Skip to main content

Legged Robots

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Synonyms

Climbing robots; Legged vehicles; Limbed systems; Jumping robots; Running robots; Walking robots; Walking machines

Definition

Legged robots use legs to move from one place to another. Legs provide an active suspension (Waldron and McGhee, 1986), so the motion of the main body of the robot can be largely decoupled from the terrain profile. With each step, a leg is temporarily lifted off the ground, so that discontinuous terrain can be overcome as well, allowing locomotion in places out of reach otherwise.

Legs are usually articulated rigid bodies, assumed to contact the environment only with their end effector. In most cases, this contact is unilateral, meaning that the robot can push but not pull on contact surfaces. In some cases, grasping, suction cups, magnets, adhesive materials, or miniature spine arrays can provide additional grip (Hirose et al., 1991; Kim et al., 2005; Yano et al., 1998).

Adapting wheeled vehicles to rough terrain has led in some cases to implant wheels...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • ATLAS by Boston Dynamics Inc (2020) https://www.bostondynamics.com/atlas. Last Accessed on 23 June 2020

  • Barasuol V, Buchli J, Semini C, Frigerio M, De Pieri ER, Caldwell DG (2013) A reactive controller framework for quadrupedal locomotion on challenging terrain. In: Proceedings of the IEEE international conference on robotics & automation, pp 2554–2561. https://doi.org/10.1109/ICRA.2013.6630926

    Google Scholar 

  • Barasuol V, Villarreal-Magaña OA, Sangiah D, Frigerio M, Baker M, Morgan R, Medrano-Cerda GA, Caldwell DG, Semini C (2018) Highly-integrated hydraulic smart actuators and smart manifolds for high-bandwidth force control. Front Robot AI 5:51 https://doi.org/10.3389/frobt.2018.00051

    Article  Google Scholar 

  • Bares J, Wettergreen D (1999) Dante II: technical description, results and lessons learned. Int J Robot Res 18(7):621–649

    Article  Google Scholar 

  • Bellicoso CD, Jenelten F, Gehring C, Hutter M (2018) Dynamic locomotion through online nonlinear motion optimization for quadrupedal robots. IEEE Robot Autom Lett 3(3):2261–2268

    Article  Google Scholar 

  • Brasseur C, Sherikov A, Collette C, Dimitrov D, Wieber PB (2015) A robust linear MPC approach to online generation of 3D biped walking motion. In: Proceedings of the IEEE-RAS international conference on humanoid robots

    Book  Google Scholar 

  • Bretl T, Lall S (2008) Testing static equilibrium for legged robots. IEEE Trans Robot 24(4):794–807

    Article  Google Scholar 

  • Brogliato B (1999) Nonsmooth mechanics. Communications and control engineering series. Springer, London

    MATH  Google Scholar 

  • Brooks R (1989) A robot that walks; emergent behaviors from a carefully evolved network. In: Proceedings of the IEEE international conference on robotics & automation, pp 292–296

    Book  Google Scholar 

  • Caron S, Pham QC, Nakamura Y (2017) ZMP support areas for multi-contact mobility under frictional constraints. IEEE Trans Robot 33(1):67–80

    Article  Google Scholar 

  • Cassie by Agility Robotics (2020) http://www.agilityrobotics.com/robots/. Last Accessed on 23 June 2020

  • Chestnutt J, Michel P, Kuffner J, Kanade T (2007) Locomotion among dynamic obstacles for the Honda Asimo. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems

    Book  Google Scholar 

  • Chevallereau C, Abba G, Aoustin Y, Plestan F, Westervelt E, Canudas de Wit C, Grizzle J (2003) RABBIT: a testbed for advanced control theory. IEEE Control Syst Mag 23(5):57–79

    Article  Google Scholar 

  • Di Carlo J, Wensing PM, Katz B, Bledt G, Kim S (2018) Dynamic locomotion in the MIT Cheetah 3 through convex Model Predictive Control. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems

    Book  Google Scholar 

  • Diedam H, Dimitrov D, Wieber PB, Mombaur K, Diehl M (2008) Online walking gait generation with adaptive foot positioning through linear model predictive control. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems

    Book  Google Scholar 

  • Endo G, Hirose S (1999) Study on roller-walker (system integration and basic experiments). In: Proceedings of the IEEE international conference on robotics & automation, pp 2032–2037

    Google Scholar 

  • Feng S, Xinjilefu X, Atkeson CG, Kim J (2016) Robust dynamic walking using online foot step optimization. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems

    Book  Google Scholar 

  • Fujimoto Y, Kawamura A (1996) Proposal of biped walking control based on robust hybrid position/force control. In: Proceedings of the IEEE international conference on robotics & automation, pp 2724–2730

    Google Scholar 

  • Fujita M, Kitano H (1998) Development of an autonomous quadruped robot for robot entertainment. Auton Robot 5:7–18

    Article  Google Scholar 

  • Full RJ, Koditschek DE (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202:3325–3332

    Google Scholar 

  • Gamus B, Or Y (2013) Analysis of dynamic bipedal robot locomotion with stick-slip transitions. In: Submitted to the IEEE international conference on robotics & automation

    MATH  Google Scholar 

  • Gouaillier D, Collette C, Kilner C (2010) Omni-directional closed-loop walk for NAO. In: Proceedings of the IEEE-RAS international conference on humanoid robots

    Book  Google Scholar 

  • Gregg RD, Lenzi T, Hargrove LJ, Sensinger JW (2014) Virtual constraint control of a powered prosthetic leg: from simulation to experiments with transfemoral amputees. IEEE Trans Robot 30(6):1455–1471

    Article  Google Scholar 

  • Gurriet T, Finet S, Boeris G, Duburcq A, Hereid A, Harib O, Masselin M, Grizzle J, Ames AD (2018) Towards restoring locomotion for paraplegics: realizing dynamically stable walking on exoskeletons. In: Proceedings of the IEEE international conference on robotics & automation

    Google Scholar 

  • Hauser K, Bretl T, Latombe JC, Harada K, Wilcox B (2008) Motion planning for legged robots on varied terrain. Int J Robot Res 27:1325–1349

    Article  Google Scholar 

  • Hirose S, Nagakubo A, Toyama R (1991) Machine that can walk and climb on floors, walls and ceilings. In: Proceedings of the international conference on advanced robotics, pp 753–758

    Google Scholar 

  • Hirose S, Fukuda Y, Yoneda K, Nagakubo A, Tsukagoshi H, Arikawa K, Endo G, Doi T, Hodoshima R (2009) Quadruped walking robots at tokyo institute of technology. IEEE Robot Autom Mag 16:104–114

    Article  Google Scholar 

  • Hutter M, Gehring C, Lauber A, Gunther F, Bellicoso CD, Tsounis V, Fankhauser P, Diethelm R, Bachmann S, Bloesch M, Kolvenbach H, Bjelonic M, Isler L, Meyer K (2017) Anymal – toward legged robots for harsh environments. Adv Robot 31(17):918–931

    Article  Google Scholar 

  • Hwangbo J, Lee J, Dosovitskiy A, Bellicoso D, Tsounis V, Koltun V, Hutter M (2019) Learning agile and dynamic motor skills for legged robots. Sci Robot 4(26):eaau5872

    Google Scholar 

  • Iagnemma K, Dubowsky S (2004) Traction control of wheeled robotic vehicles in rough terrain with application to planetary rovers. Int J Robot Res 23(10–11): 1029–1040

    Article  Google Scholar 

  • Kajita S, Tani K (1991) Study of dynamic biped locomotion on rugged terrain – derivation and application of the linear inverted pendulum mode. In: Proceedings of the IEEE international conference on robotics & automation, pp 1405–1411

    Google Scholar 

  • Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H (2003) Biped walking pattern generation by using preview control of Zero Moment Point. In: Proceedings of the IEEE international conference on robotics & automation, pp 1620–1626

    Google Scholar 

  • Kim S, Asbeck A, Provancher W, Cutkosky MR (2005) Spinybotii: climbing hard walls with compliant microspines. In: Proceedings of the international conference on advanced robotics, pp 18–20

    Google Scholar 

  • Mastalli C, Focchi M, Havoutis I, Radulescu A, Calinon S, Buchli J, Caldwell DG, Semini C (2017) Trajectory and foothold optimization using low-dimensional models for rough terrain locomotion. In: Proceedings of the IEEE international conference on robotics & automation

    Book  Google Scholar 

  • McGeer T (1988) Passive dynamic walking. Simon Fraser University Technical Report

    Google Scholar 

  • McGhee RB, Frank AA (1968) On the stability properties of quadruped creeping gaits. Math Biosci 3:331–351

    Article  MATH  Google Scholar 

  • Mombaur K (2009) Using optimization to create self-stable human-like running. Robotica 27(3):321–330

    Article  Google Scholar 

  • Morisawa M, Harada K, Kajita S, Kaneko K, Kanehiro F, Fujiwara K, Nakaoka S, Hirukawa H (2006) A biped pattern generation allowing immediate modification of foot placement in real-time. In: Proceedings of the IEEE-RAS international conference on humanoid robots

    Book  Google Scholar 

  • Neunert M, Stäuble M, Giftthaler M, Bellicoso CD, Carius J, Gehring C, Hutter M, Buchli J (2018) Whole-body nonlinear model predictive control through contacts for quadrupeds. IEEE Robot Autom Lett 3(3):1458–1465

    Article  Google Scholar 

  • Ott C, Roa MA, Hirzinger G (2011) Posture and balance control for biped robots based on contact force optimization. In: Proceedings of the IEEE-RAS international conference on humanoid robots

    Book  Google Scholar 

  • Perrin N, Stasse O, Baudoin L, Lamiraux F, Yoshida E (2012) Fast humanoid robot collision-free footstep planning using swept volume approximations. IEEE Trans Robot 28(2):427–439

    Article  Google Scholar 

  • Pratt J, Tedrake R (2005) Velocity based stability margins for fast bipedal walking. In: Proceedings of the Ruperto Carola symposium on fast motion in biomechanics and robotics

    MATH  Google Scholar 

  • Pratt J, Chew CM, Torres A, Dilworth P, Pratt G (2001) Virtual model control: an intuitive approach for bipedal locomotion. Int J Robot Res 20:129–143

    Article  Google Scholar 

  • Raibert M (1986) Legged robots that balance. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  • Raibert M, Blankespoor K, Nelson G, Playter R, the BigDog Team (2008) Bigdog, the rough-terrain quadruped robot. In: Proceedings of the 17th world congress the international federation of automatic control (IFAC)

    Google Scholar 

  • Righetti L, Ijspeert A (2006) Programmable central pattern generators: an application to biped locomotion control. In: Proceedings of the IEEE international conference on robotics & automation

    Google Scholar 

  • Saab L, Ramos OE, Keith F, Mansard N, Souères P, Fourquet JY (2013) Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans Robot 29(2):346–362

    Article  Google Scholar 

  • Sardain P, Bessonnet G (2004) Forces acting on a biped robot. Center of pressure–zero moment point. IEEE Trans Syst Man Cybern Part A 34(5):630–637

    Article  Google Scholar 

  • Semini C, Tsagarakis NG, Guglielmino E, Focchi M, Cannella F, Caldwell DG (2011) Design of HyQ – a hydraulically and electrically actuated quadruped robot. J Syst Control Eng 225(6):831–849

    Google Scholar 

  • Sentis L, Park J, Khatib O (2010) Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Trans Robot 26(3):483–501

    Article  Google Scholar 

  • Smit-Anseeuw N, Gleason R, Vasudevan R, Remy CD (2017) The energetic benefit of robotic gait selectiona case study on the robot RAMone. IEEE Robot Autom Lett 2(2):1124–1131

    Article  Google Scholar 

  • Takenaka T, Matsumoto T, Yoshiike T (2009) Real time motion generation and control for biped robot -1st report: walking gait pattern generation-. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems

    Google Scholar 

  • Tsagarakis N, Metta G, Sandini G, Vernon D, Beira R, Becchi F, Righetti L, Santos-Victor J, Ijspeert A, Carrozza M, Caldwell D (2007) icub – the design and realization of an open humanoid platform for cognitive and neuroscience research. J Adv Robot (Special Issue on Robotic platforms for Research in Neuroscience):1151–1175

    Google Scholar 

  • Villarreal O, Barasuol V, Camurri M, Focchi M, Franceschi L, Pontil M, Caldwell DG, Semini C (2019) Fast and continuous foothold adaptation for dynamic locomotion through convolutional neural networks. IEEE Robot Autom Lett (RA-L) 1:1

    Google Scholar 

  • Vukobratović MK (1972) Contribution to the study of anthropomorphic systems. Kybernetika 8(5):404–418

    MATH  Google Scholar 

  • Waldron KJ, McGhee RB (1986) The adaptive suspension vehicle. IEEE Control Syst Mag 6:7–12

    Article  Google Scholar 

  • Wensing P, Orin D (2016) Improved computation of the humanoid centroidal dynamics and application for whole-body control. Int J Humanoid Rob 13(01):1550039

    Article  Google Scholar 

  • Wensing P, Wang A, Seok S, Otten D, Lang J, Kim S (2017) Proprioceptive actuator design in the MIT Cheetah: impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE Trans Robot 33(3):509–522

    Article  Google Scholar 

  • Wieber PB (2002) On the stability of walking systems. In: Proceedings of the international workshop on humanoids and human friendly robots

    Google Scholar 

  • Wieber PB (2005) Holonomy and nonholonomy in the dynamics of articulated motion. In: Proceedings of the Ruperto Carola symposium on fast motion in biomechanics and robotics

    MATH  Google Scholar 

  • Yano T, Numao S, Kitamura Y (1998) Development of a self-contained wall climbing robot with scanning type suction cups. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems, pp 249–254

    Google Scholar 

  • Zaytsev P, Hasaneini SJ, Ruina A (2015) Two steps is enough: no need to plan far ahead for walking balance. In: Proceedings of the IEEE international conference on robotics & automation

    Google Scholar 

  • Zucker M, Bagnell JA, Atkeson CG, Kuffner J (2010) An optimization approach to rough terrain locomotion. In: Proceedings of the IEEE international conference on robotics & automation

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Semini .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Semini, C., Wieber, PB. (2020). Legged Robots. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_59-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics