Skip to main content

Physical Human-Robot Interaction

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics
  • 357 Accesses

Synonyms

(physical) Human-Robot Collaboration

Definition

The research discipline of intelligent, adaptive, and force-sensitive robotic systems, which purposefully and safely operate, respond, and interact with humans and the environment in a physical world.

Introduction and History

In recent decades, a fundamental paradigm shift has taken place in the field of robotics, both in research and in practice. This paradigm shift means evolving from classical and potentially dangerous position-controlled rigid robots performing basic pick-and-place tasks to a new generation of mechatronic soft robots which are able to perform complex manipulation and interaction tasks. Fundamental to the new approach was the human-centered design scheme involving novel robot mechanics and control (soft robotics), whereby possible injuries due to unintentional contacts (collisions) can be significantly reduced. The integration of human intentions and preferences into the design and algorithms of robots makes...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albu-Schäffer A, Ott C, Hirzinger G (2007) A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int J Robot Res 26(1):23–39

    Article  Google Scholar 

  • Bicchi A, Tonietti G (2004) Fast and soft-arm tactics: [robot arms design]. IEEE Robot Autom Mag 11(2):22–33

    Article  Google Scholar 

  • Burdet E et al (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862):446–449

    Article  Google Scholar 

  • Cheah C, Wang D (1998) Learning impedance control for robotic manipulators. IEEE Trans Robot Autom 14(3):452–465

    Article  Google Scholar 

  • Craig JJ, Raibert MH (1979) A systematic method for hybrid position/force control of a manipulator. IEEE Comput Softw Appl Conf 79:446–451

    Google Scholar 

  • Dahiya RS, Metta G, Valle M, Sandini G (2010) Tactile sensing—From humans to humanoids. IEEE Trans Robot 26(1):1–20

    Article  Google Scholar 

  • De Luca A et al (2006) Collision detection and safe reaction with the DLR-III lightweight manipulator arm. IEEE/RSJ Int Conf Intel Robot Sys

    Google Scholar 

  • Erlhagen W, Bicho E (2006) The dynamic neural field approach to cognitive robotics. J Neural Eng 3(3):R36

    Article  Google Scholar 

  • Haddadin S et al (2008) Collision detection and reaction: A contribution to safe physical human-robot interaction. IEEE/RSJ Int Conf Intel Robot Sys

    Google Scholar 

  • Haddadin S, Croft E (2016) Physical humanrobot interaction. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Cham, pp 1835–1874

    Chapter  Google Scholar 

  • Haddadin S, Haddadin S, Khoury A, Rokahr T, Parusel S, Burgkart R, Bicchi A, Albu-Schäffer A (2012) On making robots understand safety: embedding injury knowledge into control. Int J Robot Res 31:1578–1602

    Article  Google Scholar 

  • Haddadin S, De Luca A, Albu-Schäffer A (2017) Robot collisions: a survey on detection, isolation, and identification. IEEE Trans Robot 33(6):1292–1312

    Article  Google Scholar 

  • Henry P, Krainin M, Herbst E, Ren X, Fox D (2014) RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. Experimental robotics. Springer, Berlin, Heidelberg

    Google Scholar 

  • Hirzinger G, Albu-Schäeffer A (2008) Light-weight robots. Scholarpedia 3(4):3889

    Article  Google Scholar 

  • Hogan N (1985) Impedance control: an approach to manipulation: part I – theory, part II – implementation, part III – applications. J Dyn Syst Meas Control 107:1–24

    Article  Google Scholar 

  • Jung S, Hsia TC (1998) Neural network impedance force control of robot manipulator. IEEE Trans Ind Elec 45(3):451–461

    Article  Google Scholar 

  • Kelly R et al (1989) On adaptive impedance control of robot manipulators. IEEE Int Conf Robot Autom

    Book  Google Scholar 

  • Küehn J, Haddadin S (2016) An artificial robot nervous system to teach robots how to feel pain and reflexively react to potentially damaging contacts. IEEE Robot Autom Lett 2(1):72–79

    Article  Google Scholar 

  • Lawitzky M, Mörtl A, Hirche S (2010) Load sharing in human-robot cooperative manipulation. IEEE, 19th Inter Sym Robot Human Interactive Comms

    Google Scholar 

  • Sisbot EA, Alami R (2012) A human-aware manipulation planner. IEEE Trans Robot 28(5):1045–1057

    Article  Google Scholar 

  • Vanderborght B, et al (2013) Variable impedance actuators: a review. Robot Auto Sys 61(12):1601–1614

    Article  Google Scholar 

  • Zinn M, Khatib O, Roth B, Salisbury JK (2004) Playing it safe [human-friendly robots]. IEEE Robot Autom Mag 11(2):12–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Haddadin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haddadin, S. (2020). Physical Human-Robot Interaction. In: Ang, M., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_26-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics