Skip to main content

Robotics in Agriculture

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Synonyms

Agricultural robotics; Agro-food robotics; Agrobotics; Precision agriculture

Definition

Agricultural robotics is the study, development, and application of robotic technologies to agricultural practices. Robotic systems are applied to agriculture in order to improve the productivity of breeding and cultivation of plants and animals for food, fiber, fuel, and chemicals.

Overview

Agriculture, Subfields, and Stages in the Production Chain

Agricultural production can be broadly separated into intensive crop farming, horticulture, and animal husbandry. Intensive crop farming, also known as arable farming or broadacre farming, refers to the large-scale production of plants that are harvested at the same time such as grains, potato, oilseeds, and fiber crops. Horticultural production occurs on a smaller scale and includes the production of fruits, vegetables, and ornamental plants which often need selective harvesting such as tomatoes, apples, cucumbers, and cabbage. Animal husbandry...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • AgroVision (2019) www.agrovision.nl

  • Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  • Akbar SA, Elfiky NM, Kak A (2016) A novel framework for modeling dormant apple trees using single depth image for robotic pruning application. In: International Conference on Robotics and Automation (ICRA), pp 5136–5142

    Google Scholar 

  • Ã…strand B, Baerveldt A-J (2002) An agricultural mobile robot with vision-based perception for mechanical weed control. Auton Robot 13(1):21–35

    Article  Google Scholar 

  • Bac CW, van Henten EJ, Hemming J, Edan Y (2014) Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. J Field Robot 31:888–911. https://doi.org/10.1002/rob.21525

    Article  Google Scholar 

  • Bac CW, Hemming J, Tuijl B, Barth R, Wais E, Henten EJ (2017) Performance evaluation of a harvesting robot for sweet pepper. J Field Robot 34:1123–1139. https://doi.org/10.1002/rob.21709

    Article  Google Scholar 

  • Baeten J, Donné K, Boedrij S (2008) Autonomous fruit picking machine: a robotic apple harvester. In: Proceedings of field and service robotics, pp 531–539

    Google Scholar 

  • Bakker T, Asselt K, Bontsema J, Muller J, Straten G (2010) Systematic design of an autonomous platform for robotic weeding. J Terrramech 47(2):63–73

    Article  Google Scholar 

  • Ball D, Ross P, English A, Patten T, Upcroft B, Fitch R, Sukkarieh S, Wyeth G, Corke P (2013) Robotics for sustainable broad-acre agriculture. In: Proceedings of field and service robotics, Springer, pp 439–453

    Google Scholar 

  • Bargoti S, Underwood JP (2017) Image segmentation for fruit detection and yield estimation in apple orchards. J Field Robot 34:1039–1060

    Article  Google Scholar 

  • Barkema HW, von Keyserlingk MAG, Kastelic JP, Lam TJGM, Luby C, Roy J-P, LeBlanc SJ, Keefe GP, Kelton DF (2015) Changes in the dairy industry affecting dairy cattle health and welfare. J Dairy Sci 98:7426–7445

    Article  Google Scholar 

  • Barth R, Hemming J, van Henten EJ (2016) Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation. Biosyst Eng 146:71–84

    Article  Google Scholar 

  • Barth R, IJsselmuiden J, Hemming J, van Henten EJ (2017) Synthetic bootstrapping of convolutional neural networks for semantic plant part segmentation. Comput Electron Agric. https://doi.org/10.1016/j.compag.2017.11.040

  • Barth R, IJsselmuiden J, Hemming J, van Henten EJ (2018) Data synthesis methods for semantic segmentation in agriculture: a Capsicum annuum dataset. Comput Electron Agric 144:284–296

    Article  Google Scholar 

  • Bawden O, Kulk J, Russell R, McCool C, Perez T (2016) Proven method and technology for AgBotII to broadcast fertiliser. Technical report – Queensland DAF Strategic Investment in Agricultural Robotics (SIFR), Queensland University of Technology

    Google Scholar 

  • Bawden O, Kulk J, Russell R, McCool C, English A, Dayoub F, Lehnert C, Perez T (2017) Robot for weed species plant-specific management. J Field Robot 34(6):1179–1199

    Article  Google Scholar 

  • Berenstein R, Ben Halevi I, Edan Y (2012) A remote interface for a human–robot cooperative sprayer. Paper presented at the proceedings of the 11th international conference on precision agriculture, Indianapolis

    Google Scholar 

  • Bergerman M, Singh S, Hamner B (2012) Results with autonomous vehicles operating in specialty crops. In: IEEE International Conference on Robotics and Automation (ICRA), pp 1829–1835

    Google Scholar 

  • Botterill T, Paulin S, Green R, Williams S, Lin J, Saxton V, Mills S, Chen X, Corbett-Davies S (2017) A robot system for pruning grape vines. J Field Robot 34:1100–1122

    Article  Google Scholar 

  • Chapman SC, Merz T, Chan A, Jackway P, Hrabar S, Dreccer MF, Holland E, Zheng B, Ling TJ, Jimenez-Berni J (2014) Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy 4:279–301

    Google Scholar 

  • Cheein FA, Herrera D, Gimenez J, Carelli R, Torres-Torriti M, Rosell-Polo JR, Escolà A, Arnó J (2015) Human–robot interaction in precision agriculture: sharing the workspace with service units. In: 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, pp 289–295

    Google Scholar 

  • English A (2017) Visually-aided localisation for autonomous agricultural vehicles. PhD thesis, Electrical Engineering and Computer Science, Queensland University of Technology

    Google Scholar 

  • English A, Ross P, Ball D, Corke P (2014) Vision based guidance for robot navigation in agriculture. In: IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, pp 1693–1698

    Google Scholar 

  • Envirologic (2019) www.envirologic.se

  • FAO (2014) Agriculture, forestry and other land use emissions by sources and removals by sinks. http://www.fao.org/docrep/019/i3671e/i3671e.pdf

  • Griepentrog HW, Andersen NA, Andersen JC, Blanke M, Heinemann O, Madsen TE, Nielsen J, Pedersen SM, Ravn O, Wulfsohn D (2009) Safe and reliable: further development of a field robot. In: Proceedings of the 7th European Conference on Precision Agriculture (ECPA), Wageningen, pp 857–866

    Google Scholar 

  • Grimstad L, From PJ (2017) The Thorvald II agricultural robotic system. Robotics 6(4):24. https://doi.org/10.3390/robotics6040024

    Article  Google Scholar 

  • Hemming J, Bac CW, van Tuijl BAJ, Barth R, Bontsema J, Pekkeriet EJ, van Henten EJ (2016) A robot for harvesting sweet-pepper in greenhouses. In: Proceedings of the international conference of agricultural engineering, Zürich, 6–10 July 2014

    Google Scholar 

  • Hemming J, van Tuijl BAJ, Gauchel W, Wais E (2016) Field test of different end-effectors for robotic harvesting of sweet-pepper. Acta Hortic 1130:567–574

    Article  Google Scholar 

  • Hiremath S, van Evert FK, ter Braak C, Stein A, van der Heijden G (2014) Image-based particle filtering for navigation in a semi-structured agricultural environment. Biosyst Eng 121:85–95

    Google Scholar 

  • IsoGroup (2018a) ISO PlantSampler. http://www.iso-group.nl/en/machines/iso-plantsampler

  • IsoGroup (2018b) ISO Cutting and Planting 1800. http://www.iso-group.nl/en/machines/iso-cutting-and-planting-1800

  • IsoGroup (2018c) ISO Vision Planter. http://www.iso-group.nl/en/machines/iso-visionplanter

  • Jensen K, Nielsen S, Joergensen R, Boegild A, Jacobsen N, Joergensen O, Jaeger-Hansen C (2012) A low cost, modular robotics tool carrier for precision agriculture research. In: Proceedings of international conference on precision agriculture

    Google Scholar 

  • JOZ (2020) www.joz.nl

  • Kiani S (2012) Discriminating the corn plants from the weeds by using artificial neural networks. Int J Nat Eng Sci 6(3):55–58

    MathSciNet  Google Scholar 

  • Lehnert C, Sa I, Mccool C, Upcroft B, Perez T (2016) Sweet pepper pose detection and grasping for automated crop harvesting. In: Proceedings of the IEEE International Conference on Robotics and Automation, Stockholm, 16–21 May 2016

    Google Scholar 

  • Lehnert C, English A, McCool C, Tow AW, Perez T (2017) Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot Autom Lett 2(2):872–879

    Article  Google Scholar 

  • Lely (2020) www.lely.com

  • Madsen TE, Jakobsen HL (2001) Mobile robot for weeding. Master’s thesis, Technical University of Denmark

    Google Scholar 

  • Medeiros H, Kim D, Sun J, Seshadri H, Akbar SA, Elfiky NM, Park J (2017) Modeling dormant fruit trees for agricultural automation. J Field Robot 34:1203–1224

    Article  Google Scholar 

  • Milioto A, Lottes P, Stachniss C (2018) Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

    Google Scholar 

  • Moorehead SJ, Gilmore BJ, Dima CS, Wellington CK (2012) Automating orchards: a system of autonomous tractors for orchard maintenance. In: Proceedings of the IROS workshop on agricultural robotics: enabling safe, efficient, affordable robots for food production

    Google Scholar 

  • Mueller-Sim T, Jenkins M, Abel J, Kantor G (2017) The Robotanist: a ground-based agricultural robot for high-throughput crop phenotyping. In: IEEE International Conference on Robotics and Automation (ICRA), pp 3634–3639

    Google Scholar 

  • Murakami N, Ito A, Will JD, Steffen M, Inoue K, Kita K, Miyaura S (2008) Development of a teleoperation system for agricultural vehicles. Comput Electron Agric 63(1):81–88

    Article  Google Scholar 

  • Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  • Oksanen T, Visala A (2009) Coverage path planning algorithms for agricultural field machines. J Field Robot 26:651–668

    Article  Google Scholar 

  • Perez T, Bawden O, Kulk J, Russell R, McCool C, English A, Dayoub F (2017) Chapter 2: Overview of mechatronic design for a weed-management robotic system. In: Robotics and mechatronics for agriculture. CRC Press, Boca Raton

    Google Scholar 

  • Philipp I, Rath T (2002) Improving plant discrimination in image processing by use of different colour space transformations. Comput Electron Agric 35(1):1–15

    Article  Google Scholar 

  • Polder G, van der Heijden GWAM, van Doorn J, Baltissen TAHMC (2014) Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision. Biosyst Eng 117:35–42

    Article  Google Scholar 

  • Ross P (2016) Vision-based traversability estimation in field environments. PhD thesis, Electrical Engineering and Computer Science, Queensland University of Technology

    Google Scholar 

  • Ruckelshausen A, Biber P, Dorna M, Gremmes H, Klose R, Linz A, Rahe F, Resch R, Thiel M, Trautz D et al (2009) Bonirob – an autonomous field robot platform for individual plant phenotyping. Precis Agric 9(841):841–847

    Google Scholar 

  • Sa I, Ge Z, Dayoub F, Upcroft B, Perez T, McCool C (2016) DeepFruits: a fruit detection system using deep neural networks. Sensors 16(8):1222

    Article  Google Scholar 

  • Sa I, Lehnert C, English A, McCool C, Dayoub F, Upcroft B, Perez T (2017) Peduncle detection of sweet pepper for autonomous crop harvesting – combined color and 3-D information. IEEE Robot Autom Lett 2(2):765–772

    Article  Google Scholar 

  • Sa I, Chen Z, Popvic M, Khanna R, Liebisch F, Nieto J, Siegwart R (2018) WeedNet: dense semantic weed classification using multispectral images and MAV for smart farming. IEEE Robot Autom Lett 3(1):588–595

    Article  Google Scholar 

  • Schor N, Berman S, Dombrovsky A, Elad Y, Ignat T, Bechar A (2017) Development of a robotic detection system for greenhouse pepper plant diseases. Precis Agric 18(3):394–409

    Article  Google Scholar 

  • Silwal A, Davidson JR, Karkee M, Mo C, Zhang Q, Lewis K (2017) Design, integration, and field evaluation of a robotic apple harvester. J Field Robot 34:1140–1159

    Article  Google Scholar 

  • Sinden J, Jones R, Hester S, Odom D, Kalisch C, James R, Cacho O, Griffith G (2004) The economic impact of weeds in Australia. Technical report, CRC for Australian Weed Management

    Google Scholar 

  • Tabb A, Medeiros H (2017) A robotic vision system to measure tree traits. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), pp 6005–6012

    Google Scholar 

  • Underwood JP, Hung C, Whelan B, Sukkarieh S (2016) Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. Comput Electron Agric 130:83–96

    Article  Google Scholar 

  • Underwood JP, Wendel A, Schofield B, McMurray L, Kimber R (2017) Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle. J Field Robot 34:1061–1083

    Article  Google Scholar 

  • United Nations (UN), Department of Economic and Social Affairs, Population Division (2017) World population prospects: the 2017 revision, key findings and advance tables. ESA/P/WP/248. https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf

  • Upadhyaya M, Blackshaw R (2007) Non-chemical weed management: principles, concepts and technology. CAB International, Wallingford

    Book  Google Scholar 

  • van Henten EJ (2006) Greenhouse mechanization: state of the art and future perspective. Acta Hortic 710:55–69

    Article  Google Scholar 

  • van Henten EJ, Hemming J, van Tuijl BAJ, Kornet JG, Meuleman J, Bontsema J, van Os EA (2002) An autonomous robot for harvesting cucumbers in greenhouses. Auton Robot 13:241–258

    Article  Google Scholar 

  • van Henten EJ, van Tuijl BAJ, Hemming J, Kornet JG, Bontsema J, van Os EA (2003) Field test of an autonomous cucumber picking robot. Biosyst Eng 86:305–313

    Article  Google Scholar 

  • van Henten EJ, Bac CW, Hemming J, Edan Y (2013) Robotics in protected cultivation. In: Proceedings of the 4th IFAC conference on modelling and control in agriculture, Espoo, 27–30 Aug 2013

    Google Scholar 

  • Van Hoogstraten K, van de Zedde HJ (2014) Robot makes grafting and rose cutting faster and easier: three party cooperation delivers innovations. Greenhouses 3:38–39

    Google Scholar 

  • Vijayarangan S, Sodhi P, Kini P, Bourne J, Du S, Sun H, Poczos B, Apostolopoulos D, Wettergreen D (2018) High-throughput robotic phenotyping of energy sorghum crops. In: Proceedings of field and service robotics, pp 99–113

    Google Scholar 

  • Vroegindeweij BA, van Willigenburg LG, Groot Koerkamp PWG, van Henten EJ (2014) Path planning for autonomous collection of floor eggs. Biosyst Eng 121:186–199

    Article  Google Scholar 

  • Vroegindeweij BA, IJsselmuiden J, van Henten EJ (2016) Probabilistic localisation in highly repetitive environments: estimating a robot’s position in an aviary poultry house. Comput Electron Agric 124:303–317

    Article  Google Scholar 

  • Vroegindeweij BA, van Hell S, IJsselmuiden J, van Henten EJ (2018) Object discrimination in poultry housings using spectral reflectivity. Biosyst Eng 167:99–113

    Article  Google Scholar 

  • Ye Y, Wang Z, Jones D, He L, Taylor ME, Hollinger GA, Zhang Q (2017) Bin-dog: a robotic platform for bin management in orchards. Robotics 6:12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Kootstra .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kootstra, G., Bender, A., Perez, T., van Henten, E.J. (2020). Robotics in Agriculture. In: Ang, M., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics