Skip to main content

Unmanned Aerial Vehicles Swarms

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Definition

An unmanned aerial vehicle (UAV) swarm can be simply defined as a group aerial robotic platform, usually similar in form, coordinating and cooperating to achieve a common goal. Swarms extend robotic capabilities beyond those of a single vehicle through various methods of coordination and cooperation between the different agents. The coordination component of independent, decoupled, and identical agents enables redundancy, allowing the system to compensate for the lack of robustness of individuals. The cooperation is an advanced form of collective behavior, which provides mutual benefits to the agents when working or acting together. This behavior is essential when agents acting by themselves are not successful and do not necessarily get rewarded for their actions. Swarms are optimized around different applications and constraints with large implementation differences including the form of individual vehicles, the degree of variation between agents, the shape of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ayanian N, Rus D, Kumar V (2012) Decentralized multirobot control in partially known environments with dynamic task reassignment. In: IFAC workshop on distributed estimation and control in networked systems, Santa Barbara, Sept 2012, pp 311–316

    Google Scholar 

  • Danping Z, Ping T (2013) Coslam: Collaborative visual slam in dynamic environments. IEEE Trans Pattern Anal Mach Intell 35(2):354–366. ISSN:0929-5593

    Google Scholar 

  • Desai JP, Ostrowski JP, Kumar V (2001) Modeling and control of formations of nonholonomic mobile robots. IEEE Trans Robot Autom 17(6):905–908

    Article  Google Scholar 

  • Forster C, Lynen S, Kneip L, Scaramuzza D (2013) Collaborative monocular SLAM with multiple micro aerial vehicles. In: IEEE/RSJ conference on intelligent robots and systems, Tokyo

    Book  Google Scholar 

  • Franchi A, Secchi C, Ryll M, Bulthoff HH, Giordano PR (2012) Shared control: balancing autonomy and human assistance with a group of quadrotor UAVs. IEEE Robot Autom Mag 19(3):57–68

    Article  Google Scholar 

  • Howard A, Sukhatme GS, Matarić MJ (2006) Multi-robot mapping using manifold representations. IEEE Spec Issue Multi-robot Syst 94(9):1360–1369 (2006)

    Google Scholar 

  • Huang AS, Bachrach A, Henry P, Krainin M, Maturana D, Fox D, Roy N (2011) Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International symposium of robotics research (ISRR), Flagstaff

    Google Scholar 

  • Keller J, Thakur D, Likhachev M, Gallier J, Kumar V (2017) Coordinated path planning for fixed-wing UAS conducting persistent surveillance missions. IEEE Trans Autom Sci Eng 14(1):17–24

    Article  Google Scholar 

  • Kerl C, Sturm J, Cremers D (2013) Dense visual SLAM for RGB-D cameras. In: IEEE international conference on intelligent robot systems (IROS), Tokyo, 2013, pp 2100–2106

    Google Scholar 

  • Kloder S, Hutchinson S (2006) Path planning for permutation-invariant multirobot formations. IEEE Trans Robot 22(4):650–665. ISSN: 1552-3098. https://doi.org/10.1109/TRO.2006.878952

  • Kushleyev A, Mellinger D, Powers C, Kumar V (2013) Towards a swarm of agile micro quadrotors. Auton Robot 35(4):287–300. ISSN 1573-7527

    Google Scholar 

  • Lee T, Leok M, McClamroch NH (2013) Nonlinear robust tracking control of a quadrotor UAV on SE(3). Asian J Control 15(2):391–408

    Article  MathSciNet  Google Scholar 

  • Leger JA, Páscoa JC, Xisto CM (2015) Analytical modeling of a cyclorotor in hovering state. Proc Inst Mech Eng Part G J Aerosp Eng 229(12):2163–2177

    Article  Google Scholar 

  • Loianno G, Kumar V (2018) Cooperative transportation using small quadrotors using monocular vision and inertial sensing. IEEE Robot Autom Lett 3(2):680–687

    Article  Google Scholar 

  • Loianno G, Mulgaonkar Y, Brunner C, Ahuja D, Ramanandan A, Chari M, Diaz S, Kumar V (2016) A swarm of flying smartphones. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), 2016. IEEE, pp 1681–1688

    Google Scholar 

  • Loianno G, Brunner C, McGrath G, Kumar V (2017) Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and IMU. IEEE Robot Autom Lett 2(2):404–411

    Article  Google Scholar 

  • Mahony R, Kumar V, Corke P (2012) Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot Autom Mag 19(3):20–32. ISSN: 1070-9932. https://doi.org/10.1109/MRA.2012.2206474

  • Michael N, Shen S, Mohta K, Kumar V, Nagatani K, Okada Y, Kiribayashi S, Otake K, Yoshida K, Ohno K, Takeuchi E, Tadokoro S (2012) Collaborative mapping of an earthquake-damaged building via ground and aerial robots. J Field Robot 29(5):832–841

    Article  Google Scholar 

  • Mohta K, Turpin M, Kushleyev A, Mellinger D, Michael N, Kumar V (2016) QuadCloud: a rapid response force with quadrotor teams. Springer International Publishing, Cham, pp 577–590. ISBN: 978-3-319-23778-7

    Book  Google Scholar 

  • Mulgaonkar Y, Kumar V (2014) Autonomous charging to enable long-endurance missions for small aerial robots, p 90831S

    Google Scholar 

  • Preiss JA, Hönig W, Sukhatme GS, Ayanian N (2017) Crazyswarm: a large nano-quadcopter swarm. In: Proceedings of the IEEE international conference on robotics and automation

    Google Scholar 

  • Ritz R, D’Andrea R (2017) A global controller for flying wing tailsitter vehicles. In: 2017 IEEE international conference on robotics and automation (ICRA), pp 2731–2738

    Google Scholar 

  • Schmid K, Suppa M, Burschka D (2013) Towards autonomous MAV exploration in cluttered indoor and outdoor environments. In: RSS 2013 workshop on resource-efficient integration of perception, control and navigation for micro air vehicles (MAVs), Berlin

    Google Scholar 

  • Trawny N, Roumeliotis S, Giannakis G (2009) Cooperative multirobot localization under communication constraints. In: IEEE International conference on robotics and automation, pp 4394–4400, Kobe

    Google Scholar 

  • Turpin M, Michael N, Kumar V (2012) Decentralized formation control with variable shapes for aerial robots. In: 2012 IEEE international conference on robotics and automation, pp 23–30. https://doi.org/10.1109/ICRA.2012.6225196

  • Turpin M, Michael N, Kumar V (2014) Capt: concurrent assignment and planning of trajectories for multiple robots. Int J Robot Res 33(1):98–112

    Article  Google Scholar 

  • Weinstein A, Cho A, Loianno G, Kumar V (2018) Visual inertial odometry swarm: an autonomous swarm of vision-based quadrotors. IEEE Robot Autom Lett 3(3):1801–1807. https://doi.org/10.1109/LRA.2018.2800119

    Article  Google Scholar 

  • Zhang G, Fricke GK, Garg DP (2013) Spill detection and perimeter surveillance via distributed swarming agents. IEEE/ASME Trans Mechatron 18(1):121–129. ISSN: 1083-4435. https://doi.org/10.1109/TMECH.2011.2164578

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Loianno .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Loianno, G., Weinstein, A., Kumar, V. (2020). Unmanned Aerial Vehicles Swarms. In: Ang, M., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_75-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_75-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics