Skip to main content

Robotics in Snow and Ice

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Abstract

NA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akers EL, Harmon HP, Stansbury RS, Agah A (2004) Design, fabrication, and evaluation of a mobile robot for polar environments. Int Geosci Remote Sens Symp (IGARSS) 1(C):109–112

    Google Scholar 

  • Apostolopoulos DS, Wagner MD, Shamah BN, Pedersen L, Shillcutt K, Whittaker WL (2000) Technology and field demonstration of robotic search for Antarctic meteorites. Int J Robot Res 19(11):1015–1032. https://doi.org/10.1177/02783640022067940

    Article  Google Scholar 

  • Bares JE, Wettergreen DS (1999) Dante II: technical description, results, and lessons learned. Int J Robot Res 18(7):621–649

    Article  Google Scholar 

  • Barfoot TD, Furgale PT, Stenning BE, Carle PJ, Enright JP, Lee P (2010) Devon Island as a proving ground for planetary rovers. Adv Intell Soft Comput 83:269–281

    Article  Google Scholar 

  • Barfoot T, Furgale P, Stenning B, Carle P, Thomson L, Osinski G, Daly M, Ghafoor N (2011) Field testing of a rover guidance, navigation, and control architecture to support a ground-ice prospecting mission to Mars. Robot Autonom Syst 59(6):472–488

    Article  Google Scholar 

  • Baril D, Grondin V, Deschenes SP, Laconte J, Vaidis M, Kubelka V, Gallant A, Giguere P, Pomerleau F (2020) Evaluation of Skid-Steering Kinematic Models for Subarctic Environments. In: 2020 17th Conference on Computer and Robot Vision (CRV). IEEE, pp 198–205

    Google Scholar 

  • Baril D, Deschênes SP, Gamache O, Vaidis M, LaRocque D, Laconte J, Kubelka V, Giguère P, Pomerleau F (2022) Kilometer-scale autonomous navigation in subarctic forests: challenges and lessons learned. Field Robot 2(1):1628–1660. https://doi.org/10.55417/fr.2022050

    Article  Google Scholar 

  • Barnes D, Gadd M, Murcutt P, Newman P, Posner I (2020) The Oxford radar RobotCar dataset: a radar extension to the Oxford RobotCar dataset. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp 6433–6438. https://doi.org/10.1109/ICRA40945.2020.9196884

  • Behar A, Matthews J, Carsey F, Jones J (2004) NASA/JPL Tumbleweed polar rover. In: 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720). IEEE, pp 388–395

    Google Scholar 

  • Bonanno G, Fichera A, Moriconi C, Erba RD, Papalia B, Bonanno G, Fichera A, Moriconi C, Erba RD, Papalia B (2003) New technology perspectives for the autonomous and teleoperated vehicles: the experience of Antartica robots and the expected spin-off. In: International Workshop on Robotics and Mems for Vehicle Systems

    Google Scholar 

  • Broggi A, Fascioli A (2002) Artificial vision in extreme environments for snowcat tracks detection. IEEE Trans Intell Transp Syst 3(3):162–172

    Article  Google Scholar 

  • Charron N, Phillips S, Waslander SL (2018) De-noising of lidar point clouds corrupted by snowfall. In: Proceedings – 2018 15th Conference on Computer and Robot Vision, CRV 2018, pp 254–261

    Google Scholar 

  • Foessel A, Chheda S, Apostolopoulos D (1999) Short-range millimeter-wave radar perception in a polar environment. In: Field and Service Robotics Conference

    Google Scholar 

  • Gifford CM, Akers EL, Stansbury RS, Agah A (2009) Mobile robots for polar remote sensing. In: The path to autonomous robots. Springer, pp 1–22. https://doi.org/10.1007/978-0-387-85774-9_1

    Google Scholar 

  • Hoffman AO, Christian Steen-Larsen H, Christianson K, Hvidberg C (2019) A low-cost autonomous rover for polar science. Geosci Instrum Methods Data Syst 8(1):149–159

    Article  Google Scholar 

  • Hong Z, Petillot Y, Wang S (2020) RadarSLAM: radar based Large-Scale SLAM in All Weathers. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 5164–5170. https://doi.org/10.1109/IROS45743.2020.9341287

  • Häusler R (1995) Ski sickness. Acta Oto-Laryngol 115(1):1–2

    Article  Google Scholar 

  • Jet Propulsion Laboratory, NASA (2004). URL https://www.jpl.nasa.gov/news/tumbleweed-rover-goes-on-a-roll-at-south-pole. press release, Date accessed: 12 Feb 2022

  • Jouvet G, Stastny T, Oettershagen P, van Dongen E, Hugentobler M, Mantel T, Melzer A, Weidmann Y, Funk M, Siegwart R (2018) Sun2Ice: monitoring calving glaciers from solar-powered UAVs. In: EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, p 11682

    Google Scholar 

  • Lever JH, Shoop SA, Bernhard RI (2009) Design of lightweight robots for over-snow mobility. J Terramech 46(3):67–74. https://doi.org/10.1016/j.jterra.2008.11.003

    Article  Google Scholar 

  • Lever JH, Delaney AJ, Ray LE, Trautmann E, Barna LA, Burzynski AM (2013) Autonomous GPR Surveys using the Polar Rover Yeti. J Field Robot 30(2):194–215. https://doi.org/10.1002/rob.21445

    Article  Google Scholar 

  • Moorehead S, Simmons R, Apostolopoulos D, Whittaker WR (1999) Autonomous navigation field results of a planetary analog robot in Antarctica. In: Proceedings of International Symposium on Artificial Intelligence

    Google Scholar 

  • Morad SD, Nash J, Higa S, Smith R, Parness A, Barnard K (2020) Improving visual feature extraction in glacial environments. IEEE Robot Autom Lett 5(2):385–390

    Article  Google Scholar 

  • Paton M, Pomerleau F, MacTavish K, Ostafew CJ, Barfoot TD (2017) Expanding the Limits of Vision-based Localization for Long-term Route-following Autonomy. J Field Robot 34(1):98–122

    Article  Google Scholar 

  • Pavlov AL, Karpyshev PA, Ovchinnikov GV, Oseledets IV, Tsetserukou D (2019) IceVisionSet: lossless video dataset collected on Russian winter roads with traffic sign annotations. In: International Conference on Robotics and Automation (ICRA), pp 9597–9602

    Google Scholar 

  • Pitropov M, Garcia DE, Rebello J, Smart M, Wang C, Czarnecki K, Waslander S (2021) Canadian adverse driving conditions dataset. Int J Robot Res 40(4–5):681–690. https://doi.org/10.1177/0278364920979368

    Article  Google Scholar 

  • Ray L, Jordan M, Arcone SA, Kaluzienski LM, Walker B, Koons PO, Lever J, Hamilton G (2020) Velocity field in the McMurdo shear zone from annual ground penetrating radar imaging and crevasse matching. Cold Reg Sci Technol 173:103023. https://doi.org/10.1016/j.coldregions.2020.103023

    Article  Google Scholar 

  • Reid W, Emanuel B, Chamberlain-Simon B, Karumanchi S, Meirion-Griffith G (2020) Mobility mode evaluation of a wheel-on-limb rover on glacial ice analogous to europa terrain. In: 2020 IEEE Aerospace Conference, pp 1–9. https://doi.org/10.1109/AERO47225.2020.9172805

  • Revuelto J, López-Moreno JI, Alonso-González E (2021) Light and shadow in mapping alpine snowpack with unmanned aerial vehicles in the absence of ground control points. Water Resour Res 57(6):1–22. https://doi.org/10.1029/2020WR028980

    Article  Google Scholar 

  • Shillcutt K, Apostolopoulos D, Whittaker W (1999) Patterned search planning and testing for the robotic antarctic meteorite search. Meeting on Robotics and Remote Systems for the Nuclear Industry, pp 1–13

    Google Scholar 

  • Stansbury RS, Akers EL, Harmon HP, Agah A (2004) Survivability, mobility, and functionality of a rover for radars in polar regions. Int J Control Autom Syst 2(3):343–353

    Google Scholar 

  • Trautmann E, Ray L, Lever J (2009) Development of an autonomous robot for ground penetrating radar surveys of polar ice. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1685–1690. https://doi.org/10.1109/IROS.2009.5354290

  • Wettergreen D, Thorpe C, Whittaker R (1993) Exploring Mount Erebus by walking robot. Robot Auton Syst 11(3–4):171–185. https://doi.org/10.1016/0921-8890(93)90022-5

    Article  Google Scholar 

  • Wettergreen D, Pangels H, Bares J (1995) Behavior-based gait execution for the Dante II walking robot. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol 3. IEEE Computer Society Press, pp 274–279

    Google Scholar 

  • Williams S, Howard A (2009) Developing monocular visual pose estimation for Arctic environments. J Field Robot 27(2):145–157. https://doi.org/10.1002/rob

    Google Scholar 

  • Williams S, Howard AM (2010) Towards visual Arctic Terrain assessment. In: Field and service robotics. Springer tracts in advanced robotics, vol 62. Springer, pp 91–100

    Google Scholar 

  • Williams RM, Ray LE, Lever JH, Burzynski AM (2014) Crevasse detection in ice sheets using ground penetrating radar and machine learning. IEEE J Sel Top Appl Earth Obs Remote Sens 7(12):4836–4848. https://doi.org/10.1109/JSTARS.2014.2332872

    Article  Google Scholar 

  • Zhou M, Bachmayer R, DeYoung B (2019) Mapping the underside of an iceberg with a modified underwater glider. J Field Robot 36(6):1102–1117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Pomerleau .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pomerleau, F. (2023). Robotics in Snow and Ice. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_223-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_223-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics