Skip to main content

Relativistic Explicit Correlation: Problemsand Solutions

  • Reference work entry
  • First Online:

Abstract

The fundamental problems inherent in relativistic explicit correlation are highlighted, with practical suggestions for guiding future development of relativistic explicitly correlated wave function methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kato T (1957) On the eigenfunctions of many-particle systems in quantum mechanics. Commun Pure Appl Math 10:151

    Article  Google Scholar 

  2. Pack RT, Brown WB (1966) Cusp conditions for molecular wavefunctions. J Chem Phys 45:556

    Article  CAS  Google Scholar 

  3. Hylleraas EA (1929) Neue berechnung der energie des heliums im grundzustande, sowie des tiefsten terms von ortho-helium. Z Physik 54:347

    Article  CAS  Google Scholar 

  4. Kutzelnigg W (1985) r 12-dependent terms in the wave function as closed sums of partial wave amplitudes for large l. Theor Chim Acta 68:445

    Article  CAS  Google Scholar 

  5. Klopper W, Manby FR, Ten-no S, Valeev EF (2006) R12 methods in explicitly correlated molecular electronic structure theory. Int Rev Phys Chem 25:427

    Article  CAS  Google Scholar 

  6. Shiozaki T, Hirata S, Valeev EF (2010) Explicitly correlated coupled-cluster methods. Ann Rev Comput Chem 5:131

    Google Scholar 

  7. Hättig C, Klopper W, Köhn A, Tew DP (2012) Explicitly correlated electrons in molecules. Chem Rev 112:4

    Article  Google Scholar 

  8. Kong L, Bischoff FA, Valeev EF (2012) Explicitly correlated R12/F12 methods for electronic structure. Chem Rev 112:75

    Article  CAS  Google Scholar 

  9. Kutzelnigg W, Klopper W (1991) Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory. J Chem Phys 94:1985

    CAS  Google Scholar 

  10. Ten-no S (2004) Initiation of explicitly correlated Slater-type geminal theory. Chem Phys Lett 398:56

    Article  CAS  Google Scholar 

  11. Salomonson S, Öster P (1989) Relativistic all-order pair functions from a discretized single-particle Dirac Hamiltonian. Phys Rev A 40:5548

    Article  CAS  Google Scholar 

  12. Ottschofski E, Kutzelnigg W (1997) Direct perturbation theory of relativistic effects for explicitly correlated wave functions: the He isoelectronic series. J Chem Phys 106:6634

    Article  CAS  Google Scholar 

  13. Halkier A, Helgaker T, Klopper W, Olsen J (2000) Basis-set convergence of the two-electron Darwin term. Chem Phys Lett 319:287

    Article  CAS  Google Scholar 

  14. Kutzelnigg W (2008) Relativistic corrections to the partial wave expansion of two-electron atoms. Int J Quantum Chem 108:2280

    Article  CAS  Google Scholar 

  15. Hill RN (1985) Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method. J Chem Phys 83:1173

    Article  CAS  Google Scholar 

  16. Li Z, Shao S, Liu W (2012) Relativistic explicit correlation: coalescence conditions and practical suggestions. J Chem Phys 136:144117

    Article  Google Scholar 

  17. Schwartz C (1962) Importance of angular correlations between atomic electrons. Phys Rev 126:1015

    Article  CAS  Google Scholar 

  18. Schwartz C (1963) Estimating convergence rates of variational calculations. Methods Comput Phys 2:241

    Google Scholar 

  19. Kutzelnigg W (2002) Perturbation theory of relativistic effects. In: Schwerdtfeger P (ed) Relativistic electronic structure theory. Part 1. Fundamentals. Elsevier, Amsterdam, p 664

    Google Scholar 

  20. Liu W (2012) Perspectives of relativistic quantum chemistry: the negative energy cat smiles. Phys Chem Chem Phys 14:35

    Article  Google Scholar 

  21. Liu W, Lindgren I (2013) Going beyond “no-pair relativistic quantum chemistry”. J Chem Phys 139:014108

    Article  Google Scholar 

  22. Liu W (2014) Advances in relativistic molecular quantum mechanics. Phys Rep 537:59

    Article  Google Scholar 

  23. Brown GE, Ravenhall DG (1951) On the interaction of two electrons. Proc R Soc A 208:552

    Article  CAS  Google Scholar 

  24. Gilbert TL (1963) Interpretation of the rapid convergence of correlated wave functions. Rev Mod Phys 35:491

    Article  CAS  Google Scholar 

  25. Kutzelnigg W (1989) Generalization of Kato’s cusp conditions to the relativistic case. In: Mukherjee D (ed) Aspects of many-body effects in molecules and extended systems. Lecture notes in chemistry, vol 50. Springer, Berlin, p. 353

    Google Scholar 

  26. Kałokowska A (1997) Explicitly correlated trial functions in relativistic variational calculations. J Phys B: At Mol Opt Phys 30:2773

    Article  Google Scholar 

  27. Pestka G, Bylicki M, Karwowski J (2007) Complex coordinate rotation and relativistic Hylleraas-CI: helium isoelectronic series. J Phys B: At Mol Opt Phys 40:2249

    Article  CAS  Google Scholar 

  28. Pestka G, Bylicki M, Karwowski J (2012) Geminals in Dirac–Coulomb Hamiltonian eigenvalue problem. J Math Chem 50:510

    Article  CAS  Google Scholar 

  29. Nakatsuji H, Nakashima H (2005) Analytically solving the relativistic Dirac-Coulomb equation for atoms and molecules. Phys Rev Lett 95:050407

    Article  Google Scholar 

  30. Nakatsuka Y, Nakajima T, Nakata M, Hirao K (2010) Relativistic quantum Monte Carlo method using zeroth-order regular approximation Hamiltonian. J Chem Phys 132:054102

    Article  Google Scholar 

  31. Nakatsuka Y, Nakajima T, Hirao K (2010) Electron-nucleus cusp correction scheme for the relativistic zeroth-order regular approximation quantum Monte Carlo method. J Chem Phys 132:174108

    Article  Google Scholar 

  32. Bischoff FA, Klopper W (2010) Second-order electron-correlation and self-consistent spin-orbit treatment of heavy molecules at the basis-set limit. J Chem Phys 132:094108

    Article  Google Scholar 

  33. Bischoff FA, Valeev EF, Klopper W, Janssen CL (2010) Scalar relativistic explicitly correlated R12 methods. J Chem Phys 132:214104

    Article  Google Scholar 

  34. Valeev EF (2004) Improving on the resolution of the identity in linear R12 ab initio theories. Chem Phys Lett 395:190

    Article  CAS  Google Scholar 

  35. Ten-no S, Yamaki D (2012) Communication: explicitly correlated four-component relativistic second-order Møller-Plesset perturbation theory. J Chem Phys 137:131101

    Article  Google Scholar 

  36. Ten-no S (2004) Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. J Chem Phys 121:117

    Article  CAS  Google Scholar 

  37. Kedžuch S, Milko M, Noga J (2005) Alternative formulation of the matrix elements in MP2-R12 theory. Int J Quantum Chem 105:929

    Google Scholar 

  38. Stanton RE, Havriliak S (1984) Kinetic balance: a partial solution to the problem of variational safety in Dirac calculations. J Chem Phys 81:1910

    Article  CAS  Google Scholar 

  39. Dyall KG (1994) Second-order Møller-Plesset perturbation theory for molecular Dirac-Hartree-Fock wavefunctions. Theory for up to two open-shell electrons. J Chem Phys 100:2118

    Google Scholar 

  40. Liu W (2010) Ideas of relativistic quantum chemistry. Mol Phys 108:1679

    Article  CAS  Google Scholar 

  41. Li Z, Xiao Y, Liu W (2012) On the spin separation of algebraic two-component relativistic Hamiltonians. J Chem Phys 137:154114

    Article  Google Scholar 

  42. Li Z, Xiao Y, Liu W (2014) On the spin separation of algebraic two-component relativistic Hamiltonians: molecular properties. J Chem Phys 141:054111

    Article  Google Scholar 

Download references

Acknowledgements

The research of this work was supported by grants from the National Natural Science Foundation of China (Project Nos. 21033001, 21273011, 21290192, and 11471025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Liu, W., Shao, S., Li, Z. (2017). Relativistic Explicit Correlation: Problemsand Solutions. In: Liu, W. (eds) Handbook of Relativistic Quantum Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40766-6_9

Download citation

Publish with us

Policies and ethics