Skip to main content

Underwater Communication

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Synonyms

Underwater acoustic communications; Underwater acoustic modems; Underwater communication networks; Underwater optical communications; Underwater optical modems

Definition

Underwater communications refer to wireless techniques for sending and receiving data below water. Messages can be transmitted either point to point or through a network of multiple nodes. Nodes can be mobile (e.g., underwater vehicles, autonomous or remotely operated) and/or static (e.g., submerged buoys).

Overview

In any aquatic environment, transmission of electromagnetic waves is limited to ranges of few tens of meters at the best. As a consequence, underwater systems, and marine robots in particular, do not have access to the wealth of communications, ranging, and localization services offered to their aerial and terrestrial counterparts (e.g., satellite positioning, high-bandwidth radio-frequency communications, laser ranging, etc.). The only communication modality that can be used by marine robots with...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abreu P, Morishita H, Pascoal A, Ribeiro J, Silva H (2016) Marine vehicles with streamers for geotechnical surveys: modeling, positioning, and control. IFAC-PapersOnLine 49 (23): 458–464. ISSN 2405-8963. https://doi.org/10.1016/j.ifacol.2016.10.448. http://www.sciencedirect.com/science/article/pii/S2405896316320365. 10th IFAC conference on control applications in marine systemsCAMS 2016

  • Ainslie M, McColm J (1998) A simplified formula for viscous and chemical absorption in sea water. J Acoust Soc Am 103: 1671–1672

    Article  Google Scholar 

  • Alves J, Petroccia R, Potter JR (2014) MPR: multi-point relay protocol for underwater acoustic networks. In: Proceedings of the 9th ACM international conference on underwater networks and systems, WUWNet’14, Rome, 12–14 Nov 2014

    Google Scholar 

  • Alves J, Petroccia R, Grati A, Jourden N, Vitagliano G, Santos Garcia P, Nieves Prieto JD, Borges De Sousa J (2018) A paradigm shift for interoperable submarine rescue operations: the usage of JANUS during the dynamic monarch 2017 exercise. In: Proceedings of MTS/IEEE OCEANS 2018, 28–31 May 2018, pp 1–7. https://doi.org/10.1109/OCEANSKOBE.2018.8559465

  • Basagni S, Petrioli C, Petroccia R, Spaccini D (2015) CARP: a channel-aware routing protocol for underwater acoustic wireless networks. Ad Hoc Netw 34: 92–104. ISSN 1570-8705. https://doi.org/10.1016/j.adhoc.2014.07.014

  • Basagni S, Valerio VD, Gjanci P, Petrioli C (2017) Finding MARLIN: exploiting multi-modal communications for reliable and low-latency underwater networking. In: Proceedings of the 2017 IEEE conference on computer communications, INFOCOM’17, Atlanta, 1–4 May 2017. IEEE, pp 1–9. https://doi.org/10.1109/INFOCOM.2017.8057132

  • Benjamin MR, Schmidt H, Newman PM, Leonard JJ (2010) Nested autonomy for unmanned marine vehicles with MOOS-IvP. J Field Robot 27 (6): 834–875. https://doi.org/10.1002/rob.20370

    Article  Google Scholar 

  • Bowen AD, Jakuba MV, Farr NE, Ware J, Taylor C, Gomez-Ibanez D, Machado CR, Pontbriand C An un-tethered ROV for routine access and intervention in the deep sea. In: 2013 OCEANS – San Diego, Sept 2013, pp 1–7. https://doi.org/10.23919/OCEANS.2013.6741383

  • Caiti A, Crisostomi E, Munafò A (2010) Physical characterization of acoustic communication channel properties in underwater mobile sensor networks. In: Hailes S, Sicari S, Roussos G (eds) Sensor systems and software. S-Cube 2009. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol 24. Springer, pp 111–125

    Google Scholar 

  • Caiti A, Calabrò V, Munafò A, Dini G, Lo Duca A (2013) Mobile underwater sensor networks for protection and security: field experience at the UAN11 experiment. J Field Robot 30 (2): 237–253

    Article  Google Scholar 

  • Chen K, Ma M, Cheng E, Yuan F, Su W (2014) A survey on MAC protocols for underwater wireless sensor networks. IEEE Commun Surv Tutor 16 (3): 1433–1447

    Article  Google Scholar 

  • Chirdchoo N, Soh W-S, Chua KC (2007) Aloha-based MAC protocols with collision avoidance for underwater acoustic networks. In: Proceedings of the 26th IEEE international conference on computer communications, INFOCOM’07, Anchorage, 6–12 May 2007, pp 2271–2275

    Google Scholar 

  • Cho H, Chen C, Shih TK, Chao H (2014) Survey on underwater delay/disruption tolerant wireless sensor network routing. IET Wirel Sens Syst 4 (3): 112–121. ISSN 2043-6386. https://doi.org/10.1049/iet-wss.2013.0118

  • Cossu G, Sturniolo A, Messa A, Grechi S, Costa D, Bartolini A, Scaradozzi D, Caiti A, Ciaramella E (2018) Sea-trial of optical ethernet modems for underwater wireless communications. IEEE J Lightwave Technol 36: 5371–5380

    Article  Google Scholar 

  • Demirors E, Sklivanitis G, Santagati GE, Melodia T, Batalama SN (2018) A high-rate software-defined underwater acoustic modem with real-time adaptation capabilities. IEEE Access 6: 18602–18615

    Article  Google Scholar 

  • Dol HS, Casari P, Zwan TVD, Otnes R (2017) Software-defined underwater acoustic modems: historical review and the NILUS approach. IEEE J Ocean Eng 42 (3): 722–737

    Article  Google Scholar 

  • Farr N, Chave A, Freitag L, Preisig J, White S, Yoerger D, Sonnichsen F (2006) Optical modem technology for seafloor observatories. In: Proceedings of IEEE OCEANS 2006, Boston, 18–21 Sept 2006

    Google Scholar 

  • Farr N, Bowen A, Ware J, Pontbriand C, Tivey M (2010) An integrated, underwater optical/acoustic communications system. In: OCEANS’10 IEEE SYDNEY, May 2010, pp 1–6. https://doi.org/10.1109/OCEANSSYD.2010.5603510

    Google Scholar 

  • Ferri G, Djapic V (2013) Adaptive mission planning for cooperative autonomous maritime vehicles. In: 2013 IEEE international conference on robotics and automation, May 2013, pp 5586–5592. https://doi.org/10.1109/ICRA.2013.6631379

  • Ferri G, Munafò A, LePage KD (2018) An autonomous underwater vehicle data-driven control strategy for target tracking. IEEE J Ocean Eng 43 (2): 323–343. ISSN 0364-9059. https://doi.org/10.1109/JOE.2018.2797558

  • Freitag L, Johnson M, Grund M, Singh S, Preisig J Integrated acoustic communication and navigation for multiple UUVs. In: MTS/IEEE Oceans 2001. An ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), vol 4, Nov 2001, pp 2065–2070. https://doi.org/10.1109/OCEANS.2001.968315

  • Gjanci P, Petrioli C, Basagni S, Phillips CA, Ladislau B, Turgut D (2018) Path finding for maximum value of information in multi-modal underwater wireless sensor networks. IEEE Trans Mobile Comput 17 (2): 404–418

    Article  Google Scholar 

  • Han G, Jiang J, Bao N, Wan L, Guizani M (2015) Routing protocols for underwater wireless sensor networks. IEEE Commun Mag 53 (11): 72–78. ISSN 0163-6804. https://doi.org/10.1109/MCOM.2015.7321974

  • Hovem J (2010) Marine acoustics. Peninsula Publishing. ISBN 978-0932146656

    Google Scholar 

  • Jiang S (2018) State-of-the-art medium access control (MAC) protocols for underwater acoustic networks: a survey based on a MAC reference model. IEEE Commun Surv Tutor 20 (1): 96–131

    Article  Google Scholar 

  • Lal C, Petroccia R, Conti M, Alves J (2016) Secure underwater acoustic networks: current and future research directions. In: Proceedings of the 3rd IEEE OES international conference on underwater communications and Networking, UComms16, Lerici, 30 Aug–1 Sept 2016

    Google Scholar 

  • Lal C, Petroccia R, Pelekanakis K, Conti M, Alves J (2017) Towards the development of secure underwater acoustic networks. IEEE J Ocean Eng 42 (4): 1075–1087

    Article  Google Scholar 

  • Leonard NE, Paley DA, Davis RE, Fratantoni DM, Lekien F, Zhang F (2010) Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J Field Robot 27 (6): 718–740. https://doi.org/10.1002/rob.20366

    Article  Google Scholar 

  • Lermusiaux PF, Lolla T, Haley PJ Jr, Yigit K, Ueckermann MP, Sondergaard T, Leslie WG (2016) Science of autonomy: time-optimal path planning and adaptive sampling for swarms of ocean vehicles. In: Dhanak MR, Xiros NI (eds) Springer handbook of ocean engineering. Springer International Publishing, Cham, pp 481–498. ISBN 978-3-319-16649-0. https://doi.org/10.1007/978-3-319-16649-0_21

    Chapter  Google Scholar 

  • Lurton X (2010) Introduction to underwater acoustics. Springer-Praxis. ISBN 978-3-540-78480-7

    Book  Google Scholar 

  • Melodia T, Khulandjian H, Kuo L-C, Demirors E (2013) Advances in underwater acoustic networking. In Basagni S, Conti M, Giordano S, Stojmenovic I (eds) Mobile ad hoc networking: cutting edge directions, chapter 23. Wiley, Hoboken, pp 804–852

    Google Scholar 

  • Munafò A, Ferri G (2017) An acoustic network navigation system. J Field Robot 34 (7): 1332–1351

    Article  Google Scholar 

  • Munafò A, Simetti E, Turetta A, Caiti A, Casalino G (2011) Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach. Ocean Dyn 61 (11): 1981–1994. ISSN 1616-7228. https://doi.org/10.1007/s10236-011-0464-x

  • Munafò A, Sliwka J, Alves J (2015) Dynamic placement of a constellation of surface buoys for enhanced underwater positioning. In: OCEANS 2015 – Genova, 18–21 May 2015. IEEE, pp 1–6

    Google Scholar 

  • Noh Y, Lee U, Wang P, Choi BSC, Gerla M (2013) VAPR: void-aware pressure routing for underwater sensor networks. IEEE Trans Mobile Comput 12 (5): 895–908

    Article  Google Scholar 

  • Paull L, Saeedi S, Seto M, Li H (2014) AUV navigation and localization: a review. IEEE J Ocean Eng 39 (1): 131–149

    Article  Google Scholar 

  • Peleato B, Stojanovic M (2007) Distance aware collision avoidance protocol for ad-hoc underwater acoustic sensor networks. IEEE Commun Lett 11 (12): 1025–1027

    Article  Google Scholar 

  • Pelekanakis K, Baggeroer AB (2011) Exploiting space–time–frequency diversity with MIMO–OFDM for underwater acoustic communications. IEEE J Ocean Eng 36 (4): 502–513. ISSN 0364-9059. https://doi.org/10.1109/JOE.2011.2165758

  • Pelekanakis K, Cazzanti L (2018) On adaptive modulation for low SNR underwater acoustic communications. In: MTS/IEEE OCEANS’18, Charleston, 22–25 Oct 2018

    Google Scholar 

  • Petroccia R, Alves J, Zappa G (2017) JANUS-based services for operationally relevant underwater applications. IEEE J Ocean Eng 44 (4): 994–1006

    Article  Google Scholar 

  • Petroccia R, Śliwka J, Grati A, Grandi V, Guerrini P, Munafò A, Stipanov M, Alves J, Been R (2018a) Deployment of a persistent underwater acoustic sensor network: the CommsNet17 experience. In: Proceedings of MTS/IEEE OCEANS 2018, Kobe, 28–31 May 2018

    Google Scholar 

  • Petroccia R, Zappa G, Furfaro T, Alves J, D’Amaro L (2018b) Development of a software-defined and cognitive communications architecture at CMRE. In: MTS/IEEE OCEANS’18, Charleston, 22–25 Oct 2018

    Google Scholar 

  • Plate R, Wakayama C (2015) Utilizing kinematics and selective sweeping in reinforcement learning-based routing algorithms for underwater networks. Ad Hoc Netw 34 (C): 105–120. ISSN 1570-8705. https://doi.org/10.1016/j.adhoc.2014.09.012

  • Pompili D, Melodia T, Akyildiz IF (2009) A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Trans Wirel Commun 8 (4): 1899–1909

    Article  Google Scholar 

  • Pontbriand C, Farr N, Hansen J, Kinsey J, Pelletier L, Ware J (2015) Wireless data harvesting using the AUV sentry and WHOI optical modem. In: Proceedings of MTS/IEEE OCEANS 2015, Washington, DC, 19–22 Oct 2015

    Google Scholar 

  • Potter J, Alves J, Green D, Zappa G, Nissen I, McCoy K (2014) The JANUS underwater communications standard. In: Proceedings of the 2nd IEEE OES international conference on underwater communications and networking, UComms14, Sestri Levante, 3–5 Sept 2014

    Google Scholar 

  • Sendra S, Lloret J, Jimenez JM, Parra L (2016) Underwater acoustic modems. IEEE Sens J 16 (11): 4063–4071. ISSN 1530-437X. https://doi.org/10.1109/JSEN.2015.2434890

  • Śliwka J, Petroccia R, Munafò A, Djapic V (2017) Experimental evaluation of Net-LBL: an acoustic network-based navigation system. In: Proceedings of MTS/IEEE OCEANS 2017, Aberdeen, 19–22 June 2017, pp 1–9

    Google Scholar 

  • Stojanovic M (2007) On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mobile Comput Commun Rev (MC2R) 11: 34–43

    Google Scholar 

  • van Walree PA, Leus G (2009) Robust underwater telemetry with adaptive turbo multiband equalization. IEEE J Ocean Eng 34 (4): 645–655

    Article  Google Scholar 

  • Vermeij A, Munafò A (2015) A robust, opportunistic clock synchronization algorithm for ad hoc underwater acoustic networks. IEEE J Ocean Eng 40 (4): 841–852. ISSN 0364-9059. https://doi.org/10.1109/JOE.2015.2469955

  • Yackoski J, Shen C UW-FLASHR: achieving high channel utilization in a time-based acoustic MAC protocol. In: Proceedings of the third ACM international workshop on underwater networks, WUWNet’08, San Francisco, 15 Sept 2008. ACM, pp 59–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Caiti .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Caiti, A., Munafò, A., Petroccia, R. (2020). Underwater Communication. In: Ang, M., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_14-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics