Skip to main content

Relativistic Quantum Chemistry for Chemical Identification of the Superheavy Elements

  • Reference work entry
  • First Online:
Handbook of Relativistic Quantum Chemistry

Abstract

Production and investigation of properties of superheavy elements (SHEs) belong to the most fundamental areas of physical science. They seek to probe the uppermost reaches of the periodic table of the elements where the nuclei are extremely unstable and relativistic effects on the electron shells are increasingly strong. Theoretical chemical research in this area is very important. Due to experimental restrictions, it is often the only source of useful chemical information. It enables one to predict the behavior of the heaviest elements in the sophisticated and demanding experiments with single atoms and to interpret their results. Spectacular developments in the relativistic quantum theory and computational algorithms in the last few decades allowed for accurate calculations of electronic structures and properties of SHE and their compounds. Results of those investigations, particularly those related to the experimental research, are overviewed in this chapter. The role of relativistic effects is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schädel M, Shaughnessy D (eds) (2014) The chemistry of the superheavy elements, 2nd edn. Springer, Heidelberg

    Google Scholar 

  2. Moody KJ (2014) Synthesis of superheavy elements. In: Schädel M, Shaughnessy D (eds) The chemistry of the superheavy elements, 2nd edn. Springer, Heidelberg, pp 1–82

    Chapter  Google Scholar 

  3. Oganessian YuTs (2011) Synthesis of the heaviest elements in48Ca-induced reactions. Radiochim Acta 99:429–440

    Article  Google Scholar 

  4. http://www.IUPAC.org: Discovery and assignment of elements with atomic numbers 113, 115, 117 and 118, 30 Dec 2015; Update 21 Jan 2016: technical reports available

  5. Türler A, Pershina V (2013) Advances in the production and chemistry of the heaviest elements. Chem Rev 113:1237–1312

    Article  Google Scholar 

  6. Fricke B (1975) Superheavy elements. A prediction of their chemical and physical properties. Struct Bond 21:89–144

    Article  CAS  Google Scholar 

  7. Seaborg GT (1996) Evolution of the modern periodic table. J Chem Soc Dalton Trans 3899–3907

    Google Scholar 

  8. Hoffman DC, Lee DM, Pershina V (2006) Transactinide elements and future elements. In: Morss LR, Edelstein NM, Fuger J (ed) The chemistry of the actinide and transactinide elements, 3rd edn. Springer, Dordrecht, Ch 14, pp 1652–1752

    Chapter  Google Scholar 

  9. Pershina V (2014) Theoretical chemistry of the heaviest elements. In: Schädel M, Shaughnessy D (eds) The chemistry of the superheavy elements, 2nd edn. Springer, Heidelberg, pp 135–240

    Chapter  Google Scholar 

  10. Schwerdtfeger P, Seth M (1998) Relativistic effects on the superheavy elements. In: von Rague Schleyer P (ed) Encyclopedia on calculational chemistry, vol 4. Wiley, New York, pp 2480–2499

    Google Scholar 

  11. Pershina V (2011) Relativistic electronic structure studies on the heaviest elements. Radiochim Acta 99:459–476

    Article  CAS  Google Scholar 

  12. Desclaux JP (1973) Relativistic Dirac-Fock expectation values for atoms with Z=1 to Z=120. At Data Nucl Data Tables 12:311–386

    Article  CAS  Google Scholar 

  13. Eliav E, Kaldor U (2002) Four-component electronic structure methods. In: Schwerdtfeger P (ed) Relativistic electronic structure theory, Parts I and 2. Elsevier, Amsterdam, Part II, pp 279–350

    Google Scholar 

  14. Pyykkö P, Tokman M, Labzowsky LN (1998) Estimated valence-level Lamb shifts for group 1 and group 11 metal atoms. Phys Rev A 57:R689–692

    Article  Google Scholar 

  15. Goidenko I, Labsowsky L, Eliav E, Kaldor U, Pyykkö P (2003) QED corrections to the binding energy of the eka-radon (Z=118) negative ion. Phys Rev A 67:020102(R)

    Google Scholar 

  16. Thierfelder C, Schwerdtfeger P (2010) Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms. Phys Rev A 82:062503

    Article  Google Scholar 

  17. Zvara I (2008) The inorganic radiochemistry of heavy elements. Springer, Berlin

    Book  Google Scholar 

  18. Gäggeler HW, Türler A (2014) Gas-phase chemistry of superheavy elements. In: Schädel M, Shaughnessy D (eds) The chemistry of the superheavy elements, 2nd edn. Springer, Heidelberg, pp 415–484; Türler A, Gregorich KE (2003) Experimental techniques. Ibid: pp 261–308; also In: Schädel M (ed) The chemistry of superheavy elements, 1st edn. Kluwer Academic Publishers, Dordrecht, p 318

    Chapter  Google Scholar 

  19. Kratz JV, Nagame J (2014) Liquid-phase chemistry of superheavy elements. In: Schädel M, Shaughnessy D (eds) The chemistry of the superheavy elements, 2nd edn. Springer, Heidelberg, pp 309–374

    Chapter  Google Scholar 

  20. Schwerdtfeger P (ed) (2002) Relativistic electronic structure theory. Parts I and 2. Elsevier, Amsterdam

    Google Scholar 

  21. Barysz M, Ishikawa Y (ed) Relativistic methods for chemists. Springer, Dordrecht (2010)

    Book  Google Scholar 

  22. Sucher J (1980) Foundation of the relativistic theory of many-electron atoms. Phys Rev A 22:348–362

    Article  CAS  Google Scholar 

  23. Liu W (2014) Advances in relativistic molecular quantum mechanics. Phys Rep 537:59–89

    Article  Google Scholar 

  24. Visscher L (2002) Post-Dirac-Fock methods. In: Schwerdtfeger P (ed) Relativistic electronic structure theory, Part I. Elsevier, Amsterdam, pp 291–331

    Chapter  Google Scholar 

  25. Saue T (2002) Post Dirac-Fock-methods-properties. In: Schwerdtfeger P (ed) Relativistic electronic structure theory, Part I. Elsevier, Amsterdam, pp 332–397

    Chapter  Google Scholar 

  26. DIRAC, a relativistic ab initio electronic structure program, written by Jensen AaHJ, Saue T, Visscher L et al. http://dirac.chem.sdu.dk

  27. Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of hellium. Ann Phys 82:89–155

    Article  CAS  Google Scholar 

  28. Kutzelnig W, Liu W (2005) Quasirelativistic theory equivalent to fully relativistic theory. J Chem Phys 123:241102-4

    Article  Google Scholar 

  29. Liu W (2010) Ideas of relativistic quantum theory. Mol Phys 108:1679–1706

    Article  CAS  Google Scholar 

  30. Liu W, Peng D (2009) Exact two-component Hamiltonian revisitred. J Chem Phys 131:031104-4

    Article  Google Scholar 

  31. Ilias M, Saue T (2007) An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. J Chem Phys 126:064102-9

    Article  Google Scholar 

  32. Barysz M (2010) Two-component relativistic theories. In: Barysz M, Ishikawa Y (ed) Relativistic methods for chemists. Springer, Dordrecht, pp 165–190

    Chapter  Google Scholar 

  33. Dolg M (2002) Relativistic effective core potentials. In: Schwerdtfeger P (ed) Relativistic electronic structure theory, Part 1. Elsevier, Amsterdam, pp 793-862

    Chapter  Google Scholar 

  34. Schwerdtfeger P (2011) The pseudopotential approximation in electronic structure theory. Chem Phys Chem 12:3143–3155

    CAS  Google Scholar 

  35. Lee YS (2002) Two-component relativistic effective core potential calculations for molecules. In: Schwerdtfeger P (ed) Relativistic electronic structure theory, Part II. Elsevier, Amsterdam, pp 352–416

    Google Scholar 

  36. Nash CS, Bursten BE, Ermler WC (1997) Ab initio relativistic effective potentials with spin-orbit operators. VII. Am through element 118. J Chem Phys 106:5153–5145

    Article  Google Scholar 

  37. Mosyagin NS, Petrov AN, Titov AV, Tupitsyn II (2006) In: Julien JP (ed) Recent advances in the theory of chemical and physical systems. Springer, Dordrecht, pp 229–251

    Chapter  Google Scholar 

  38. Koch W, Holthausen MC (eds) (2000) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim

    Google Scholar 

  39. Anton J, Fricke B, Engel E (2004) Noncollinear and collinear relativistic density-functional program for electric and magnetic properties of molecules. Phys Rev A 69:012505(10)

    Google Scholar 

  40. Liu W, Hong, G, Dai D, Li L, Dolg M (1997) The Beijing four-component density functional program package (BDF) and its application to EuO, EuS, YbO, and YbS. Theor Chem Acc 96:75–83

    Article  CAS  Google Scholar 

  41. ReSpect, version 3.3.0. Relativistic Spectroscopy DFT program of authors Repisky M, Komorovsky S, Malkin VG, Malkina OL, Kaupp M, Ruud K, with contributions from Bast R, Ekstrom U, Knecht S, Malkin Ondik I, Malkin E. (2013). http://rel-qchem.sav.sk

  42. Liu W, Peng D (2006) Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory. J Chem Phys 125:044102-10; Peng D, Liu W, Xiao Y, Cheng L (2007) Making one- and two-component density-functional methods fully equivalent based on the idea from atoms to molecules. J Chem Phys 127:104106-4

    Google Scholar 

  43. Van Wüllen C (2002) Relativistic density functional calculations on small molecules. In: Schwerdtfeger P (ed) Relativistic electronic structure theory, Part II. Elsevier, Amsterdam, pp 598–655

    Google Scholar 

  44. ADF, theoretical chemistry, Vrije Universiteit Amsterdam, The Netherlands. http://www.scm.com

  45. Hess BA (1986) Relativistic electronic structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742–3748

    Article  CAS  Google Scholar 

  46. Koepernik K, Eschrig H (1999) Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys Rev B 59:1743–1757. http://www.FPLO.de

    Article  CAS  Google Scholar 

  47. Pershina V, Bastug T (2005) Relativistic effects on experimentally studied gas-phase properties of the heaviest elements. Chem Phys 311:139–150

    Article  CAS  Google Scholar 

  48. Johnson E, Fricke B, Keller OL Jr, Nestor CW Jr, Tucker TC (1990) Ionization potentials and radii of atoms and ions of element 104 (unnilquadium) and of hafnium (2+) derived from multiconfiguration Dirac-Fock calculations. J Chem Phys 93:8041–8050

    Article  CAS  Google Scholar 

  49. Johnson E, Fricke B, Jacob T, Dong CZ, Fritzsche S, Pershina V (2002) Ionization potentials and radii of neutral and ionized species of elements 107 (bohrium) and 108 (hassium) from extended multiconfiguration Dirac-Fock calculations. J Phys Chem 116:1862–1868

    Article  CAS  Google Scholar 

  50. Nefedov VI, Yarzhemcky VG, Trzhaskovskaya MB (2004) Periodic low as applied to superheavy elements: specific features arising from relativistic effects. Russ J Inorg Chem 49:1871

    Google Scholar 

  51. Nefedov VI, Trzhaskovskaya MB, Yarzhemcky VG (2006) Electronic configurations and the periodic table for superheavy elements. Dokl Phys Chem 408:149

    Article  CAS  Google Scholar 

  52. Indelicato P, Bieron J, Jönnson P (2011) Are MCDF calculations 101% correct in the superheavy element range? Theor Chem Acc 129:495–505

    Article  CAS  Google Scholar 

  53. Pyykko P (2011) A suggested periodic table up to Z ≤ 172, based on Dirac-Fock calculations on atoms and ions. Phys Chem Chem Phys 13:161–168

    Article  Google Scholar 

  54. Liu W, Dolg M, Schwerdtfeger P. Benchmark relativistic all-electron density functional and ab initio pseudopotential study of group 12 dimers M2 (M = Zn, Cd, Hg and eka-Hg). Unpublished

    Google Scholar 

  55. Seth M, Schwerdtfeger P, Dolg M (1997) The chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+, (112)F2, and (112)F4. J Chem Phys 106:3623

    Google Scholar 

  56. Nash CS (2005) Atomic and molecular properties of elements 112, 114 and 118. J Phys Chem A 109:3493–3500

    Article  CAS  Google Scholar 

  57. Pershina V, Borschevsky A, Eliav E, Kaldor U (2008) Prediction of the adsorption behavior of elements 112 and 114 on inert surfaces from ab initio Dirac-Coulomb atomic calculations. J Chem Phys 128:024707

    Article  CAS  Google Scholar 

  58. Eliav E, Kaldor U, Ishikawa Y (1995) Transition energies in mercury and eka-mercury (element 112) by the relativistic coupled-cluster method. Phys Rev A 52:2765

    Article  CAS  Google Scholar 

  59. Haynes WM (ed) (2012–2013) CRC handbook of chemistry and physics, 93rd edn. Taylor & Francis Ltd, London

    Google Scholar 

  60. Pershina V, Borschevsky A, Eliav E, Kaldor U (2008) Adsorption of inert gases including element 118 on noble metal and inert surfaces from ab initio Dirac–Coulomb atomic calculations. J Chem Phys 129:144106

    Article  CAS  Google Scholar 

  61. Borschevsky A, Pershina V, Eliav E, Kaldor U (2009) Electron affinity of element 114, with comparison to Sn and Pb. Chem Phys Lett 480:49–51

    Article  CAS  Google Scholar 

  62. Borschevsky A, Pershina V, Eliav, Kaldor U (2013) Ab initio predictions of atomic properties of element 120 and its lighter group-2 homologues. Phys Rev A 87:022502(8)

    Article  Google Scholar 

  63. Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1-118. Chem Eur J 15:186–197; Pyykkö P, Riedel S, Patzsche M (2005) Triple-bond covalent radii. ibid 11:3511–3620

    Google Scholar 

  64. Pershina V, Borchsevsky A, Ilias M (2014) Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. I. Electronic structure and properties of MCl4 and MOCl2 (M = Ti, Zr, Hf, and Rf). J Chem Phys 141:064314(8)

    Google Scholar 

  65. Pershina V, Borchsevsky A, Ilias M, Türler A (2014) Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. II. Adsorption of tetrachlorides and oxydichlorides of Zr, Hf, and Rf on neutral and modified surfaces. J Chem Phys 141:064315(7)

    Google Scholar 

  66. Pershina V, Anton J (2012) Theoretical predictions of properties and gas-phase chromatography behaviour of bromides of group-5 elements Nb, Ta and element 105, Db. J Chem Phys 136:034308(7)

    Google Scholar 

  67. Türler A, Brücle W, Dressler R, Eichler B, Eichler R, Gäggeler HW, Gärtner M, Glatz J-P, Gregorich KE, Hübener S, Jost DT, Lebedev VYa, Pershina V, Schädel M, Taut S, Timokhin N, Trautmann N, Vahle A, Yakushev AB (1999) First measurements of a thermochemical property of a seaborgium compound. Angew Chem Int Ed 38:2212–2213

    Google Scholar 

  68. Pershina V, Fricke B (1996) Group-6 dioxydichlorides MO2Cl2 (M = Cr, Mo, W, and element 106, Sg): the electronic structure and thermochemical stability. J Phys Chem 100:8748–8751

    Article  CAS  Google Scholar 

  69. Han YK, Son SK, Choi YJ, Lee YS (1999) Structures and stabilities for halides and oxides of transactinide elements Rf, Db, and Sg calculated by relativistic effective core potential methods. J Phys Chem A 103:9109–9115

    Article  CAS  Google Scholar 

  70. Even J, Yakushev A, Düllmann ChE, Haba H, Asai M, Sato TK, Brand H, Di Nitto A, Eichler R, Fan FL, Hartmann W, Huang M, Jäger E, Kaji D, Kanaya J, Kaneya Y, Khuyagbaatar J, Kindler B, Kratz JV, Krier J, Kudou Y, Kurz N, Lommel B, Miyashita S, Moritomo K, Morita K, Murakami M, Nagame Y, Nitsche H, Ooe K, Qin Z, Schädel M, Steiner J, Sumita T, Takeyama M, Tanaka K, Toyoshima A, Tsukada K, Türler A, Usoltsev I, Wakabayashi Y, Wang Y, Wiehl N, Yamaki S (2014) Synthesis and detection of a seaborgium carbonyl complex. Science 345:1491–1493

    Article  CAS  Google Scholar 

  71. Nash CS, Bursten BE (1999) Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)6. J Am Chem Soc 121:10830–10831

    Article  CAS  Google Scholar 

  72. Pershina V, Anton J (2013) Theoretical predictions of properties and gas-phase chromatography behaviour of carbonyl complexes of group-6 elements Cr, Mo, W, and element 106, Sg. J Chem Phys 138:174301(6)

    Article  Google Scholar 

  73. Eichler R, Brüchle W, Dressler R, Düllman ChE, Eichler B, Gäggeler HW, Gregorich KE, Hoffman DC, Hübener S, Jost DT, Kirbach UW, Laue CA, Lavanchy VM, Nitsche H, Patin JB, Piguet D, Schädel M, Shaughnessy DA, Strellis DA, Taut S, Tobler L, Tsyganov YS, Türler A, Vahle A, Wilk PA, Yakushev AB (2000) Chemical characterization of bohrium (element 107). Nature 407:63–65

    Article  CAS  Google Scholar 

  74. Pershina V, Bastug T (2000) The electronic structure and properties of group 7 oxychlorides, MO3Cl, where M = Tc, Re, and element 107, Bh. J Chem Phys 113:1441–1446

    Article  CAS  Google Scholar 

  75. Düllmann ChE, Brüchle W, Dressler R, Eberhardt K, Eichler B, Eichler R, Gäggeler HW, Ginter TN, Glaus F, Gregorich K, Hoffman DC, Jäger E, Jost DT, Kirbach UW, Lee DE, Nitsche H, Patin JB, Pershina V, Piguet D, Qin Z, Schädel M, Schausten B, Schimpf E, Schött HJ, Soverna S, Sudowe R, Thörle P, Timokhin SN, Trautmann N, Türler A, Vahle A, Wirth G, Yakushev AB, Zielinski PM (2002) Chemical investigation of hassium (element 108). Nature 418:859–862

    Article  Google Scholar 

  76. Pershina V, Anton J, Jacob T (2008) Fully-relativistic DFT calculations of the electronic structures of MO4 (M = Ru, Os, and element 108, Hs) and prediction of physisorption. Phys Rev A 78:032518(5)

    Article  Google Scholar 

  77. Pitzer KS (1975) Are elements 112, 114, and 118 relatively inert gases? J Chem Phys 63:1032–1033

    Article  CAS  Google Scholar 

  78. Eichler R, Aksenov NV, Belozerov AV, Bozhikov GA, Chepigin VI, Dmitriev SN, Dressler R, Gäggeler HW, Gorshkov VA, Haenssler F, Itkis MG, Laube A, Lebedev VYa, Malyshev ON, Oganessian YuTs, Petrushkin OV, Piguet D, Rasmussen P, Shishkin SV, Shutov SV, Svirikhin AI, Tereshatov EE, Vostokin GK, Wegrzecki M, Yeremin AV (2007) Chemical characterization of element 112. Nature. Letters 447:72–73

    Google Scholar 

  79. Borschevsky A, Pershina V, Eliav E, Kaldor U (2014) Relativistic couple cluster study of diatomic compounds of Hg, Cn, and Fl. J Chem Phys 141:084301-7

    Article  CAS  Google Scholar 

  80. Liu W, van Wüllen Ch, Han YK, Choi YJ, Lee YS (2001) Spectroscopic constants of Pb and Eka-lead compounds: comparison of different approaches. Adv Quant Chem 39:325–355

    Article  CAS  Google Scholar 

  81. Anton J, Fricke B, Schwerdtfeger P (2005) Non-collinear and collinear four-component relativistic molecular density functional calculations. Chem Phys 311:97–103

    Article  CAS  Google Scholar 

  82. Pershina V, Anton J, Fricke B (2007) Intermetallic compounds of the heaviest elements and their homologs: the electronic structure and bonding of MM, where M = Ge, Sn, Pb, and element 114, and M = Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114. J Chem Phys 127:134310(9)

    Article  Google Scholar 

  83. Gaston N, Opahle I, Gäggeler HW, Schwerdtfeger P (2007) Is eka-mercury (element 112) a group 12 metal? Angew Chem Int Ed 46:1663–1666

    Article  CAS  Google Scholar 

  84. Pershina V, Bastug T, Fricke B, Jacob T, Varga S (2002) Intermetallic compounds of the heaviest elements: the electronic structure and bonding of dimers of element 112 and its homolog Hg. Chem Phys Lett 365:176–183

    Article  CAS  Google Scholar 

  85. Sarpe-Tudoran C, Fricke B, Anton J, Pershina V (2007) Adsorption of superheavy elements on metal surfaces. J Chem Phys 126:174702(5)

    Article  Google Scholar 

  86. Pershina V, Anton J, Jacob T (2009) Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb. J Chem Phys 131:084713(8)

    Article  Google Scholar 

  87. Zaitsevkii A, Titov A (2009) Relativistic pseudopotential model for superheavy elements: applications to chemistry of eka-Hg and eka-Pb. Russ Chem Rev 78:1173–1181

    Article  Google Scholar 

  88. Zaitsevskii A, van Wüllen C, Rykova EA (2010) Two-component relativistic density functional modeling of the adsorption of element 114 (eka-led) on gold. Phys Chem Chem Phys 12:4152–4156

    Article  CAS  Google Scholar 

  89. Eichler R, Aksenov NV, Albin YuV, Belozerov AV, Bozhikov GA, Chepigin VI, Dmitriev SN, Dressler R, Gäggeler HW, Gorshkov VA, Henderson RA, Johnsen AM, Kenneally JM, Lebedev VYa, Malyshev ON, Moody KJ, Oganessian YuTs, Petrushkin OV, Piguet D, Popeko AG, Rasmussen P, Serov A, Shaughnessy DA, Shishkin SV, Shutov AV, Stoyer MA, Svirikhin AI, Tereshatov EE, Vostokin GK, Wegrzecki M, Wittwer PA, Yeremin AV (2010) Indication for a volatile element 114. Radiochim Acta 98:133–139

    Google Scholar 

  90. Yakushev A, Gates JM, Türler A, Schädel M, Düllmann ChE, Ackermann D, Andersson LL, Block M, Brüchle W, Dvorak J, Eberhardt K, Essel HG, Even J, Forsberg U, Gorshkov A, Graeger R, Gregorich KE, Hartmann W, Herzberg RD, Hessberger F, Hild D, Hübner A, Jäger E, Khuyagbaatar J, Kindler B, Kratz JV, Krier J, Kurz N, Lommel B, Niewisch J, Nitsche H, Omtvedt JP, Parr E, Qin Z, Rudolph D, Runke J, Schausten B, Schimpf E, Semchenkov A, Steiner J, Thörle-Pospiech P, Uusito J, Wegrzecki M, Wiehl N (2014) Superheavy element flerovium (element 114) is a volatile metal. Inorg Chem 53:1624–1629

    Article  CAS  Google Scholar 

  91. Eichler B (1976) Das Flüchtigkeitsverhalten von Transactiniden im Bereich um Z = 114 (Voraussage). Kernenergie 19:307–311; Eichler B, Zvara I (1982) Evaluation of the enthalpy of adsorption from thermodynamic data. Radiochim Acta 30:233–238

    Google Scholar 

  92. Pershina V, Borschevsy A, Anton J, Jacob T (2010) Theoretical predictions of trends in spectroscopic properties of homonuclear dimers and volatility of the 7p elements. J Chem Phys 132:194314(11)

    Article  Google Scholar 

  93. Pershina V, Borschevsy A, Anton J, Jacob T (2010) Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold. J Chem Phys 133:104304(10)

    Article  Google Scholar 

  94. Hermann A, Furthmüller J, Gäggeler HW, Schwerdtfeger P (2010) Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys Rev B 82:155116(8)

    Google Scholar 

  95. Pershina V, Anton J, Jacob T (2009) Electronic structures and properties of MAu and MOH, where M = Tl and element 113. Chem Phys Lett 480:157–160

    Article  CAS  Google Scholar 

  96. Fox-Beyer BS, van Wüllen C (2012) Theoretical modelling of the adsorption of thallium and element 113 atoms on gold using two-component density functional methods with effective core potentials. Chem Phys 395:95–103

    Article  CAS  Google Scholar 

  97. Serov A, Eichler R, Dressler R, Piguet D, Türler A, Vögele A, Wittwer D, Gäggeler HW (2013) Adsorption interaction of carrier-free thallium species with gold and quartz surfaces. Radiochim Acta 101:421–426

    Article  CAS  Google Scholar 

  98. Nash CS, Bursten BE (1999) Spin-orbit coupling versus the VSEPR method: on the possibility of a nonplanar structure for the super-heavy noble gas tetrafluoride (118)F4. Angew Chem Int Ed 38:151–153

    Article  CAS  Google Scholar 

  99. Pershina V, Borschevsky A, Anton J (2012) Fully relativistic study of intermetallic dimers of group-1 elements K through element 119 and prediction of their adsorption on noble metal surfaces. Chem Phys 395:87–94

    Article  CAS  Google Scholar 

  100. Pershina V, Borschevsky A, Anton J (2012) Theoretical predictions of properties of group-2 elements including element 120 and their adsorption on noble metal surfaces. J Chem Phys 136:134317(10); ibid (2013) 139:239901

    Google Scholar 

  101. Demidov Y, Zaitsevskii A, Eichler R (2014) First principles based modelling of the adsorption of atoms of element 120 on a gold surface. Phys Chem Chem Phys 16:2268–2270

    Article  CAS  Google Scholar 

  102. Eichler B, Rossbach H (1983) Adsorption of volatile metals on metal surfaces and its application in nuclear chemistry. Radiochim Acta 33:121–125

    Article  CAS  Google Scholar 

  103. Pyykkö P (2012) The physics behind chemistry and the periodic table. Chem Rev 112:371–384

    Article  Google Scholar 

  104. Pyykkö P (2012) Predicting new, simple inorganic species by quantum-chemical calculations: some successes. Phys Chem Chem Phys 14:14734–14737

    Article  Google Scholar 

  105. Pershina V (1998) Part II: hydrolysis and complex formation of Nb, Ta, Ha and Pa in HCl solutions. Radiochim Acta 80:75–84

    CAS  Google Scholar 

  106. Pershina V, Kratz JV (2001) Solution chemistry of element 106: theoretical predictions of hydrolysis of group 6 cations Mo, W, and Sg. Inorg Chem 40:776–780

    Article  CAS  Google Scholar 

  107. Pershina V, Polakova D, Omtvedt JP (2006) Theoretical predictions of complex formation of group-4 elements Zr, Hf, and Rf in H2SO4 solutions. Radiochim Acta 94:407–414

    Article  CAS  Google Scholar 

  108. Li ZJ, Toyoshima A, Tsukada K, Nagame Y (2010) Ion-exchange behavior of Zr and Hf as homologues of element 104, Rf, in H2SO4 and H2SO4/HClO4 mixed solutions. Radiochim Acta 98:7–12

    Article  CAS  Google Scholar 

  109. Pershina V (2004) Theoretical treatment of the complexation of element 106, Sg, in HF solutions. Radiochim Acta 92:455–462

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks her former collaborators J. Anton, T. Bastug, E. Eliav, U. Kaldor, and A. Borschevsky for the fruitful joint work. She also appreciates valuable discussions of the experimental results with her colleagues A. Yakushev, J.V. Kratz, Ch. E. Düllmann, and A. Türler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Pershina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Pershina, V. (2017). Relativistic Quantum Chemistry for Chemical Identification of the Superheavy Elements. In: Liu, W. (eds) Handbook of Relativistic Quantum Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40766-6_35

Download citation

Publish with us

Policies and ethics