Skip to main content

Symbolic Dynamics

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Synonyms

Explicit dynamics

Definition

The terminology “Symbolic Dynamics” is used in robotics when the dynamics of robots is described by symbolic expressions using symbolic variables that do not have numerical values. The computation of these expressions must be done using specific software. The symbolic output can constitute a computation program to get the numerical solution after assigning the numerical values for the necessary constants and variables of the problem.

Overview

The dynamics of robots involves the development of their equations of motion, which describe the relationship between the input joint efforts (forces or torques) and the output motion. In this entry, two basic models will be treated: the inverse dynamic model (IDM), and the Direct Dynamic Model (DDM). The IDM is used in control applications: It calculates the input joint efforts to achieve a set of prescribed joint accelerations. The DDM is used in simulation applications: It calculates the joint accelerations...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Angeles J (2003) Fundamentals of robotic mechanical systems – theory, methods, and algorithms, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Book WJ (1984) Recursive Lagrangian dynamics of flexible manipulator arms. Int J Robot Res 3(3):87–101

    Article  Google Scholar 

  • Boyer F, Khalil W (1998) An efficient calculation of the flexible manipulator inverse dynamics. Int J Robot Res 17(3):282–293

    Article  Google Scholar 

  • Featherstone R (1983) The calculation of robot dynamics using articulated-body inertias. Int J Robot Res 2(3):87–101

    Google Scholar 

  • Featherstone R (2008) Rigid body dynamics algorithms. Springer, Boston. https://doi.org/10.1007/978-1-4899-7560-7

  • Gautier M (1991) Numerical calculation of the base inertial parameters. J Robot Syst 8(4):485–506

    Article  Google Scholar 

  • Gautier M, Khalil W (1990) Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans Robot Autom RA-6(3):368–373

    Article  Google Scholar 

  • Hollerbach J, Khalil W, Gautier M (2016) Handbook of robotics, second edition, Chapter 6: model identification. Springer, Cham, pp 113–138. https://doi.org/10.1007/978-3-319-32552-1_6

  • Kahn ME (1969) The near minimum time control of open loop articulated kinematic chains. PhD Thesis, Stanford University, Stanford

    Google Scholar 

  • Kawasaki H, Shimizu T (1999) Development of robot symbolic analysis system: ROSAM II. J Robot Soc Jpn 17(3):408–415

    Article  Google Scholar 

  • Kecskemethy A (1993) Mobile – an object-oriented tool-set for the efficient modeling of mechatronic systems. In: Proceedings of the second conference on mechatronics and robotics, pp 27–29

    Google Scholar 

  • Kecskemethy A, Krupp T, Hiller M (1997) Symbolic processing of multiloop mechanism dynamics using closed-form kinematics solutions. Multibody Syst Dyn 1:23–45

    Article  MathSciNet  Google Scholar 

  • Khalil W, Bennis F (1994) Comments on direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans Robot Autom RA-10(1):78–79

    Article  Google Scholar 

  • Khalil W, Dombre E (2002) Modeling, identification and control of robots. Hermes Penton, London

    MATH  Google Scholar 

  • Khalil W, Gautier M (2000) Modeling of mechanical systems with lumped elasticity. In: Proceedings of IEEE international conference on robotics and automation, San Francisco, CA, pp. 3965–3970

    Google Scholar 

  • Khalil W, Kleinfinger JF (1985) Une modélisation performante pour la commande dynamique de robots. Revue RAIRO, APII 6:561–574

    MATH  Google Scholar 

  • Khalil W, Kleinfinger JF (1986) A new geometric notation for open and closed-loop robots. In: Proceedings of IEEE international conference on robotics and automation, San Francisco, CA, pp. 1174–1180

    Google Scholar 

  • Khalil W, Kleinfinger JF (1987) Minimum operations and minimum parameters of the dynamic model of tree structure robots. IEEE J Robot Autom 3(6):517–526

    Article  Google Scholar 

  • Khalil W, Bennis F, Gautier M (1989) Calculation of the minimum inertial parameters of tree structure robots. In: Proceedings of the international conference on advanced robotics, Columbus, USA. Springer, New York, pp 189–201

    Google Scholar 

  • Khalil W, Vijayalingam A, Khomutenko B, Mukhanov I, Lemoine P, Ecorchard G (2014) Open SYMORO: an open source software package for symbolic modeling of robots. In: Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics, pp 1206–1211

    Google Scholar 

  • Khalil W, Boyer F, Morsli F (2017) General dynamic algorithm for floating base tree structure robots with flexible joints and links. J Mech Robot 9(3). https://doi.org/10.1115/1.4035798

  • Khatib O (1987) A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J Robot Autom RA-3(1):43–53

    Article  Google Scholar 

  • Khosla PK (1986) Real-time control and identification of direct drive manipulators. PhD Thesis, Carnegie Mellon University, Pittsburgh, USA

    Google Scholar 

  • Kruszewski J, Gawronski W, Wittbrodt E, Najbar F, Grabowski S (1975) Metoda Sztywnych Elementow Skonczonych (The rigid finite element method). Arkady, Warszawa

    Google Scholar 

  • Kurz T, Eberhard P, Henninger C, Schiehlen W (2010) From Neweul to Neweul-M2: symbolical equations of motion for multibody system analysis and synthesis. Multibody Syst Dyn 24(1):25–41

    Article  Google Scholar 

  • Lilly KW, Orin DE (1990) Efficient O(N) computation of the operational space inertia matrix. In: Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, pp 1014–1019

    Google Scholar 

  • Luh J, Walker M, Paul R (1980) On-line computational scheme for mechanical manipulators. ASME J Dyn Syst Meas Control 102(2):69–76

    Article  MathSciNet  Google Scholar 

  • Nakamura Y, Ghodoussi M (1988) A computational scheme of closed link robot dynamics derived by d’Alembert principle. In: Proceedings of the IEEE International Conference on robotics and automation, pp 1354–1360

    Google Scholar 

  • Shabana A (1990) Dynamics of flexible bodies using generalized Newton-Euler equations. J Dyn Syst Meas Control 112:496–503

    Article  Google Scholar 

  • Sharf I, Damaren C (1992) Simulation of flexible-link manipulators: basis functions and non-linear terms in the motion equations. In: Proceedings of IEEE international conference on robotics and automation, Nice, France, pp 1956–1962

    Google Scholar 

  • Shi P, McPhee J (2000) Multibody system dynamics. Kluwer Academic Publishers. https://doi.org/10.1023/A:1009841017268

  • Uicker JJ (1969) Dynamic behavior of spatial linkages. Trans ASME J Eng Ind 91(1):251–258

    Google Scholar 

  • Walker MW, Orin DE (1982) Efficient dynamic computer simulation of robotics mechanism. Trans ASME J Dyn Syst Meas Control 104(3):205–211

    Google Scholar 

  • Wittbrodt E, Adamiec-Wojcik I, Wojciech S (2006) Dynamics of flexible multibody systems. Rigid finite element method. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lemoine .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lemoine, P., Khalil, W. (2022). Symbolic Dynamics. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics