Skip to main content

Humanoid Robots

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics
  • 154 Accesses

Definitions

  • Humanoid robot (or simply “humanoid”): It usually refers to a robot whose shape is close to that of humans. Its definition varies according to researchers, ranging from a dual-arm upper-body robot to a biped walker. In this entry, an actuated human-size biped robot with arms and a head, designed to achieve some human capability, is considered as a humanoid robot.

  • Zero moment point (ZMP): Assuming the flat ground, the ZMP is defined as the point where the horizontal components of the moments applied to the body parts attached to the ground become zero.

Overview

This entry is intended to provide a brief overview of humanoid robots, focusing on the human-size, bipedal type. Starting from its historical development and hardware progress, bipedal locomotion and whole-body motion planning and control are described as important aspects of making humanoid robots execute desired tasks. Wearable device evaluation and large-scale assembly are also introduced as promising applications...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albu-Schäffer A, Eiberger O, Grebenstein M, Haddadin S, Ott C, Wimböck T, Wolf S, Hirzinger G (2008) Soft robotics. IEEE Robot Autom Mag 15(3):20–30

    Article  Google Scholar 

  • Ayusawa K, Yoshida E (2017) Motion retargeting for humanoid robots based on simultaneous morphing parameter identification and motion optimization. IEEE Trans Robot 33(6):1343–1357

    Article  Google Scholar 

  • Ayusawa K, Morisawa M, Yoshida E (2015) Motion retargeting for humanoid robots based on identification to preserve and reproduce human motion features. In: Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2774–2779

    Google Scholar 

  • Berenson D, Srinivasa S, Kuffner J (2011) Task space regions: a framework for pose-constrained manipulation planning. Int J Robot Res 30(12):1435–1460

    Article  Google Scholar 

  • Bolotnikova A, Chappellet K, Paolillo A, Escande A, Anbarjafari G, Suarez-Roos A, Rabaté P, Kheddar A (2017) A circuit-breaker use-case operated by a humanoid in aircraft manufacturing. In: Proceedings of IEEE Conference on Automation Science and Engineering, pp 15–22

    Google Scholar 

  • Bouyarmane K, Vaillant J, Keith F, Kheddar A (2012) Exploring humanoid robots locomotion capabilities in virtual disaster response scenarios. In: Proceedings of 2012 IEEE-RAS International Conference on Humanoid Robots, pp 337–342

    Google Scholar 

  • Cass S (2013) DARPA unveils atlas DRC robot. http:// spectrum.ieee.org/automatonrobotics/humanoids/darpa- unveils-atlas-drc-robot

  • Chitta S, Sucan IA, Cousins S (2012) MoveIt! IEEE Robot Autom Mag 19(1):18–19

    Article  Google Scholar 

  • Choset H, Lynch K, Hutchinson S, Kantor G, Burgard W, Kavraki L, Thrun S (2006) Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge

    MATH  Google Scholar 

  • Dalibard S, Nakhaei A, Lamiraux F, Laumond JP (2009) Whole-body task planning for a humanoid robot: a way to integrate collision avoidance. In: Proceedings of 2009 IEEE-RAS International Conference on Humanoid Robots, pp 355 –360

    Google Scholar 

  • Diankov R, Kuffner J (2008) OpenRAVE: a planning architecture for autonomous robotics. Technical Report CMU-RI-TR-08-34, Carnegie Mellon University

    Google Scholar 

  • Englsberger J, Ott C, Albu-Schaffer A (2013) Three-dimensional bipedal walking control using divergent component of motion. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2600–2607

    Google Scholar 

  • Englsberger J, Werner A, Ott C, Henze B, Roa MA, Garofalo G, Burger R, Beyer A, Eiberger O, Schmid K, Albu-Schaffer A (2014) Overview of the torque-controlled humanoid robot toro. In: Proceedings of 2014 IEEE-RAS International Conference on Humanoid Robots, pp 916–923

    Google Scholar 

  • Erez T, Lowrey K, Tassa Y, Kumar V, Kolev S, Todorov E (2013) An integrated system for real-time model predictive control of humanoid robots. In: Proceedings of 2013 IEEE-RAS International Conference on Humanoid Robots, pp 292–299

    Google Scholar 

  • Escande A, Kheddar A, Miossec S (2006) Planning support contact-points for humanoid robots and experiments on HRP-2. In: Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, pp 2974–2979

    Google Scholar 

  • Escande A, Kheddar A, Miossec S (2013) Planning contact points for humanoid robots. Robot Auton Syst 61(5):428–442

    Article  Google Scholar 

  • Escande A, Mansard N, Wieber PB (2014) Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int J Robot Res 33(7):1006–1028

    Article  Google Scholar 

  • Goswami A, Vadakkepat P (eds) (2017) Humanoid robotics: a reference. Springer, Dordrecht

    Google Scholar 

  • Harada K, Yoshida E, Yokoi K (2010) Motion planning for humanoid robots. Springer, London

    Book  Google Scholar 

  • Hauser K, Bretl T, Latombe JC (2005) Non-gaited humanoid locomotion planning. In: Proceedings of 2005 IEEE-RAS International Conference on Humanoid Robots, pp 7–12

    Google Scholar 

  • Hirai K, Hirose M, Haikawa Y, Takenaka T (1998) The development of honda humanoid robot. In: Proceedings of 1998 IEEE International Conference on Robotics and Automation, pp 1321–1326

    Google Scholar 

  • Hirukawa H (2006) Humanoid robotics projects in Japan. In: Proceedings of Understanding Humanoid Robots Workshop, 2006 IEEE International Conference on Robotics and Automation

    Google Scholar 

  • Hirukawa H, Kanehiro F, Kaneko K, Kajita S, Fujiwara K, Kawai Y, Tomita F, Hirai S, Tanie K, Isozumi T, Akachi K, Kawasaki T, Ota S, Yokoyama K, Handa H, Fukased Y, ichiro Maeda J, Nakamura Y, Tachi S, Inoue H (2004) Humanoid robotics platforms developed in HRP. Robot Auton Syst 48:165–175

    Google Scholar 

  • Ito T, Ayusawa K, Yoshida E, Kobayashi H (2017) Human motion reproduction by torque-based humanoid tracking control for active assistive device evaluation. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 503–508

    Google Scholar 

  • Ivaldi S, Fumagalli M, Randazzo M, Nori F, Sandini G, Metta G (2011) Computing robot internal/external wrenches by means of inertial, tactile and F/T sensors: theory and implementation on the iCub. In: Proceedings of 2011 IEEE-RAS International Conference on Humanoid Robots, pp 521–528

    Google Scholar 

  • Jeong H, Oh J, Kim M, Joo K, Kweon IS, Oh JH (2015) Control strategies for a humanoid robot to drive and then egress a utility vehicle for remote approach. In: Proceedings of 2015 IEEE-RAS International Conference on Humanoid Robots, pp 811–816

    Google Scholar 

  • Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H (2003a) Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of 2003 IEEE International Conference on Robotics and Automation, pp 1620–1626

    Google Scholar 

  • Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H (2003b) Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1644–1650

    Google Scholar 

  • Kajita S, Hirukawa H, Harada K, Yokoi K (2014) Introduction to humanoid robotics. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Kakiuchi Y, Kamon M, Shimomura N, Yukizaki S, Takasugi N, Nozawa S, Okada K, Inaba M (2017) Development of life-sized humanoid robot platform with robustness for falling down, long time working and error occurrence. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 689–696

    Google Scholar 

  • Kaneko K, Kanehiro F, Kajita S, Hirukawa H, Kawasaki T, Hirat M, Akachi K, Isozumi T (2004) The humanoid robot HRP-2. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation, pp 1083–1090

    Google Scholar 

  • Kaneko K, Harada K, Kanehiro F, Miyamori G, Akachi K (2008) Humanoid robot HRP-3. In: Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2471–2478

    Google Scholar 

  • Kaneko K, Kanehiro F, Morisawa M, Miura K, Nakaoka S, Yokoi K (2009) Cybernetic human HRP-4C. In: Proceedings of 2009 IEEE-RAS International Conference on Humanoid Robots, pp 7–14

    Google Scholar 

  • Kanoun O, Lamiraux F, Wieber PB, Kanehiro F, Yoshida E, Laumond JP (2009) Prioritizing linear equality and inequality systems: application to local motion planning for redundant robots. In: Proceedings of 2009 IEEE International Conference on Robotics and Automation, pp 2939–2944

    Google Scholar 

  • Kanoun O, Lamiraux F, Wieber PB (2011) Kinematic control of redundant manipulators: generalizing the task priority framework. IEEE Trans Robot 27(4):785–792

    Article  Google Scholar 

  • Kato I, Ohteru S, Kobayashi H, Shirai K, Uchiyama A (1973) Information-power machine with senses and limbs. In: International Centre for Mechanical Sciences (ed) On theory and practice of robots and manipulators, vol I. Springer, Wien/New York, pp 11–24

    Google Scholar 

  • Kobayashi H, Aida T, Hashimoto T (2009) Muscle suit development and factory application. Int J Autom Technol 3(6):709–715

    Article  Google Scholar 

  • Kuffner J, Kagami S, Nishiwaki K, Inaba M, Inoue H (2002) Dynamically-stable motion planning for humanoid robots. Auton Robot 12(1):105–118

    Article  Google Scholar 

  • Kuindersma S, Deits R, Fallon M, Valenzuela A, Frank Permenter HD, Koolen T, Marion P, Tedrake R (2016) Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton Robot 40(2):429–455

    Article  Google Scholar 

  • Latombe JC (1991) Robot motion planning. Kluwer Academic Publishers, Boston/Dordrecht/London

    Book  Google Scholar 

  • LaValle S (2006) Planning algorithm. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lengagne S, Vaillant J, Yoshida E, Kheddar A (2013) Generation of whole-body optimal dynamic multi-contact motions. Int J Robot Res 32(9–10):1104–1119

    Article  Google Scholar 

  • Lim J, Shim I, Sim O, Joe H, Kim I, Lee J, Oh JH (2015) Robotic software system for the disaster circumstances: system of team KAIST in the DARPA robotics challenge finals. In: Proceedings of 2015 IEEE-RAS International Conference on Humanoid Robots, pp 1161–1166

    Google Scholar 

  • Majidi C (2013) Soft robotics: a perspective – current trends and prospects for the futu. Soft Robot 1(1):5–11

    Article  Google Scholar 

  • Martinez A, Fernndez E (2013) Learning ROS for robotics programming. Packt Publishing, Birmingham

    Google Scholar 

  • Metta G, Fitzpatrick P, Natale L (2006) YARP: yet another robot platform. Int J Adv Rob Syst 3(1):43–48

    Google Scholar 

  • Metta G, Sandini G, Vernon D, Natale L, Nori F (2008) The iCub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of 8th Workshop on Performance Metrics for Intelligent Systems, pp 50–56

    Google Scholar 

  • Mirabel J, Tonneau S, Fernbach P, Seppälä AK, Campana M, Nicolas, Lamiraux F (2016) HPP: a new software for constrained motion planning. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 383–389

    Google Scholar 

  • Miura K, Yoshida E, Kobayashi Y, Endo Y, Kanehiro F, Homma K, Kajitani I, Matsumoto Y, Tanaka T (2013) Humanoid robot as an evaluator of assistive devices. In: Proceedings of 2013 IEEE International Conference on Robotics and Automation, pp 671–677

    Google Scholar 

  • Nakamura Y (1991) Advanced robotics: redundancy and optimization. Addison-Wesley Longman Publishing, Boston

    Google Scholar 

  • Nakaoka S (2012) Choreonoid: extensible virtual robot environment built on an integrated GUI framework. In: Proceedings of 2012 IEEE/SICE International Symposium on System Integration, pp 79–85

    Google Scholar 

  • Nakaoka S, Nakazawa A, Kanehiro F, Kaneko K, Morisawa M, Ikeuchi K (2005) Task model of lower body motion for a biped humanoid robot to imitate human dances. In: Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3157–3162

    Google Scholar 

  • Nishiwaki K, Kagami S (2009) Onlinewalking control system for humanoids with short cycle pattern generation. Int J Robot Res 28(6):729–742

    Article  Google Scholar 

  • Nishiwaki K, Kagami S, Kuniyoshi Y, Inaba M, Inoue H (2002) Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP. In: Proceedings of 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2684–2689

    Google Scholar 

  • Ogura Y, Aikawa H, Shimomura K, Kondo H, Morishima A, ok Lim H, Takanishi A (2006) Development of a new humanoid robot WABIAN-2. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation, pp 76–81

    Google Scholar 

  • Omer AM, Kondo H, Lim H, Takanishi A (2008) Development of walking support system based on dynamic simulation. In: Proceedings of 2008 IEEE International Conference on Robotics and Biomimetics, pp 137–142

    Google Scholar 

  • Park IW, Kim JY, Lee J, Oh JH (2005) Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot – 3: HUBO). In: Proceedings of 2005 IEEE-RAS International Conference on Humanoid Robots, pp 321–326

    Google Scholar 

  • Pfeiffer K, Escande A, Kheddar A (2017) Nut fastening with a humanoid robot. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 6142–6148

    Google Scholar 

  • Pratt G, Manzo J (2013) The DARPA robotics challenge. IEEE Robot Autom Mag 20(2):10–12

    Article  Google Scholar 

  • Pratt J, Carff J, Drakunov S, Goswami A (2006) Capture point: a step toward humanoid push recovery. In: Proceedings of 2006 IEEE-RAS International Conference on Humanoid Robots, pp 200–207

    Google Scholar 

  • Radford NA, Strawser P, Hambuchen K, Mehling JS, Verdeyen WK, Donnan AS, Holley J, Sanchez J, Nguyen V, Bridgwater L, Berka R, Ambrose R, Markee MM, Fraser-Chanpong NJ, McQuin C, Yamokoski JD, Hart S, Guo R, Parsons A, Wightman B, Dinh P, Ames B, Blakely C, Edmondson C, Sommers B, Rea R, Tobler C, Bibby H, Howard B, Niu L, Lee A, Conover M, Truong L, Reed R, Chesney D, Jr RP, Johnson G, Fok CL, Paine N, Sentis L, Cousineau E, Sinnet R, Lack J, Powell M, Morris B, Ames A, Akinyode J (2015) Valkyrie: NASA’s first bipedal humanoid robot. J Field Robot 32(3):397–419

    Google Scholar 

  • Saab L, Ramos OE, Keith F, Mansard N, Soueres P, Fourquet JY (2013) Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans Robot 29(2):346–362

    Article  Google Scholar 

  • Siciliano B, Khatib O (eds) (2016) Springer handbook of robotics 2. Springer, Berlin

    MATH  Google Scholar 

  • Siciliano B, Slotine JJE (1991) A general framework for managing multiple tasks in highly redundant robotic systems. In: Proceedings of IEEE International Conference on Advanced Robotics, pp 1211–1216

    Google Scholar 

  • Sucan IA, Moll M, Kavrak LE (2012) The open motion planning library. IEEE Robot Autom Mag 19(4):72–82

    Article  Google Scholar 

  • Sugihara T, Nakamura Y (2002) Whole-body cooperative balancing of humanoid robot using COG Jacobian. In: Proceedings of 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2575–2580

    Google Scholar 

  • Takanishi A, Ishida M, Yamazaki Y, Kato I (1985) The realization of dynamic walking by the biped walking robot. In: Proceedings of 1985 IEEE International Conference on Robotics and Automation, pp 459–466

    Google Scholar 

  • Takanishi A, Takeya T, Karaki H, Kato I (1990a) A control method for dynamic biped walking under unknown external force. In: Proceedings of 1990 IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp 795–801

    Google Scholar 

  • Takanishi A, Takeya T, Karaki H, Kato I (1990b) A control method for dynamic biped walking under unknown external force. In: Proceedings of 1990 IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp 795–801

    Google Scholar 

  • Takenaka T, Matsumoto T, Yoshiike T (2009) Real time motion generation and control for biped robot -1st report: walking gait pattern generation-. In: Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1084–1091

    Google Scholar 

  • Tanie K, Yokoi K (2003) Humanoid and its potential applications. In: Proceedings of 2003 IEEE International Conference on Industrial Technology, pp 1–6

    Google Scholar 

  • Tellez R, Ferro F, Garcia S, Gomez E, Jorge E, Mora D, Pinyol D, Oliver J, Torres O, Velazquez J, Faconti D (2008) Reem-B: an autonomous lightweight human-size humanoid robot. In: Proceedings of 2008 IEEE-RAS International Conference on Humanoid Robots, pp 462–468

    Google Scholar 

  • Vaillant J, Kheddar A, Audren H, Keith F, Brossette S, Escande A, Bouyarman K, Kaneko K, Morisawa M, Gergondet P, Yoshida E, Kajita S, Kanehiro F (2016) Multi-contact vertical ladder climbing with an HRP-2 humanoid. Auton Robot 40(3):561–580

    Article  Google Scholar 

  • Vukobratović M, Borovac B (2004) Zero-moment point – thirty-five years of its life. Int J Hum Robot 1(1): 157–174

    Article  Google Scholar 

  • Wieber PB (2008) Viability and predictive control for safe locomotion. In: Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1103–1108

    Google Scholar 

  • Yamane K, Nakamura Y (2003) Dynamics filter – concept and implementation of online motion generator for human figures. IEEE Trans Robot Autom 19(3): 421–432

    Article  Google Scholar 

  • Yarnaguchi J, Takanishi A (1997) Design of biped walking robots having antagonistic driven joints using nonlinear spring mechanism. In: Proceedings of 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 251–259

    Google Scholar 

  • Yokoi K, Nakashima K, Kobayashi M, Mihune H, Hasunuma H, Yanagihara Y, Gokyuu TUT, Endou K (2003) A tele-operated humanoid robot drives a backhoe in the open air. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1117–1122

    Google Scholar 

  • Yokoyama K, Handa H, Isozumi T, Fukase Y, Kaneko K, Kanehiro F, Kawai Y, Tomita F, Hirukawa H (2003) Cooperative works by a human and a humanoid robot. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2985–2991

    Google Scholar 

  • Yoshida E, Esteves C, Belousov I, Laumond JP, Sakaguchi T, Yokoi K (2008) Planning 3D collision-free dynamic robotic motion through iterative reshaping. IEEE Trans Robot 24(5):1186–1198

    Article  Google Scholar 

  • Yoshiike T, Kuroda M, Ujino R, Kaneko H, Higuchi H, Iwasaki S, Kanemoto Y, Asatani M, Koshiishi T (2017) Development of experimental legged robot for inspection and disaster response in plants. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 4869–4876

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Yoshida .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yoshida, E. (2021). Humanoid Robots. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_44-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics