework for collaboration and coordination in multi-robot systems. J Autonom Agents Multi-Agent Syst 23(3):344–383

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the FCT project LARSyS - FCT Project UIDB/50009/2020.

Special thanks to my former PhD students Bruno Lacerda and Hugo Costelha, who contributed, directly or indirectly, to this text. Thanks also to Davide Brugali for the interesting discussions that lead to the invitation to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro U. Lima .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lima, P.U. (2020). Robot Task Modeling. In: Ang, M., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_9-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics